Aqueous Method for Making Magnetic Iron Oxide Nanoparticles CON

9-8-2015

J. Manuel Perez Figueroa
University of Central Florida

Sudip Nath
University of Central Florida

Find similar works at: http://stars.library.ucf.edu/patents

University of Central Florida Libraries http://library.ucf.edu

Recommended Citation

http://stars.library.ucf.edu/patents/40

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
AQUEOUS METHOD FOR MAKING MAGNETIC IRON OXIDE NANOPARTICLES

Filed: 11/20/2002

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

(21) Appl. No.: 14/315,082
(22) Filed: Jun. 25, 2014

(65) Prior Publication Data

Related U.S. Application Data

(63) Continuation of application No. 13/855,706, filed on Apr. 2, 2013, now Pat. No. 8,821,837, which is a continuation of application No. 12/174,169, filed on Jul. 16, 2008, now Pat. No. 8,409,463.

(60) Provisional application No. 60/949,945, filed on Jul. 16, 2007.

(51) Int. Cl. A61K 49/18 (2006.01)
CO1G 49/08 (2006.01)
B82Y 30/00 (2011.01)

(52) U.S. Cl. CPC A61K 49/1863 (2013.01); A61K 49/1836 (2013.01); A61K 49/1848 (2013.01); A61K 49/1866 (2013.01); B82Y 30/00 (2013.01);
CO1G 49/08 (2013.01); CO1P 2002/72 (2013.01); CO1P 2002/85 (2013.01); CO1P 2004/04 (2013.01); CO1P 2004/16 (2013.01); CO1P 2004/32 (2013.01); CO1P 2004/62 (2013.01); CO1P 2004/84 (2013.01); CO1P 2006/42 (2013.01)

(58) Field of Classification Search CPC A61K 49/1863; A61K 49/1865; A61K 49/1848; A61K 49/1836; CO1P 2004/32; CO1P 2004/62; CO1P 2004/84; CO1P 2006/42; CO1P 2002/85; CO1P 2004/04; CO1P 2004/16; CO1G 49/08; B82Y 30/00

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
5,660,950 A 8/1997 Rao et al. 435/6.11

(10) Patent No.: US 9,125,941 B2
(45) Date of Patent: *Sep. 8, 2015
6,661,221 B2 12/2003 Taguchi et al. 324/207.21
6,891,368 B2 5/2005 Kawano et al. 324/252
7,531,149 B2 5/2009 Peng et al. 423/1
8,809,463 B1 4/2013 Perez et al. 252/6.25

FOREIGN PATENT DOCUMENTS

CA 2839865 11/2012
EP 1458031 9/2004
EP 2710151 3/2014
WO 03/072830 9/2003
WO 2004/03508 1/2004
WO 2009/085214 7/2009
WO PCT/US12/38903 5/2012
WO 2012/159121 11/2012

OTHER PUBLICATIONS

Corti et al. Detection of Mycobacterium avium subspecies paratuberculosis specific IS900 insertion sequences in bulk-tank milk samples obtained from different regions throughout Switzerland. BMC Microbiology 2:15 pp. 1-7 (2002).

FROM NERAC, Inc. Research Report No. 10032825 (Tolland, CT) (2 pages).

(Continued)

Primary Examiner — Suzanne Ziska
(74) Attorney, Agent, or Firm — Mennier Carlin & Curfman LLC

ABSTRACT

The invention discloses an aqueous method of making polymer coated superparamagnetic nanoparticles. Nanoparticles made by the method are included in the invention.

20 Claims, 20 Drawing Sheets

(56) References Cited

OTHER PUBLICATIONS

Notice of Non-Compliant Amendment mailed 01/24/100 for U.S. Appl. No. 12/258,785, filed Oct. 27, 2008 (Inventors—Perez et al.) (2 pages).

