Methods and materials for increasing potency of cells (CON 1)

12-9-2014

Kiminobu Sugaya
University of Central Florida

Angel Alvarez
University of Central Florida

Find similar works at: http://stars.library.ucf.edu/patents

University of Central Florida Libraries http://library.ucf.edu

Recommended Citation

http://stars.library.ucf.edu/patents/367

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
METHODS AND MATERIALS FOR INCREASING POTENCY OF CELLS

Inventors: Kuminobu Sugaya, Winter Park, FL (US); Angel Alvarez, Orlando, DE (US)

Assignee: University of Central Florida Research Foundation, Inc., Orlando, FL (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 13/483,780
Filed: May 30, 2012

Prior Publication Data

Related U.S. Application Data
Continuation of application No. 11/258,401, filed on Oct. 24, 2005, now Pat. No. 8,192,988.

Provisional application No. 60/621,901, filed on Oct. 22, 2004, provisional application No. 60/650,438, filed on Feb. 4, 2005.

Int. Cl.
C12N 5/00 (2006.01)
C12N 5/02 (2006.01)
C12N 15/00 (2010.01)
C12N 5/0775 (2010.01)

U.S. Cl.
CPC ... C12N 5/0657 (2013.01); C12N 251/00 (2013.01); C12N 5/0663 (2013.01); C12N 251/0505 (2013.01)
USPC 435/377; 435/455

Field of Classification Search
CPC C12N 5/0696; C12N 5/0652; C12N 2501/602; C12N 2501/605; C12N 2510/00

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
6,833,269 B2 12/2004 Carpenter
7,635,467 B2 12/2009 Sugaya et al.
8,158,415 B2 * 4/2012 Jo et al. 435/320.1

FOREIGN PATENT DOCUMENTS
WO WO/03/064463 A2 8/2003

OTHER PUBLICATIONS
Chew et al. (2005) “Reciprocal Transcriptional Regulation of Pou5f1 and Sox2 via the Oct/Sox Complex in Embryonic Stem Cells”, Molecular and Cellular Biology, 25(14), 6031-46.

Primary Examiner — Robert M Kelly
Attorney, Agent, or Firm — Timothy H. Van Dyke; Beusse, Wolter, Sunks & Maire, P.A.

ABSTRACT

Disclosed herein are methods and materials for producing a more developmentally potent cell from a less developmentally potent cell. Specifically exemplified herein are methods that comprise introducing an expressible dedifferentiating polynucleotide sequence into a less developmentally potent cell, wherein the transfected less developmentally potent cell becomes a more developmentally potent cell capable of differentiating to less developmentally potent cell of its lineage of origin or a different lineage.

