Liquid Crystal Display with Different Twisting Directions of Liquid Crystal Molecules

10-25-2011

Shin-Tson Wu
University of Central Florida

Ju-Hyun Lee
University of Central Florida

Wang-Yang Li
Harvard University

Chung-Kuang Wei
Harvard University

Find similar works at: http://stars.library.ucf.edu/patents

University of Central Florida Libraries http://library.ucf.edu

Recommended Citation

http://stars.library.ucf.edu/patents/303

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
A liquid crystal display includes a first alignment film having a first alignment direction, a second alignment film having a second alignment direction, and a liquid crystal layer having liquid crystal molecules between the first and second alignment films. The liquid crystal layer is doped with a chiral material that tends to induce a first twist in directors of the liquid crystal molecules when an electric field is applied to the liquid crystal layer. The first and second alignment films have orientations that tend to induce a second twist in the directors when an electric field is applied to the liquid crystal layer, in which the direction of the first twist is different from the direction of the second twist.

28 Claims, 14 Drawing Sheets
FIG. 3A

Twist Angle (deg.) \(\phi \) vs. Normalized Position in the Layer Thickness

- 210
- 212
- 214
- 216

- 0.0V
- 1.0V
- 1.8V
- 2.5V
- 3.0V
- 4.0V
- 5.0V

Normalized Position in the Layer Thickness
FIG. 3B
FIG. 7
FIG. 8
FIG. 9

Applied Voltage (V)

EO Response

0 1 2 3 4 5 6 7 8 9 10

160
168
164
166
162
FIG. 12
LIQUID CRYSTAL DISPLAY WITH DIFFERENT TWISTING DIRECTIONS OF LIQUID CRYSTAL MOLECULES

The subject matter disclosed in this patent application was developed under a joint research agreement between Chi Mei Optoelectronics and University of Central Florida.

BACKGROUND OF THE INVENTION

The description relates to liquid crystal displays. Liquid crystal displays (LCDs) can be used in, e.g., portable devices, computers displays, and high definition televisions. A liquid crystal display can have a liquid crystal layer and two crossed linear polarizers for modulating light using an electro-optic effect. An external voltage applied to the liquid crystal layer changes the orientations of the liquid crystal molecules and the optical phase retardation of the liquid crystal layer, thereby changing the amount of light that passes the crossed linear polarizers. Each pixel of the display can show a range of gray scale levels depending on the voltage applied to the liquid crystal layer. Color filters can be used to filter light to generate color.

The optical characteristics of a liquid crystal display are affected by the molecular arrangements of liquid crystal molecules when no voltage is applied (referred to as the "initial state") and when voltages are applied (referred to as the "operation state") to the liquid crystal layer. The initial arrangement of the liquid crystal molecules can be determined by, e.g., surface boundary conditions. The liquid crystal layer is between two substrates, and the surface boundary conditions can be controlled by alignment layers attached to the substrates. Each alignment layer can be, e.g., a thin film of organic (e.g., polymer) or inorganic material(s).

The liquid crystal molecules are initially aligned perpendicular or parallel to the surface of the alignment layer with a small inclination (pretilt) along a certain direction. The direction of inclination or tilt defines the molecular reorientation direction in the operation state. The amount of the inclination is called a pretilt angle. The surface structure of the alignment layer that defines the surface pretilt angle can be obtained by buffing the organic alignment layer, exposing polarized or unpolarized light from an inclined direction on the organic alignment layer, or inclined deposition of an inorganic alignment layer. When a voltage is applied to the liquid crystal layer in the operation state, the applied electric field exerts a torque on the liquid crystal molecules due to dielectric anisotropy of the molecules. The initial structure of the liquid crystal layer together with the molecular reorientation scheme defines a liquid crystal mode. Different liquid crystal modes can be used in different applications.

For example, displays having different sizes can use different liquid crystal modes due to considerations in device fabrication complexity, manufacturing costs, and system performances. For small and mid-sized screens (e.g., those used in mobile phones and computer monitors), a twisted nematic (TN) mode can be used. TN displays are described in "Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal," by M. Schadt et al., Applied Physics Letters, Vol. 18, p. 127 (1971). TN displays can be reliable to operate and simple to manufacture. In a TN display, two substrates are provided with alignment layers that align the liquid crystal molecules parallel to the substrate surfaces in the initial state. The top and the bottom alignment layers are rubbed along orthogonal directions. Due to this boundary condition, the liquid crystal layer has a twisted structure when no voltage is applied to the liquid crystal layer. This twisted structure changes the polarization state of light that passes the liquid crystal layer due to birefringence and wave guiding effects.

The wave guiding effect provides a high transmittance efficiency at the bright state with low color dispersion, compared to other liquid crystal modes that uses only the birefringence effect for the bright state.