FIG. 1
FIG. 4
FIG. 5(a)
FIG. 5(b)
FIG. 5 (C)
FIG. 5(d)
FIG. 5(e)
FIG. 6(a)
FIG. 6(b)
FIG. 7(a)
FIG. 7(b)
FIG. 8(a)
FIG. 8(b)
FIG. 8(d)
FIG. 9(a)
FIG. 9(b)

The graph depicts the time (in minutes) on the x-axis and ΔT2 (in milliseconds) on the y-axis. The data points indicate a trend that stabilizes around 30 ms after a certain time point.
FIG. 9(c)

Dextran

DI ON
1
AQUEOUS METHOD FOR MAKING MAGNETIC IRON OXIDE NANOPARTICLES

CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation application of U.S. patent application Ser. No. 13/855,706 filed on Apr. 2, 2013, which is a continuation application of U.S. patent application Ser. No. 12/174,169 filed on Jul. 16, 2008, which claims priority from U.S. provisional patent application No. 60/949,945 filed on Jul. 16, 2007, each of which is incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under National Institutes of Health grant number KO1CA101781. The government has certain rights in the invention.

FIELD OF THE INVENTION

The present invention relates to the field of biosensors and, more particularly to a method of making magnetic iron oxide nanoparticles coated with a polymer and functionalized with a ligand and the nanoparticles made accordingly.

BACKGROUND OF THE INVENTION

Iron oxide based magnetic nanocrystals have been widely used in a variety of biomedical applications such as diagnostic, magnetic resonance imaging (MRI) and in magnetically guided site specific drug delivery systems. Their use as MRI contrast agents and as an enhancer in hypothermia (heating of diseased tissue by application of an RF pulse) has been widely discussed in the literature. Recently, it has been found that dextran coated iron oxide nanoparticles, ranging in size from 1 to 100 nm, can be used as magnetic relaxation switches (MRS) or magnetic relaxation nanosensors (MRnS). When these nanosensors self assemble in the presence of a molecular target, there is a significant change in the spin spin relaxation time (T2) of neighboring water molecules. This parameter (T2) is a component of the MR signal. The observed target-induced self assembly of iron oxide based nanoparticles has been used as a sensitive detection method for various targets and reported in the literature.

SUMMARY OF THE INVENTION

With the foregoing in mind, the present invention advantageously provides iron oxide nanoparticles that have been specifically prepared for in vivo studies and for clinical applications, as injectable MRI contrast agents.

Monodisperse, water-soluble dextran-coated iron oxide nanorods were synthesized using a facile and scalable method. Our room temperature method involves the mixing of an acidic solution of iron salts with a basic solution of ammonium hydroxide to facilitate initial formation of iron oxide crystals. The stability, crystallinity and shape of these nanorods depend on the time of addition of the dextran as well its degree of purity. The as-synthesized nanorods exhibit unique magnetic properties, including superparamagnetic behavior and high spin-spin water relaxivity (R2). Additionally, they possess enhanced peroxidase activity when compared to those reported in the literature for spherical iron oxide nanoparticles. Thus, this high yield synthetic method for polymer-coated iron oxide nanorod will expedite their use in applications from magnetic sensors, devices and nanocomposites with magnetic and catalytic properties.

Iron oxide based magnetic nanoparticles have been widely used in a variety of biomedical applications such as magnetic separation, magnetic resonance imaging, hyperthermia, magnetically-guided drug delivery, tissue repair, and molecular diagnostics. For most applications, a polymeric coating is needed to improve the nanoparticles’ aqueous stability, biocompatibility and conjugation properties. Typically, dextran-coated iron oxide nanoparticles have been successfully used as magnetic resonance imaging (MRI) contrast agent, due to their strong ability to dephase water protons in surrounding tissue, which results in a decrease in the MRI signal. In addition, the dextran coating can be crosslinked and functionalized with amino groups to facilitate the conjugation of targeting ligands for MRI and in vitro diagnostics applications. Current synthetic procedures for dextran-coated iron oxide nanoparticles involve the formation of the iron oxide core in the presence of dextran, as stabilizer and capping agent, in an alkaline solution. Under these in situ conditions the nature, quality and amount of the polymer modulate the nucleation, growth and size of the newly formed iron oxide nanocrystal. A common characteristic of most reported in situ dextran-coated iron oxide nanoparticles synthetic procedures is the formation of nanoparticles with a spherical iron oxide core. Research efforts have been geared towards the production of small, uniform and highly dispersed spherical nanocrystals. Only recently, has the importance of the nanoparticles’ shape been recognized, in particular one dimensional (1-D) structures such as nanorods and nanotubes, because they exhibit unique properties that are different from their corresponding zero dimensional counterparts (0-D or spherical nanocrystals). Particularly in the case of iron oxide, 1-D nanorods have been found to exhibit interesting magnetic properties due to their shape anisotropy, such as higher blocking temperatures and larger magnetization coercivity, compared to their 0-D counterparts. However, their wide application in biomedical research has been hampered by difficult and non-reproducible synthetic procedures, use of toxic reagents and poor yields. For instance, current methods for making iron oxide nanorods involve hydrothermal, sol-gel and high temperature procedures, among others. Therefore, a water-based synthetic procedure for iron oxide nanorods that is simple, economical, low temperature and high yield would be in high demand. In particular, synthetic methods that yield water soluble and stable polymer-coated nanorods would be ideal for studies geared towards the development of magnetic biosensors and magnetic devices.