1 Claim, 17 Drawing Sheets
OTHER PUBLICATIONS

* cited by examiner
PRIOR ART

FIG 1.
[A] Mesenchymal stem cells pre-transfection

[B] Nanog-transfected mesenchymal stem cells 12 days post-transfection

[C] Nanog-transfected mesenchymal stem cells 4 weeks post-transfection

FIG. 2
FIG. 9: NanogP8 Sequence

ttttttctctctctctcttataaactaac
atgagtgtgatcagctgtgtccccaaagcttgccctgctttgaagaatccgactgtaaa
M S V D P A C Q $ L P C F E E S D C K
gaatctccacatagctgtgatggtggccagtgaagaactcctcatctctgcaaatg
es s s p m p v i c g p e e n y p s l q m
tctttgctgtgatgacccggtcacaagagagctgtctcctctctcctctccatggtctg
S S A E M P H T E V S P L P S S D M L
catatccagacagctgtgattctctccacacagcttccaaagccaacacccactctgca
E N S V A K K E D K V P V K $ F K R
agtctctccccaccaacgtgtgactcaatgatagttccagagacagagataccctc
E S S T D C I N E D F O C K Y I
acgcctccagcagacagacagatctacatctccatctgaaacctcagtacaacaacaggtgag
E F G H I C R K A K K N N W F K
aatagcaatgtgtgacgcagaaagagccaagagctccggtcacaagagacagagacc
ey h y c l v n p t g n l p m $ s n q t
tgagacaattcaacccagacacacagacaatccgcttgcagacaccaactctccatc
nen s t $ s n q t q n i q s $ s n h s
tggacacacacccagcactttgcccaacctcgagacacaggtcttccctcc
titaactggtgagggctctcagctgtctgactcaactccagccaaattctctctgcc
y n c g e e s l o q s c h f q p n s p a
taggtgacttgtggaggtgctctggtgccccagctgtctgactgtggaaggctttattaagtaatagagagacacc
s d l e a a l e a a g e g l n v i q q t
actaggtatttagtactccacaaacacatgtgattttttccataactactccatgtgaaaact
ty f s t p q t m d l f l n y s m n m
cacaccgtgacagctgtgaa
c p e d v
agatgagtgtgatcagctgtgtccccaaagcttgccctgctttgaagaatccgactgtaaa
M S V D P A C Q $ L P C F E E S D C K
gaatctccacatagctgtgatggtggccagtgaagaactcctcatctctgcaaatg
es s s p m p v i c g p e e n y p s l q m
tctttgctgtgatgacccggtcacaagagagctgtctcctctctcctctccatggtctg
S S A E M P H T E V S P L P S S D M L
catatccagacagctgtgattctctccacacagcttccaaagccaacacccactctgca
E N S V A K K E D K V P V K $ F K R
agtctctccccaccaacgtgtgactcaatgatagttccagagacagagataccctc
E S S T D C I N E D F O C K Y I
acgcctccagcagacagacagatctacatctccatctgaaacctcagtacaacaacaggtgag
E F G H I C R K A K K N N W F K
aatagcaatgtgtgacgcagaaagagccaagagctccggtcacaagagacagagacc
ey h y c l v n p t g n l p m $ s n q t
tgagacaattcaacccagacacacagacaatccgcttgcagacaccaactctccatc
nen s t $ s n q t q n i q s $ s n h s
tggacacacacccagcactttgcccaacctcgagacacaggtcttccctcc
titaactggtgagggctctcagctgtctgactcaactccagccaaattctctctgcc
y n c g e e s l o q s c h f q p n s p a
taggtgacttgtggaggtgctctggtgccccagctgtctgactgtggaaggctttattaagtaatagagagacacc
s d l e a a l e a a g e g l n v i q q t
actaggtatttagtactccacaaacacatgtgattttttccataactactccatgtgaaaact
ty f s t p q t m d l f l n y s m n m
cacaccgtgacagctgtgaa
c p e d v
agatgagtgtgatcagctgtgtccccaaagcttgccctgctttgaagaatccgactgtaaa
M S V D P A C Q $ L P C F E E S D C K
gaatctccacatagctgtgatggtggccagtgaagaactcctcatctctgcaaatg
es s s p m p v i c g p e e n y p s l q m
tctttgctgtgatgacccggtcacaagagagctgtctcctctctcctctccatggtctg
S S A E M P H T E V S P L P S S D M L
catatccagacagctgtgattctctccacacagcttccaaagccaacacccactctgca
E N S V A K K E D K V P V K $ F K R
agtctctccccaccaacgtgtgactcaatgatagttccagagacagagataccctc
E S S T D C I N E D F O C K Y I
acgcctccagcagacagacagatctacatctccatctgaaacctcagtacaacaacaggtgag
E F G H I C R K A K K N N W F K
aatagcaatgtgtgacgcagaaagagccaagagctccggtcacaagagacagagacc
ey h y c l v n p t g n l p m $ s n q t
tgagacaattcaacccagacacacagacaatccgcttgcagacaccaactctccatc
en s t $ s n q t q n i q s $ s n h s
tggacacacacccagcactttgcccaacctcgagacacaggtcttccctcc
titaactggtgagggctctcagctgtctgactcaactccagccaaattctctctgcc
y n c g e e s l o q s c h f q p n s p a
taggtgacttgtggaggtgctctggtgccccagctgtctgactgtggaaggctttattaagtaatagagagacacc
s d l e a a l e a a g e g l n v i q q t
actaggtatttagtactccacaaacacatgtgattttttccataactactccatgtgaaaact
ty f s t p q t m d l f l n y s m n m
cacaccgtgacagctgtgaa
Treatment with 10, 3 or 1 uM of 5azaC for 21 days, 5 days coculture.