The term "twisted structure" refers to a condition of the liquid crystal layer in which the orientations of the directors of the liquid crystal molecules are different at different positions along a vertical direction. The twisted structure is similar to a helix. A clockwise twist direction means that the liquid crystal molecules have orientations that rotate in the clockwise direction as the liquid crystal molecules move from positions closer to the back side of the display to positions closer to the front side of the display (similar to a left handed helix). A counter clockwise twist direction means that the liquid crystal molecules have orientations that rotate in the counter clockwise direction as the liquid crystal molecules from positions closer to the back side of the display to positions closer to the front side of the display (similar to a right handed helix).

The TN display can be switched to a dark state by applying an operation voltage to the liquid crystal layer, causing the liquid crystal molecules to be oriented perpendicular to the substrate surface. In the dark state, there can be light leakage caused by optical retardation at the surface regions of the liquid crystal layer because the liquid crystal molecules near the surface regions are not switched perpendicular to the substrate due to the binding force of the alignment layers.

In another liquid crystal mode, referred to as the vertical alignment (VA) mode, the liquid crystal molecules are initially aligned in the vertical direction (i.e., perpendicular to the substrate). There are two types of VA modes. The first type uses a birefringence effect to control brightness, and is referred to as the electrically controlled birefringence (ECB) VA mode. See "Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields," by M. F. Schiekel et al., Applied Physics Letters, Vol. 19, p. 391 (1971). The ECB VA mode uses alignment layers that align the liquid crystal molecules perpendicular to the substrate surface. The rubbing directions of the top and bottom alignment layers are opposite to twisted structure. To achieve a high brightness, the optic axes of the top and bottom polarizers have transmission axes oriented at 45 degrees relative to the rubbing directions of the alignment layers.

Note that the terms "vertical" and "horizontal" are used to describe the relative orientations of various components of the display. The components can have different orientations.

A second type of VA mode, referred to as a "chiral homeotropic mode" or a "homeotropic-to-twisted planar switching mode," has the advantages of ECB VA mode (e.g., high contrast image) and TN mode (e.g., high brightness and low color dispersion). See "Novel electro-optic effect associated with a homeotropic to twisted-planar transition in nematic liquid crystals," Seong-Woo Suh et al., Applied Physics Letters, 68, p. 2819 (1996) and "Chiral-homeotropic liquid crystal cells for high contrast and low voltage displays," by Shin-Ison Wu et al., Journal of Applied Physics, 82, p. 4795 (1997). The
In a chiral homeotropic mode LCD, the liquid crystal layer is sandwiched between two glass substrates that are coated with a thin layer of transparent and conductive electrode (e.g., indium tin oxide) and subsequently over-coated with a thin organic (e.g., polyimide) or inorganic (e.g., SiO₂) alignment layer. The alignment layer can align the liquid crystal molecules perpendicular to the substrate surfaces in the initial state. When a voltage is applied to the liquid crystal layer, the chiral material introduces a twisted structure in the liquid crystal layer.

The tilt direction of the alignment layers on the bottom and top substrates can be different. The angle between the two tilt directions can be, e.g., 90 degrees. The different tilt directions introduce a twisted structure in the liquid crystal layer when a voltage is applied to the liquid crystal layer. The tilt directions of the alignment layers are configured to cause the liquid crystal molecules to form a twisted structure in the liquid crystal layer, in which the twist direction of the twisted structure is the same as the twist direction caused by the chiral material.

For example, if the twisted structure caused by the chiral material has a clockwise twist direction, then the tilt directions of the alignment layers are configured to cause the liquid crystal molecules to form a twisted structure having a clockwise twist direction. Conversely, if the twisted structure caused by the chiral material has a counter-clockwise twist direction, then the tilt directions of the alignment layers are configured to cause the liquid crystal molecules to form a twisted structure having a counter-clockwise twist direction.

The chiral homeotropic LCD has polarizers that are crossed, i.e., have transmission axes that are oriented orthogonally. The tilt direction of one of the alignment layers is parallel to one of the transmission axes of the crossed polarizers. In the initial state, the liquid crystal molecules are aligned in the vertical direction and light does not pass the crossed polarizers, resulting in a dark image. This is similar to the situation in the ECB VA mode. In the operation state, an electric field in the vertical direction is applied to the liquid crystal layer. Because the liquid crystal molecules have negative dielectric anisotropy, the applied electric field tends to reorient the liquid crystal molecules toward the horizontal direction. Due to the effect from the different tilt directions on the alignment layers and the effect from the chiral material, the liquid crystal molecules in the bulk area form a twisted structure. The twisted structure in the bulk area of the chiral homeotropic mode LCD is similar to that of the TN mode LCD and has optical properties similar to those of the TN mode LCD.