For these reasons, we surmised it would also be advantageous to develop a new, facile, reproducible and low cost method to synthesize iron oxide nanoparticles for in vitro applications. In particular, a simple synthetic method that yields larger nanoparticles (100-500 nm) with a unique crystal shape and enhanced magnetic relaxation (high R2 and R1) would be helpful in studying the effect of shape and size on the sensitivity of the MRS assay.

To our understanding, it has not yet been reported what effect larger nanoparticles (100 to 500 nm) would have on the sensitivity of the magnetic relaxation assay. It has always been hypothesized that the target induced self assembly of large nanoparticles would result in nanoparticles clusters too big that they would settle down (precipitate) and therefore would render the system useless. However, if these nanoparticles contain a large iron oxide crystal with a high magnetic relaxation (high R2), a lower amount of nanoparticles would be required to achieve a detectable T2 signal (MRI signal). In
BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

Some of the features, advantages, and benefits of the present invention having been stated, others will become apparent from the following description when taken in conjunction with the accompanying drawings, presented for solely exemplary purposes and not with intent to limit the invention thereto, and in which:

FIG. 1, according to an embodiment of the present invention, is a TEM image of aminated (a) dextran and (b) silica coated iron oxide nanoparticles; the TEM images show that the dextran coated nanoparticles are rod shaped whereas the silica ones are spherical in nature (Bar=500 nm);

FIG. 2 is a selected area electron diffraction (SAED) image of aminated (a) dextran and (b) silica coated iron oxide nanoparticles (Bar=50 nm); the images show that the dextran coated particles are more crystalline than silica ones and consequently showing better magnetic relaxivity;

FIG. 3 shows an XRD pattern of IO nanocrystals wherein the XRD shows that the peaks matches well with that of Fe3O4 as reported in literature; both dextran and silica coated particles show same XRD pattern;

FIG. 4 provides an XPS spectrum of Fe3O4 nanocrystals where (a) shows the peaks due to Fe2p electrons and (b) shows that due to O1s electron; both dextran and silica coated particles show same XPS pattern; thus, XPS confirms the formation of Fe3O4 nanoparticles in solution;

FIG. 5(a) shows a time dependent study, where after addition of 5 µg avidin in 0.5 µg IO-dextran biotin conjugate; the control contains 5 µg 0.1 M phosphate buffer, pH 7.4; 5(b) shows a time dependent study after addition of 5 µg avidin in 0.7 µg IO-silica biotin conjugate; the control contains 5 µg 0.1 M phosphate buffer at pH 7.4; 5(c) is a plot of T2 (ms) vs. Time (min) after addition of 5 µg avidin in 0.5 µg of both silica and dextran coated biotinylated IO particles; 5(d) depicts a dose dependent study where T2 was measured after 1 hr incubation of the 0.5 µg IO-dextran-biotinylated particles with avidin at different concentrations; detection limit of avidin-0.091 µg; 5(e) shows a dose dependent study where T2 was measured after 1 hr incubation of the 0.5 µg IO-silica-biotinylated particles with avidin at different concentrations; detection limit of avidin-0.071 µg;

FIG. 6(a) is a time dependent study after addition of 1 µg of Antibody against Protein G in 0.42 µg IO-dextran-protein G particles; 6(b) depicts another time dependent study where after addition of 1 µg of Antibody against Protein G in 0.66 µg IO-silica-protein G particles; 7(a) is a time dependent study; after addition of 51.25 CFU MAP in 0.54 µg IO-dextran-protein G particles; control=1 µl phosphate buffer, pH 7.4; and 7(b) is a time dependent study; after addition of 51.25 CFU MAP in 0.82 µg IO-silica-protein G particles; control=411 phosphate buffer, pH 7.4; IO-silica-protein G was conjugated with antibody specific to MAP and then MAP was added;