FIG. 10
Electrophoresis 050115
Troponin I and hANP

Lane 2: ladder
Lane 3: Troponin I or GATA-4 low RNA of BrdU treatment
Lane 4: Troponin I or GATA-4 high RNA of BrdU treatment
Lane 5: Troponin I or GATA-4 low RNA of 5azaC treatment
Lane 6: Troponin I or GATA-4 high RNA of 5azaC treatment
Lane 7: ladder
Lane 8: hANP or MLC-2v low RNA of BrdU treatment
Lane 9: hANP or MLC-2v high RNA of BrdU treatment
Lane 10: hANP or MLC-2v low RNA of 5azaC treatment
Lane 11: hANP or MLC-2v high RNA of 5azaC treatment

3 weeks of treatment (3uM BrdU or 5-azaC) and coculture for 7 days

FIG. 11
Electrophoresis 050116
Troponin I and hANP

Lane 1: 100bp ladder
Lane 2: 3uM combined treatment 3 weeks
Lane 3: 1uM combined treatment 3 weeks
Lane 4: 3uM 5azaC 3 weeks
Lane 5: 3uM BrdU 3 weeks
Lane 6: 3uM Control (nt 12/27)
Lane 7: 3uM combined treatment 3 weeks
Lane 8: 1uM combined treatment 3 weeks
Lane 9: 3uM 5azaC 3 weeks
Lane 10: 3uM BrdU 3 weeks
Lane 11: 3uM Control (nt 12/27)
Lane 12: 100bp ladder

FIG. 12

GATA-4 and MLC-2v
January 24, 2005

GATA-4 and MLC-2v

Lane 1: DNA ladder
Lane 2: 10uM 5azaC treatment
Lane 3: 3uM 5azaC treatment
Lane 4: 1uM 5azaC treatment
Lane 5: 3uM 5azaC treatment
Lane 6: 3uM BrdU treatment
Lane 7: 10uM 5azaC treatment
Lane 8: 3uM 5azaC treatment
Lane 9: 1uM 5azaC treatment
Lane 10: 3uM 5azaC treatment
Lane 11: 3uM BrdU treatment
Lane 12: DNA ladder

Troponin I and hANP

FIG. 13
Nanog vector sequence analysis

FIG. 17
METHODS AND MATERIALS FOR INCREASING POTENCY OF CELLS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/258,401 filed Oct. 24, 2005, now issued as U.S. Pat. No. 8,192,988, and which claims priority to U.S. Provisional Application No. 60/621,901 filed Oct. 22, 2004 and 60/650,438 filed Feb. 4, 2005, both of which are incorporated herein in their entirety.

BACKGROUND OF THE INVENTION

The use of stem cells for the treatment of neurodegenerative conditions offers the hope of curing diseases like Alzheimer’s and Parkinson’s by means of transplantation [1]. However, major obstacles regarding cell procurement, directing cell fate and avoiding immune response hinder clinical development [2-4]. Research has focused on both adult and embryonic stem cells and attempted to balance limitations in regulating their development and preventing immune response. Increased potency of stem cells can be achieved by epigenetic modifications through nucleotide derivatives [5] and their lineage can be directed by gene transfection [6,7].

Patients currently suffering from neurodegenerative conditions have limited treatment options. Conventional drug therapy helps delay or reduce the symptoms of disease but is unable to restore complete functionality of the brain or repair damaged tissue. Through stem cell-based therapies, scientists aim to transplant cells in order to regenerate damaged tissue and restore proper function. However, the best source of stem cells for transplantation remains an unresolved issue; with debate focusing around embryonic or adult derived stem cells. Embryonic stem cells can be readily differentiated to multiple neuronal fates but pose the risk of tumor formation or immune response; whereas adult stem cell technology is easily accessible, but provides limited capacity for transdifferentiation. An optimal approach may be to increase cellular plasticity of adult stem cells for use in autologous transplantation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the vector system for cloning nanog according to the teachings in Example 1.