SUMMARY

In one aspect, in general, a liquid crystal display includes a first alignment film having a first alignment direction, a second alignment film having a second alignment direction, and a liquid crystal layer having liquid crystal molecules between the first and second alignment films. The liquid crystal layer is doped with a chiral material that tends to induce a twist in directors of the liquid crystal molecules when an electric field is applied to the liquid crystal layer. The first and second alignment films have orientations that tend to induce a second twist in the directors when an electric field is applied to the liquid crystal layer, in which the direction of the first twist is different (e.g., opposite) from the direction of the second twist.

Implementations of the apparatus may include one or more of the following features. In some examples, the first and second alignment films tend to induce a counter-clockwise twist in the directors of the liquid crystal molecules, and the chiral material tends to induce a clockwise twist in the directors. In some examples, the orientations of the first and second alignment films tend to induce a clockwise twist in the directors of the liquid crystal molecules, and the chiral material tends to induce a counter-clockwise twist in the directors. When a pixel of the liquid crystal display is in a bright state, at least one-tenth, or at least one-half, or at least two-thirds, of the liquid crystal molecules in the pixel form a twisted structure having a twist direction that is opposite to the twist direction of a portion of the twisted structure formed by liquid crystal molecules adjacent to the first and second alignment films. The liquid crystal molecules are substantially normal to the first and second alignment films when no voltage is applied to the liquid crystal layer, and the liquid crystal molecules tilt away from the substantially normal direction when an electric field is applied to the liquid crystal layer. The first alignment layer is attached to a first substrate and the second alignment layer is attached to a second substrate.

The liquid crystal layer includes negative dielectric anisotropy liquid crystal material. The apparatus includes a backlight to provide light that is modulated by the liquid crystal layer. The apparatus includes electrodes to apply the voltage to the liquid crystal layer. The apparatus includes a first polarizing film having a first transmission axis and a second polarizing film having a second transmission axis, the first transmission axis being at an angle relative to the second transmission axis. The first and second polarizing films being positioned at opposite sides of the liquid crystal layer. In some examples, the angle between the first and second alignment layers is substantially parallel to the bisector of the angle between the first and second transmission axes. The display is at a dark state when no voltage is applied to the liquid crystal layer. The first alignment direction is at an angle of 60 to 120 degrees with respect to the second alignment direction. A pitch of the twist induced by the chiral material ranges from 3 to 6 times the thickness of the liquid crystal layer.

In another aspect, in general, a transmissive type liquid crystal display includes a first substrate having a first electrode and a first alignment film, a second substrate having a second electrode and a second alignment film, a liquid crystal layer having liquid crystal molecules between the first and second substrates, and a backlight to generate light that is modulated by the liquid crystal layer. The liquid crystal layer is doped with a chiral material that tends to induce a twisted structure in the liquid crystal layer when an electric field is applied to the liquid crystal layer. The direction of twist of the twisted structure induced by the first and second alignment films is different (e.g., opposite) from the direction of twist of the twisted structure induced by the chiral material.

Implementations of the display may include one or more of the following features. The liquid crystal molecules are substantially parallel to a direction perpendicular to the first and second substrates when no electric field is applied to the
liquid crystal layer. In some examples, the first and second alignment films tend to induce a counter-clockwise twist in the directors of the liquid crystal molecules, and the chiral material tends to induce a clockwise twist in the directors. In some examples, the first and second alignment films tend to induce a clockwise twist in the directors of the liquid crystal molecules, and the chiral material tends to induce a counter-clockwise twist in the directors. When a pixel of the liquid crystal display is in a bright state, the directors of at least one-tenth, or at least one-half, or at least two-thirds, of the liquid crystal molecules in the pixel twist in a direction that is opposite to the twist direction of a portion of the directors of liquid crystal molecules adjacent to the first and second alignment films.

In another aspect, in general, a liquid crystal display includes a lower alignment film having a first alignment direction, an upper alignment film having a second alignment direction, the upper alignment film being closer to a user viewing the display, and a liquid crystal layer having liquid crystal molecules between the first and second alignment films, in which the liquid crystal layer is doped with a chiral material. The chiral material includes substantially right-handed chiral material if the lower and upper alignment films are oriented such that the second alignment direction is at an angle less than 180 degrees relative to the first alignment direction when the angle is measured clockwise from the first alignment direction to the second alignment direction. The chiral material includes substantially left-handed chiral material if the lower and upper alignment films are oriented such that the second alignment direction is at an angle less than 180 degrees relative to the first alignment direction when the angle is measured clockwise from the first alignment direction to the second alignment direction. The chiral material includes substantially left-handed chiral material if the lower and upper alignment films are oriented such that the second alignment direction is at an angle less than 180 degrees relative to the first alignment direction when the angle is measured clockwise from the first alignment direction to the second alignment direction.