FIG. 8(a) hysteresis loops obtained at temperatures 5K, 100 K and 200 K; (b) zero field cooled and field cooled magnetic susceptibilities in an external magnetic field H=200 G; (c) real and (d) imaginary components of ac susceptibility at different frequencies, the inset of (d) shows the Arrhenius plot obtained from the imaginary component of susceptibility measurements; and

FIG. 9(a) dynamic light scattering study of DIONrods with ConA; (b) time dependent response in T2 of DIONrods (200 µl 0.002 mg Fe per ml) when treated with 10 µl ConA (1 mg in 1 ml PBS); (c) FTIR spectra of free dextran and DIONrods.
The proper functionalization and bioconjugation of the nanoparticles with various targeting ligands resulted in robust nanosensors able to detect a molecular target by magnetic relaxation with high sensitivity. The high relaxivity of these particles allows us to do sensing experiments at a very low concentration of nanoparticles, with improved sensitivity and without precipitation of the particles because of their size. Furthermore, the fact that our facile synthetic method yields different sized particles depending on the polymer used is novel and can be used to generate multiple sizes and shapes of particles for further studies.

In our first set of experiments, we optimized the synthetic protocol, including the order of addition (in situ vs. step-wise), and the time of addition of the dextran polymer. Our water-based synthetic protocol involves an acid-base reaction between an acidic solution of iron salts and a basic solution of ammonium hydroxide. Upon mixing, the resulting solution becomes alkaline (pH=9.0), facilitating the formation of iron oxide nanocrystals. This initial formation of nanocrystals can occur either in the presence (in situ) or absence (step-wise) of dextran.

Since most synthetic procedures that afford stable and monodisperse nanoparticles use an in situ approach, we opted to try this approach first. In these experiments, a mixture of iron salts (FeCl\(_3\).6\(\text{H}_2\text{O}\) and FeCl\(_2\).4\(\text{H}_2\text{O}\)) was dissolved in an aqueous solution of HCl. A dextran solution was prepared in aqueous ammonia solution and placed on a digital vortex mixer. Finally, the resulting iron salt solution was poured at one time into the ammonia solution of dextran under vigorous stirring. Following this protocol, we obtained poorly crystalline, spherical nanocrystals of 20±5 nm in diameter and poor R2 relaxivity 15 (<1 mMs\(^{-1}\)). This poor relaxivity contrasts with the relaxivity obtained with other published in situ procedures where relaxivity values between 60-100 mMs\(^{-1}\) are obtained.

We then investigated if a step-wise approach might result in larger iron oxide nanocrystals and in improved R2 relaxivity. In this approach, a dextran solution was added at a particular time after initiating the nucleation of the iron oxide crystals. In initial optimization experiments, we measured T2 relaxivity (R2) and obtained TEM images of a series of dextran iron oxide nanoparticles prepared after adding dextran at different times (1, 10, 30 and 60 sec). Following this approach, we obtained nanorods where their size, crystallinity and R2 relaxivity improved with time of addition (Table 1). No significant difference was observed between 30 and 60 seconds. Interestingly, the yield was reduced at 60 sec, based on measurements of the concentration of iron in the solution, which were performed as described. The most optimal preparation was obtained when dextran was added 30 seconds after initiating the iron oxide nucleation, resulting in dextran iron oxide nanorods (DIONrods) with an R2 of 300 mMs\(^{-1}\).

<table>
<thead>
<tr>
<th>Time of addition of Dextran (sec)</th>
<th>R2 (mM(^{-1})s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before adding ammonia</td>
<td><1</td>
</tr>
<tr>
<td>1 sec</td>
<td>50</td>
</tr>
<tr>
<td>10 sec</td>
<td>150</td>
</tr>
<tr>
<td>30 sec</td>
<td>300</td>
</tr>
<tr>
<td>60 sec</td>
<td>300</td>
</tr>
</tbody>
</table>