Implementations of the display may include one or more of the following features. The chiral material is selected to induce a right-handed twisted structure in the liquid crystal layer when an electric field is applied to the liquid crystal layer, and the lower and upper alignment films are oriented such that the second alignment direction is at an angle between 80 to 100 degrees relative to the first alignment direction when the angle is measured clockwise from the first alignment direction to the second alignment direction. The chiral material is selected to induce a left-handed twisted structure in the liquid crystal layer when an electric field is applied to the liquid crystal layer, and the lower and upper alignment films are oriented such that the second alignment direction is at an angle between 80 to 100 degrees relative to the first alignment direction when the angle is measured counter clockwise from the first alignment direction to the second alignment direction.

In another aspect, in general, a liquid crystal display includes a pixel circuit having a dark state and a bright state, the pixel circuit including a lower alignment film having a first alignment direction, an upper alignment film having a second alignment direction, the upper alignment film being closer to a user when the user views the display. The display includes a liquid crystal layer having liquid crystal molecules between the first and second alignment films, in which the liquid crystal layer is doped with a chiral material. When the pixel circuit is in the bright state, the chiral material induces at least one-tenth, or at least one-half, or at least two-thirds, of the liquid crystal molecules that are farther away from the upper and lower alignment films to form a twisted structure having a twist direction that is opposite to the twist direction of a portion of the twisted structure formed by liquid crystal molecules closer to the upper or lower alignment film.

In another aspect, in general, a liquid crystal display includes a lower alignment film having a first alignment direction, an upper alignment film having a second alignment direction, the upper alignment film being closer to a user when the user views the display, and a liquid crystal layer having liquid crystal molecules between the first and second alignment films. During a bright state, the liquid crystal layer has a light polarization rotation structure that rotates polarization of light propagating from the lower alignment film to the upper alignment film in a sequence of counter clockwise direction, clockwise direction, and counter clockwise direction if the first and second alignment films are oriented such that the second alignment direction is at an angle between 80 to 100 degrees relative to the first alignment direction when the angle is measured counter clockwise from the first alignment direction to the second alignment direction.

Implementations of the display may include one or more of the following features. The liquid crystal layer is doped with a right-handed chiral material if the first and second alignment films are oriented such that the second alignment direction is at an angle between 80 to 100 degrees relative to the first alignment direction when the angle is measured clockwise from the first alignment direction to the second alignment direction.
first alignment direction when the angle is measured clockwise from the first alignment direction to the second alignment direction. The liquid crystal layer is doped with a left-handed chiral material if the first and second alignment films are oriented such that the second alignment direction is at an angle between 80 to 100 degrees relative to the first alignment direction when the angle is measured counter clockwise from the first alignment direction to the second alignment direction.

In another aspect, in general, a method includes applying an electric field across a liquid crystal layer between a first alignment film and a second alignment film to tilt liquid crystal molecules in the liquid crystal layer away from a direction perpendicular to the first alignment film, and using a chiral material doped in the liquid crystal layer to induce a twist in directors of the liquid crystal molecules. The direction of twist induced by the chiral material is different (e.g., opposite) from a direction of twist that would have been induced by the first and second alignment films without the chiral material.

Implementations of the method may include one or more of the following features. In some examples, the chiral material is used to induce a counter clockwise twist, in which the direction of twist that would have been induced by the first and second alignment films is clockwise. In some examples, the chiral material is used to induce a clockwise twist, in which the direction of twist that would have been induced by the first and second alignment films is counter clockwise.

Applying an electric field includes applying an electric field to cause a pixel of the liquid crystal display to enter a bright state and causing the directors of at least one-tenth, or at least one-half, or at least two-thirds, of the liquid crystal molecules in the pixel to twist in a direction that is opposite to the twist direction of a portion of the directors of liquid crystal molecules adjacent to the first and second alignment films.

The method includes generating light using a backlight and modulating the light using the liquid crystal layer. The method includes applying an electric field to cause a pixel of the liquid crystal display to enter a bright state, and removing the electric field to cause the pixel to enter a dark state. The method includes forming a twisted structure in the liquid crystal layer in which the pitch of the twisted structure ranges from 3 to 6 times the thickness of the liquid crystal layer.

Advantages and features of the apparatuses and methods may include one or more of the following. A transmissive display using a chiral material having a twist different (e.g., opposite) to the twist direction induced by alignment layers. The liquid crystal layer 172 has a twist direction that is opposite to the twist direction induced by alignment layers. The liquid crystal layer 172 is positioned between an upper substrate 174 and a lower substrate 176 that are parallel to each other. Broadband quarter wave retardation films 178a and 178b are attached on the outer side of upper and lower substrates 174 and 176, respectively. Linear polarizers 180a and 180b are attached to the retardation films 178a and 178b, respectively. The retardation films 178a and 178b can be selected to achieve a wide viewing angle. The inner sides of the substrates 174 and 176 have transparent electrodes 182a and 182b coated with alignment layers 184a and 184b, respectively. A backlight module 186 generates light 188 that is modulated by the various layers. A data voltage Vdata is applied to the electrodes 182a and 182b to control the orientation of liquid crystal molecules in the liquid crystal layer 172 so that the light 188 after modulation has a specified gray scale level.