TABLE 1

1. Synthetic Procedure

Synthesis of Aminated Dextran Coated 10 Nanoparticles
A mixture of iron salts containing 0.203 g FeCl\(_3\).4\(\text{H}_2\text{O}\) and 0.488 g FeCl\(_2\).6\(\text{H}_2\text{O}\) in HCl solution (88.7 µl 12 N HCl in 2 ml water) was added to Ni\(_2\)OH (830 µl in 15 ml N\(_2\) purged DI water) and stirred on a digital vortex mixer for 10 sec. Then, an aqueous solution of dextran (5 g in 10 ml water) was added to the mixture and stirred for 1 hr. Finally, the entire mixture was centrifuged for 30 minutes, to pellet large particles, and the supernatant was collected, filtered and washed several times with distilled water through an Amicon cell (Millipore ultrafiltration membrane YM-30 k). This process helps to get rid of the unbound dextran molecules. The dextran coated nanoparticle (3 mg, i.e. 3 ml 10 solution containing—1 mg Fe per ml) was then crosslinked by treating with 200 µl epichlorohydrin and 5 ml 0.5 M NaOH and the mixture was stirred vigorously at room temperature for 8 hrs. Afterwards, the particles were aminated by mixing 850 W, 30% ammonia and stirred overnight at RT to get aminated dextran coated 10 particles. The free epichlorohydrin was removed by washing the solution repeatedly with distilled water using an Amicon cell.

Synthesis of Aminated Silica Coated 10 Nanoparticles:
A mixture of 0.203 g FeCl\(_3\).4\(\text{H}_2\text{O}\) and 0.488 g FeCl\(_2\).6\(\text{H}_2\text{O}\) in HCl solution (88.7 µl 12 N HCl in 2 ml water) was poured into a solution of NH\(_4\)OH (830 µl in 15 ml N\(_2\) purged DI water) and stirred on a digital vortex mixer. After 10 sec of stirring 2680 µl tetraethylorthosilicate, 670 µl 3-(aminopropyl)triethoxysilane and 6180 µl 3-trihydroxypropylmethylphosphonate were added to the iron oxide nanoparticle solution and stirred for 1 hr at 3000 rpm. Then, the solution was centrifuged to remove large particles and washed finally with distilled water through Amicon cell (Millipore ultrafiltration membrane YM-30 k).

2. Advantages of the Present Method:
1) Facile, cost effective, and green chemistry synthesis that does not require vigorous experimental conditions.
2) Synthesis does not require the use of toxic reagents and therefore they are highly biocompatible.
3) Good solubility and stability of resulting particles in water, phosphate buffer saline and citrate buffer for a long time period makes them suitable for biomedical applications.
4) The resulting IO particles can be concentrated using ultrafiltration devices without inducing agglomeration of the nanoparticles.
5) The evolved particles are highly magnetic. Therefore they can be used at a very low concentration for biological applications.
6) The aminated particles can be conjugated with proteins and other biomolecules for sensing application.
7) Stable nanoparticles suspension of size range 100-500 nm (depending on experimental conditions) can be obtained.
8) Using this protocol, we can obtain iron oxide crystals of defined size and shape by simply changing the polymer used as stabilizer/coating. For example, using dextran we favor formation of rods, while using silica we favor formation of spheres, under the same general experimental conditions.
9) Other polymers can be used, potentially obtaining other shapes and sizes of nanoparticles. In particular, biodegradable or biocompatible polymers viz. polyvinyl alcohol, polyacrylic acid, among others can be used in the present method.
10) Resulting nanoparticles can be used for both in vitro and in vivo applications since synthetic procedure involves non-toxic materials.
11) Both the silica coating and dextran coating nanoparticles can achieve a strong water relaxation effect. Larger R1 and R2 are obtained.
III. Characterization

A. Transmission Electron Microscopy (TEM)

The results of examination of the evolved particles by TEM are shown in FIG. 1. Shown is the TEM image of aminated (a) dextran and (b) silica coated iron oxide nanoparticles. The TEM images show that the dextran coated nanoparticles are rod shaped whereas the silica coated nanoparticles are approximately spherical in nature. (Bar=500 nm).

FIG. 2 depicts selected area electron diffraction (SAED) images of aminated (a) dextran and (b) silica coated iron oxide nanoparticles (Bar=5 11m). The images show that the dextran coated particles are more crystalline than silica ones and consequently showing better magnetic relaxivity.

B. X-Ray Diffraction Study (XRD)

FIG. 3 shows the XRD pattern of IO nanocrystals. The XRD shows that the peaks match well with those of Fe3O4 as reported in literature. Both dextran and silica coated particles show same XRD pattern.