The liquid crystal layer 172 has a liquid crystal material having a negative dielectric anisotropy. The liquid crystal layer 172 is doped with a chiral material, such as CB15 for left-handed twisted structure or S8111 for right-handed twisted structure. The chiral materials CB15 and S8111 are available from Merck, Japan. When the voltage Vdata is below a threshold (e.g., 2.5 V), the liquid crystal molecules are aligned substantially along a direction 188 perpendicular to the surface of the substrates 174 and 176 (shown in FIG. 1). In this example, the surfaces of the substrates 174 and 176 are parallel to the horizontal direction, and the direction 188 is parallel to the vertical direction. When the voltage Vdata exceeds the threshold, the chiral material induces a twisted structure in the liquid crystal layer 172. The alignment layers 184a and 184b each has a surface prettil angle that determines the tilt direction of the liquid crystal molecules adjacent to the alignment layers 184a and 184b (shown in FIG. 13).

FIG. 2A shows the optical axes of the polarizers 180a, 180b and the alignment films 184a, 184b. The polarizing films 180a and 180b are in crossed configuration, i.e., the lower polarizing film 180b has a transmission axis 201 that is orthogonal to the transmission axis 202 of the upper polarizing film 180a. The lower alignment layer 184b is associated with a tilt direction 203 (also referred to as an alignment direction), and the upper alignment layer 184a is associated with a tilt direction 204. The angle 208 between the tilt
molecules, the liquid crystal molecules have a counter clockwise twisted structure. Considering liquid crystal layers at different positions along the vertical direction induced by the chiral material, the tilt angle \(\varphi \) with respect to the tilt direction \(\theta \) is affected by two factors. The first factor is the effect of the alignment layers. The second factor that affects the tilt direction is clockwise if the inclination is negative, and the tilt angle \(\varphi \) is affected by two factors. The first factor is the effect of the alignment layers.
the normalized positions between about 0.8 to 1, the twisted structure has a counter clockwise twist.

As a result, the liquid crystal layer 172 has larger twists at regions near the alignment layers 184a, 184b and a smaller twist in the bulk area. This is caused by the competition between the twists induced by the alignment layers and the chiral material.

By comparison, FIG. 3B is a graph 260 that shows curves 262 representing the twisted structure of the liquid crystal layer of an example of a conventional chiral homeotropic mode LCD when different voltages are applied across the liquid crystal layer. The liquid crystal layer of the chiral homeotropic mode LCD maintains a twisted structure when the operation voltage varies from 0V to 5V, in which the twist direction remains the same throughout the liquid crystal layer.

The difference in twisted structure between the liquid crystal display 170 (FIG. 1) and the example of the conventional chiral homeotropic mode LCD results in different optical characteristics, as described below. The data used in FIGS. 3A-5D and 7-10 were obtained by simulation.

FIG. 4 is a graph 220 showing curves 222 and 224 representing the transmittance characteristics of an example of a conventional chiral homeotropic mode LCD and the liquid crystal display 170 (FIG. 1), respectively. The simulations used for deriving data for the curves 222 and 224 use the same liquid crystal materials. In the example of the conventional chiral homeotropic mode LCD, the twist direction induced by the chiral material is the same as the twist direction induced by the alignment layers. In the liquid crystal display 170, the twist direction induced by the chiral material is opposite to the twist direction induced by the alignment layers. The wavelength used in the simulations is 550 nanometers. A comparison of curves 222 and 224 shows that a lower driving voltage can be used for the liquid crystal display 170 to reach a maximum brightness 226.

FIGS. 5A and 5B show iso-luminance graphs 230 and 232 of the example of the conventional chiral homeotropic mode LCD and the liquid crystal display 170 (FIG. 1), respectively, in the operation state. The iso-luminance graph 230 shows that the maximum transmittance (within region 234) of the example of the conventional chiral homeotropic mode LCD is offset from the center position. The iso-luminance graph 232 shows that the maximum transmittance (within region 236) of the liquid crystal display 170 is near the center position. The luminance distribution of the liquid crystal display 170 (as shown in the graph 232) is more symmetric with respect to the center of the display than the luminance distribution of the example of the conventional chiral homeotropic mode LCD.

A transflective liquid crystal display can show an image in a transmissive display mode and a reflective display mode independently or simultaneously, so that the transflective liquid crystal display can be used in either dark or bright ambient conditions. In a transflective liquid crystal display, some amount of incident ambient light is reflected back to the viewer, and some amount of backlight is transmitted through the liquid crystal layer to the viewer. The reflected and transmitted light may be provided to the view independently or simultaneously.

FIG. 6 is a schematic diagram of a transflective liquid crystal display 210. One pixel 134 is shown in the figure. Similar to the transmissive display 170 (FIG. 1), the transflective liquid crystal display 210 has a liquid crystal layer 116 positioned between a top substrate 118 and a bottom substrate 120. A broadband quarter wave retardation film 122 is attached on the outer side of each substrate 118 and 120. A linear polarizing film 124 is attached to each retardation film 122 to form a broadband circular polarizer 136. The upper and lower polarizing films 124 are crossed so that the upper and lower broadband circular polarizers block out the transmitted and reflected light when the pixel is not activated (i.e., when the pixel is in the dark state). The inner side of the top substrate 118 has a transparent electrode coated with an alignment layer.

Different from the transmissive display 170, the transflective liquid crystal display 210 includes a transmissive part 112 and a reflective part 114. In the transmissive part 112, the bottom substrate 120 has a transparent electrode coated with an alignment layer. In the reflective part 114, the bottom substrate 120 has a buffer layer 126 coated with a metal reflector 128 that is used to reflect the ambient light or light coming from an external light source 130. The surface of the buffer layer 126 is uneven or bumpy so that the surface of the metal reflector 128 is also uneven or bumpy, thereby reflecting the incident light in a range of directions. The transmissive part 112 transmits light from a backlight unit 132. The transmissive part 112 and the reflective part 114 of the same pixel are operated by the same switching device, such as a thin film transistor (see FIG. 11).

The transflective liquid crystal display 210 modulates light to generate images having varying gray scale levels by using the electro-optic effect described above. Light in the transmissive part 112 passes the liquid crystal layer 116 once, whereas light in the reflective part 114 passes the liquid crystal layer 116 twice because the light is reflected from the reflector 128. By using the buffer layer 126 to form a dual cell gap structure, in which the thickness of the liquid crystal layer 116 in the reflective part 114 is smaller than that of the transmissive part 112, the optical phase retardation of light in the transmissive part 112 and the reflective part 114 can be substantially the same. See U.S. Pat. No. 6,281,952.

FIG. 7 is a graph 150 showing curves 152 and 154 representing the transmittance characteristics and reflectance characteristics, respectively, of an example of a conventional ECB VA mode transflective LCD, in which the liquid crystal layer is not doped with a chiral material. The vertical axis in graph 150 represents a normalized electro-optic response of the transmissive part and the reflective part of the example of the conventional ECB VA mode transflective LCD. A comparison of curves 152 and 154 shows that, in the example of the conventional ECB VA mode transflective LCD, the transmittance and reflectance characteristics are substantially the same.

FIG. 8 is a graph 250 showing curves 252 and 254 representing the transmittance and reflectance characteristics of the transmissive part 112 and the reflective part 114, respectively, of the transflective liquid crystal display 210 (FIG. 6). The vertical axis in graph 250 represents an electro-optic response of the transmissive part 112 and the reflective part 114 normalized against the maximum transmittance value of the example of the conventional ECB VA mode display. An electro-optic response of 1 means that the transmittance or the reflectance is the same as that of the example of the ECB VA mode transflective LCD (FIG. 7).

FIG. 8 shows that the maximum transmittance 256 and the maximum reflectance 258 of the transflective liquid crystal display 210 are substantially the same as those of the example of the conventional ECB VA mode transflective LCD. This may be because when an operating voltage of 2.5 V to 5 V is applied to the liquid crystal layer 116 of the display 110, the bulk of the liquid crystal layer 116 has an azimuth angle \(\phi \) that is substantially the same (about 45±2 degrees). This is similar to the situation in the example of the conventional ECB VA display, in which the bulk of the liquid crystal molecules are...
tilted along substantially the same direction (having an azimuth angle of about 45 degrees) when an operating voltage is applied to the liquid crystal layer.

The curves 252 and 254 substantially match each other when the operating voltage is between 0V to about 5V. This indicates that when a data voltage Vdata is applied to a pixel of the transflective liquid crystal display 110, the transmissive part 112 and the reflective part 114 will have substantial the same gray scale level.

FIG. 9 is a graph 160 showing curves 162 and 164 that represent the transmittance and reflectance electro-optic responses, respectively, of an example of a conventional chiral homeotropic mode LCD relative to those of the example of the conventional ECB VA mode LCD. The maximum value 166 of the transmittance 162 and the maximum value 168 of the reflectance 164 are about 60% and 80%, respectively, of the maximum corresponding values of the example of the conventional ECB VA mode LCD (FIG. 7). The curves 162 and 164 do not substantially match each other when the applied voltage is between 3V to 4V, resulting in distortion of gray scale levels.