C. X-Ray Photoelectron Spectroscopy (XPS)

FIG. 4 provides an XPS spectrum of Fe3O4 nanocrystals where (a) shows the peaks due to Fe2p electrons and (b) shows that due to O1 s electron. Both dextran and silica coated particles show same XPS pattern. XPS confirms the formation of Fe3O4 nanocrystals in solution.

D. Quantification of Amines

After amination of the resulting nanoparticles, it is important to determine the amount of amine groups present per gram of iron oxide particles. The quantification of amine group on the surface of IO particles is important, as they can be used to conjugate to a series of targets according to the amount of amines. The amine groups present per gram of iron was determined through conjugation of the aminated particles with N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP). Briefly, 500 µl aminated 10 (~1 mg Fe per ml) was mixed with 100 µl 0.1 M sodium phosphate buffer (pH 7.4) and 60 µl 75 mM SPDP in DMSO and kept for 2 hrs. The unbound nanoparticles and SPDP were removed by passing the solutions through a Sephadead PD-10 column. Afterwards, a portion of the IO-SPDP conjugate was treated with 75 µl 20 mM 1,4-dithio-DL-threitol (DTT) and stirred for 2 hrs. The reaction mixture was then passed through Microcon centrifugal filter devices (YM 30) and absorbance of the filtrate was measured as previously described [Bioconjugate Chem. 1999, 10 186].

NOTE: It has been observed that the aminated IO-silica and aminated dextran particles have about 0.152 and 0.106 mmoles of amines present per gram of iron respectively. The silica coated particles are more easily aminated as the synthesis involves coating materials containing aminating agents, such as 3-(aminopropyl)triethoxysilane (APTS). On the other hand, aminated dextran coated particles are synthesized by first crosslinking the dextran coating and then aminating the crosslinked nanoparticle with ammonia. The later procedure might introduce a limited number of amino groups to the nanoparticle, as opposed to the silica/ APTS protocol.

E. Characteristic Properties of Aminated Dextran and Silica Coated Iron Oxide Nanoparticles

The characteristics of the aminated dextran and silica coated iron oxide particles are shown in Table 2, below.

F. Additional Characterization Studies

Subsequently, we report the magnetic properties of the DIONrods. First, hysteresis loops, measured at three different temperatures (FIG. 8(a)), demonstrated a coercivity of 500±10 G at 5K that disappeared at 100 K and 200 K, which is typical of superparamagnetic behavior. Zero-field cooled (ZFC) and Field cooled (FC)−dc susceptibility studies (FIG. 8(b)) show that the ZFC magnetic moment increased as the temperature increased, reaching a maximum at 28 K (the blocking temperature, (Tb)) and then it decreased with further increase in temperature. In the FC process, above the blocking temperature (TB), the data followed the ZFC curve, but it deviated from ZFC curve below Tb showing a slow increase in the moment with decreasing temperature. The maximum found in the ZFC curve (at Tb) is where a maximum number of particles exhibit superparamagnetic behavior. Below Tb, the relaxation times of the particles are longer than the experimental measurement time; hence the particles acquire a blocked state. In the ac susceptibility, both real and imaginary components x(T) and x"(T), at different frequencies ranging from 0 Hz to 1 kHz exhibited a frequency dependent maximum (FIG. 8(c) and FIG. 8(d)), which shifted to higher temperatures with increasing frequency. This may be due to either spin glass or superparamagnetic behavior. To clearly distinguish between these two behaviors, the Mydosh parameter (Φ) was calculated from the real part of the ac susceptibility according to the equation:

\[\Phi = \frac{\Delta M}{M_0} \]

We used the x'(1 Hz) and x"(1 kHz) data to calculate Φ, obtaining a value of 0.072, Tm is the temperature corresponding to the observed maximum in x'(1 Hz) and is the expected for superparamagnetic systems is ~0.10, which further corroborates that our DIONrods are superparamagnetic. The particle relaxation time follows the Arrhenius law, given by:

\[\nu = v_0 \exp \left(-\frac{\Delta E}{k_B T} \right) \]

where ΔE/kB is the energy barrier and κ is the experimental frequency. The data fitted well to a linear relation (inset of FIG. 8(d)) yielding ΔE/kB=800±10K and Tm=2×10^-14 s, whereas 10^-11<Tm<10^-8 s is expected for superparamagnetic systems. The lower value of Tm is an indication of interparticle interactions present in the sample. Taken together, these results show that our DIONrods exhibit superparamagnetic behavior.

Regarding FIG. 8, panel (a) shows hysteresis loops obtained at temperatures 5K, 100K and 200K, panel (b) depicts zero field cooled and field cooled magnetic susceptibilities in an external magnetic field H=200 G, panel (c)
The presence of dextran on nanoparticle surfaces was confirmed by performing clustering experiments with Concanavalin-A (ConA). Specifically, the presence of dextran on nanoparticles can be identified via the presence of characteristic dextran peaks on the DIONrods. The FT-IR experiments further confirmed the presence of dextran on the nanoparticles. The centrifugation and redispersion were repeated three times to get rid of trace amounts of water. Afterward, the nanoparticle pellets were again dispersed in 500 µl DMSO and then suspended in 5 µl of disuccinimidyl suberate (DSS). The DMSO suspension of the IO nanoparticles was obtained by mixing 1 ml of amino-functionalized nanoparticles with 1 ml isopropanol, mixing well and spinning down at 13.2 k rpm for 1 hr. The supernatant was decanted, and the pellet was dissolved completely in 500 µl DMSO. The suspension was again treated with isopropanol and spun down. The centrifugation and redispersion were repeated three times to get rid of trace amounts of water. Afterward, the nanoparticle pellets were again dispersed in 500 µl DMSO and then suspended in 5 µl of disuccinimidyl suberate (DSS, 5.88 mg in 128 µl DMSO). The mixture was stirred well and allowed to react for 30 mins to link DSS on the surface of the particles. Then the DSS linked particles were treated with 1.5 ml isopropanol and mixed properly. The reaction mixture was centrifuged and pellets were again dispersed in DMSO. The centrifugation and redispersion were repeated for 3 times to eliminate excess DSS. Finally, the pellets were dispersed in protein G (Sigma) solution (1 mg protein G in 1 ml, 200 mM phosphate buffer, pH 8.0). The mixture was kept for 1 hr at room temperature and then overnight at 4°C to obtain the protein G functionalized particles.

The synthesized protein G functionalized nanoparticles were targeted with an antibody against protein G and the changes in T2 were measured (FIGS. 6a and 6b). FIG. 6(a) shows a time dependent study: after addition of 1 µl of antibody against protein G in 0.42 µg IO-dextran-protein G particles. FIG. 6(b) is a time dependent study, where after addition of 1 µl of antibody against protein G in 0.66 µg IO-silica-protein G particles. The antibody binds to the proteins and causes dissociation of the DSS. Consequently, an instantaneous decrease in T2 was observed. The silica coated protein G functionalized particles show a greater decrease compared to dextran coated ones. The presence of more amine groups on their surface can sense avidin through magnetic relaxation sensors.

The centrifugation and redispersion was repeated for 3 times to eliminate excess DSS. Finally, the pellets were dispersed in protein G (Sigma) solution (1 mg protein G in 1 ml, 200 mM phosphate buffer, pH 8.0). The mixture was kept for 1 hr at room temperature and then overnight at 4°C to obtain the protein G functionalized particles.

C. Detection of Mycobacterium avium Paratuberculosis (MAP)

To test the capability of our particles in sensing a “real” target, we planned to use the new antibody conjugated nanoparticles to sense the presence of bacteria in fluid media. As a model system, we used Mycobacterium avium paratuberculosis (MAP). A MAP specific magnetic nanosensor was prepared by conjugating an anti-MAP antibody to protein G-IO nanoparticles.
Upon addition of the bacteria to a solution containing the bacteria-specific nanosensors, a rapid and sensitive detection of the bacterial target was achieved via changes in T2. This observation proves that our relatively large iron oxide nanoparticles can be used to detect a molecular target in solution, similar to previously reported studies that use smaller nanoparticles in the range of 30-50 nm [Perez, J.M., Nat Biotechnol. 2002, 20(8): p. 816-20].

FIG. 7(a) presents the results of yet another time dependent study, after addition of 51.25 CFU MAP in 0.54 µg IO-dextran-protein G particles. The control=1 p.l phosphate buffer, pH 7.4. IO-dextran-Protein G was conjugated with an antibody specific to MAP and then MAP was added. FIG. 7(b) is a time dependent study, showing after addition of 51.25 CFU MAP in 0.82 µg IO-silica-protein G particles. The control=1 µg phosphate buffer, pH 7.4. IO-silica-protein G was conjugated with antibody specific to MAP and then MAP was added.