A comparison of FIGS. 8 and 9 shows that the transflective liquid crystal display 110 has better display characteristics than the example of the conventional chiral homeotropic transflective display.

FIG. 10 is a graph 240 showing curves 242, 244, and 246 representing the transmittance characteristics of the transmissive part of the example of the conventional ECB VA mode transflective LCD, the transflective LCD 110 (FIG. 6), and the example of the conventional chiral homeotropic LCD, respectively. The transmissive displays use broadband circular polarizers. In the case of the example of the conventional chiral homeotropic mode LCD (curve 246), the maximum transmittance 247 is less than two-thirds of the maximum transmittance 248 of the example of the conventional ECB VA mode LCD (curve 242). By comparison, the liquid crystal display 170 (curve 244) has a maximum transmittance 249 that is close to the maximum transmittance 248 of the example of the conventional ECB VA mode LCD.

In terms of maximum brightness, liquid crystal display 110 or 170 is as good as the example of the conventional ECB VA mode LCD. An advantage of the liquid crystal display 110 or 170 is that, in the bright state, the polarization of light is changed as it passes through the liquid crystal layer due to two effects: (i) the polarization rotating (wave guiding) effect caused by twisted structure of liquid crystal layer and (ii) the phase retardation effect caused by the reversely twisted structure (or structure having substantially no twist) in the bulk area. The LCD 110 or 170 has less color dispersion, as compared to the example of the conventional ECB VA mode LCD that changes the polarization of light by using the retardation effect without the wave guiding effect.

FIG. 11 is a diagram of an example of a liquid crystal display 10 that includes an array 12 of pixel circuits 14 that are controlled by one or more data drivers 16 and one or more data drivers 18. Each pixel circuit 14 includes one or more thin film transistors (TFT) 20, a storage capacitor Cst 22, and a liquid crystal cell (not shown). The liquid crystal cell can have a configuration similar to those shown in FIGS. 1 or 6. The liquid crystal cell has an effective capacitance, represented by Cxc 25. The capacitors Cst 22 and Cxc 25 can be, e.g., connected in parallel to the first node 21 and a second node 23. The TFT 20 includes a gate 24 that is connected to a gate line 26, which is connected to the gate driver 16. When the gate driver 16 drives the gate line 26 to turn on the TFT 20, the data driver 18 simultaneously drives a data line 28 with a voltage signal (e.g., Vdata), which is passed to the capacitors Cst 22 and Cxc 25.

In some examples, the first and second nodes 21 and 23 are connected to two transparent electrodes (e.g., 182a and 182b of FIG. 1), respectively, that are positioned on two sides of the liquid crystal cell. The voltage (e.g., Vdata) held by the capacitors Cst 22 and Cxc 25 determines the voltage applied to the liquid crystal cell. The voltage on the data line 28 is sometimes referred to as a “gray scale voltage” because it determines the gray scale level shown by the pixel circuit 14.

Each pixel on the display 10 includes three sub-pixels for displaying red, green, and blue colors. Each sub-pixel includes a pixel circuit 14. By controlling the gray scale levels of the three sub-pixels, each pixel can display a wide range of colors and gray scale levels.

Although some examples have been discussed above, other implementations and applications are also within the scope of the following claims. For example, the use of a liquid crystal layer having a chiral material that induces a twisted structure having a twist direction opposite to the twist direction induced by the alignment layers can also be used in a reflective display that does not have a backlight module. The chiral materials can be different from those described above. The dimensions and orientations of various components of the display can be different from those described above.

For example, referring to FIG. 12, in some examples, the bisector 205 of the angle 207 between the axes 201 and 202 can be orthogonal to the bisector 206 of the angle between the tilt directions 203 and 204 (as compared to FIG. 2A, in which the bisector 205 of the angle 207 is parallel to the bisector 206 of the angle between the tilt directions 203 and 204). The pixel circuits can have different arrangements, e.g., a terminal of the storage capacitor Cst can be connected to the node 21 and the other terminal of the storage capacitor can be connected to the gate line of the next row.

In the transmissive display 110 of FIG. 6, the transmissive part 112 and the reflective part 114 of the same pixel can be controlled by using two separate switching devices. The transmissive part 112 can be part of one pixel, and the reflective part 114 can be part of another pixel. The transmissive display 110 does not have to use a dual cell gap structure. The buffer layer 126 can be removed so that the cell gap is the same for the transmissive part 112 and the reflective part 114.

The orientations of the liquid crystal molecules described above refer to the directions of directors of the liquid crystal molecules. The molecules do not necessarily all point to the same direction all the time. The molecules may tend to point more in one direction (represented by the director) over time than other directions. For example, the phrase “the liquid crystal molecules are substantially aligned along a direction normal to the substrates” means that the average direction of the directors of the liquid crystal molecules are aligned along the normal direction, but the individual molecules may point to different directions. The chiral material may have impurities. For example, a liquid crystal layer doped with a right-handed (or left-handed) chiral material may include a small percentage of left-handed (or right-handed) chiral material, but the twist direction of the twisted structure in the liquid crystal layer is mainly determined by the right-handed (or left-handed) chiral material.

What is claimed is:

1. An apparatus comprising:
 a liquid crystal display comprising
 a first alignment film having a first alignment direction; a second alignment film having a second alignment direction; and

2. The apparatus of claim 1, wherein the angle included between the first alignment direction and the second alignment direction is less than 90 degrees.

3. The apparatus of claim 2, wherein the liquid crystal display is configured to have a twisted structure.

4. The apparatus of claim 3, wherein the liquid crystal display is configured to have a twisted structure having a twist direction substantially opposite to the twist direction of the embedded chiral material.

5. The apparatus of claim 4, wherein the twist direction of the twisted structure is substantially aligned with the normal direction of the liquid crystal display.
a liquid crystal layer having liquid crystal molecules between the first and second alignment films, the liquid crystal layer being doped with a chiral material, wherein the chiral material tends to induce a first twist effect in directors of the liquid crystal molecules when an electric field is applied to the liquid crystal layer, the first and second alignment films having orientations that tends to induce a second twist effect in the directors when an electric field is applied to the liquid crystal layer, the direction of the first twist effect being different from the direction of the second twist effect.

2. The apparatus of claim 1 wherein the first and second alignment films tend to induce a counter-clockwise twist in the directors of the liquid crystal molecules.

3. The apparatus of claim 2 wherein the chiral material tends to induce a clockwise twist in the directors.

4. The apparatus of claim 1 wherein the orientations of the first and second alignment films tend to induce a clockwise twist in the directors of the liquid crystal molecules.

5. The apparatus of claim 4 wherein the chiral material tends to induce a counter-clockwise twist in the directors.

6. The apparatus of claim 1 wherein when a pixel of the liquid crystal display is in a bright state, at least one-tenth of the liquid crystal molecules in the pixel form a twisted structure having a twist direction induced by the chiral material, another twisted structure formed by the liquid crystal molecules adjacent to the first and second alignment films having another twist direction opposite to the twist direction induced by the chiral material.

7. The apparatus of claim 1 wherein when a pixel of the liquid crystal display is in a bright state, at least one-half of the liquid crystal molecules in the pixel form a twisted structure having a twist direction induced by the chiral material, another twisted structure formed by the liquid crystal molecules adjacent to the first and second alignment films having another twist direction opposite to the twist direction induced by the chiral material.

8. The apparatus of claim 1 wherein the liquid crystal molecules are substantially normal to the first and second alignment films when no voltage is applied to the liquid crystal layer, and the liquid crystal molecules in the pixel form a twisted structure having a twist direction induced by the chiral material, another twisted structure formed by the liquid crystal molecules adjacent to the first and second alignment films having another twist direction opposite to the twist direction induced by the chiral material.

9. The apparatus of claim 1 wherein the first alignment layer is attached to a first substrate and the second alignment layer is attached to a second substrate.

10. The apparatus of claim 1 wherein the liquid crystal layer comprises negative dielectric anisotropy liquid crystal material.

11. The apparatus of claim 1, further comprising a backlight to provide light that is modulated by the liquid crystal layer.

12. The apparatus of claim 1, further comprising electrodes to apply the voltage to the liquid crystal layer.

13. The apparatus of claim 1, further comprising a first polarizing film having a first transmission axis and a second polarizing film having a second transmission axis, the first transmission axis being at an angle relative to the second transmission axis, the first and second polarizing films being positioned at opposite sides of the liquid crystal layer.

14. The apparatus of claim 13 wherein the bisector of the angle between the first and second alignment direction of the first alignment layer and the second alignment direction of the second alignment layer is substantially parallel to the bisector of the angle between the first and second transmission axes.
when the user views the display; and a liquid crystal layer having liquid crystal molecules positioned between the first and second alignment films, the liquid crystal layer being doped with a chiral material that, when the pixel circuit is in the bright state, the chiral material induces at least one-tenth of the liquid crystal molecules that are farther away from the upper and lower alignment films to form a twisted structure having a first twist direction, another twisted structure formed by the liquid crystal molecules closer to the upper or lower alignment film having a second twist direction induced by the upper alignment film and the lower alignment film, wherein the first twist direction is opposite to the second twist direction.

17

18

28. The display of claim 27 wherein when the pixel circuit is in the bright state, the chiral material induces at least one-half of the liquid crystal molecules to form a twisted structure having the first twist direction, the twisted structure formed by the liquid crystal molecules closer to the upper or lower alignment film having the second twist direction induced by the upper alignment film and the lower alignment film, wherein the first twist direction is opposite to the second twist direction.