Accordingly, in the drawings and specification there have been disclosed typical preferred embodiments of the invention and although specific terms may have been employed, the terms are used in a descriptive sense only and not for purposes of limitation. The invention has been described in considerable detail with specific reference to these illustrated embodiments. It will be apparent, however, that various modifications and changes can be made within the spirit and scope of the invention as described in the foregoing specification and as defined in the appended claims.

The invention claimed is:

1. An aqueous method of making polymer coated superparamagnetic nanoparticles, the method comprising:
 - providing a mixture of iron salts in aqueous hydrochloric acid;
 - combining a solution of ammonium hydroxide with the mixture and stirring for a time sufficient for formation of a suspension of iron oxide nanoparticles;
 - adding to the suspension one or more aqueous biocompatible polymers thereby coating the nanoparticles with polymer, wherein optionally at least one of the polymers is aminated;
 - centrifuging the suspension, rendering a supernatant without large particles;
 - filtering the supernatant through an ultrafiltration membrane and collecting the filtrate containing the polymer coated nanoparticles;
 - crosslinking the polymer coating by treating the nanoparticles with epichlorohydrin and sodium hydroxide while mixing for up to about eight hours;
 - aminated any un-aminated crosslinked polymer remaining by treating with ammonia; and
 - removing free epichlorohydrin from the suspension.

2. The method of claim 1, wherein the iron salts are selected from FeCl2, FeCl3, and combinations thereof.

3. The method of claim 1, wherein the biocompatible polymer comprises dextran.

4. The method of claim 1, wherein the biocompatible polymer comprises silicon.

5. The method of claim 1, wherein the biocompatible polymer is selected from dextran, polyvinyl alcohol, polyacrylic acid, a silicon-based polymer and combinations thereof.

6. The method of claim 1, wherein the biocompatible polymer is selected from tetraethylorthosilicate, 3-(aminopropyl)triethoxysilane, 3-(trihydroxysilyl)propylmethylyphosphonate and combinations thereof.

7. A suspension of rod-shaped nanoparticles comprising iron oxide coated with a crosslinked aminated biocompatible polymer, said nanoparticles having a major dimension and a minor dimension, and having a relatively high magnetic R2 relaxation.

8. The suspension of claim 7, wherein the rod-shaped nanoparticles have a superparamagnetic core of the rod-shaped nanoparticles.

9. The suspension of claim 7, wherein said biocompatible polymer is dextran.

10. The suspension of claim 7, wherein said biocompatible polymer is selected from dextran, polyvinyl alcohol, polyacrylic acid, and combinations thereof.

11. The suspension of claim 7, wherein the minor dimension of the rod-shaped nanoparticles is approximately 1/3 of the major dimension.

12. The suspension of claim 7, wherein the major dimension of the rod-shaped nanoparticles is approximately in the range of 100-500 nm.

13. The suspension of claim 7, wherein the relatively high magnetic R2 relaxation is in the approximate range of 300-400 mMs⁻¹.

14. The suspension of claim 7, wherein the rod-shaped nanoparticles further comprise a ligand conjugated to the crosslinked aminated dextran.

15. The suspension of claim 7, wherein the rod-shaped nanoparticles further comprise a protein G ligand conjugated to the crosslinked aminated dextran.

16. A suspension of superparamagnetic nanoparticles wherein said nanoparticles comprise a core of iron oxide coated with a crosslinked aminated silicon-containing polymer, said nanoparticles having a size of approximately from 100 nm to 500 nm.

17. The suspension of superparamagnetic nanoparticles of claim 16, wherein the nanoparticles are approximately spherical and the size is a diameter.

18. The suspension of superparamagnetic nanoparticles of claim 16, wherein said nanoparticles have an R2 relaxation of approximately 150 mMs⁻¹⁻¹.

19. The suspension of superparamagnetic nanoparticles of claim 16, further comprising a ligand conjugated to the crosslinked aminated silicon-containing polymer.

20. The suspension of superparamagnetic nanoparticles of claim 16, further comprising a protein G ligand conjugated to the aminated silicon-containing polymer.

* * * * *