FIG. 2 shows images of cells before and after transfection with nanog: A: shows mesenchymal stem cells pre-transfection; B: shows nanog-transfected mesenchymal stem cells 12 days post-cells 12 days post-transfection; C: shows nanog-transfected mesenchymal stem cells 4 weeks post-cells 4 weeks post-transfection.

FIG. 3 shows images of transfected mesenchymal stem cells 9 days (A and B) and 2 months (C and D) post-transfection.

FIG. 4 shows images a co-culture system in accord with one embodiment of the subject invention.

FIG. 5 shows images of Co-culturing experiments which demonstrated that embryoid body-like clusters began differentiation within 48 hours (A). Control cells with our empty vector treatments failed to show any signs of neural differentiation (B). Embryoid-like bodies adhered to membrane and differentiation occurred as neural cells migrated radially outward (C).

FIG. 6-7 show images of the clustering of nanog transfected cells.

FIG. 8 shows images of MeSC-derived neurons and astrocytes.

FIG. 9 shows sequence of Nanog encoding polynucleotide and corresponding polypeptide sequence.

FIGS. 10-13 shows gel images of gene expression in cells subjected to various treatments demonstrating an ability to increase potency of mesenchymal stem cells and differentiation into cardiac cells.

FIGS. 14-16 show photograph images of cells subjected to various treatments.

FIG. 17 shows a schematic representation of the nanog sequence cloned inside a CMV mammalian promoter vector.

DETAILED DESCRIPTION

In reviewing the detailed disclosure which follows, and the specification more generally, it should be borne in mind that all patents, patent applications, patent publications, technical publications, scientific publications, and other references referenced herein are hereby incorporated by reference in this application, in their entirety to the extent not inconsistent with the teachings herein.

Reference to particular buffers, media, reagents, cells, culture conditions and the like, or to some subclass of same, is not intended to be limiting, but should be read to include all such related materials that one of ordinary skill in the art would recognize as being of interest or value in the particular context in which that discussion is presented. For example, it is often possible to substitute one buffer system or culture medium for another, such that a different but known way is used to achieve the same goals as those to which the use of a suggested method, material or composition is directed.

It is important to an understanding of the present invention to note that all technical and scientific terms used herein, unless defined herein, are intended to have the same meaning as commonly understood by one of ordinary skill in the art. The techniques employed herein are also those that are known to one of ordinary skill in the art, unless stated otherwise. For purposes of more clearly facilitating an understanding the invention as disclosed and claimed herein, the following definitions are provided.

The differentiation of stem cells along multiple lineages has been intensely studied given their great therapeutic potential. However, the mechanisms that underlie proliferation, self-renewal and differentiation in cells with the capacity for further development remains poorly understood. A recently discovered gene, nanog, is required to sustain pluripotency in embryonic stem cells and acts concomitantly with embryonic transcription factor Oct-4, yet utilizes a STAT-3 independent mechanism. The subject invention is based on the inventor’s discovery that gene transfection of adult stem cells with nanog, an embryonic stem cell gene maintaining pluripotency [8,9], can allow for the production of neurons and astrocytes from bone marrow cells via a two-step process. First, mesenchymal stem cells are modified by nanog transfection, and the cells form embryoid-like bodies. Then cells are committed to neuronal lineage in a co-culture system with differentiated neural stem cells separated by a semi-permeable membrane. This technology may be a means of generating effective autologous stem cell transplants to improve neuroreplacement strategies. The inventors have discovered that adult stem cells can be dedifferentiated through introduction and expression of the nanog gene or other dedifferentiating genes.

Thus, in one embodiment, the invention provides methods for making a more developmentally potent cell from a less developmentally potent cell. In a typical embodiment, the method comprises the step of introducing an expressible
dedifferentiating polynucleotide sequence into a less developmentally potent cell, wherein the transfected less developmentally potent cell becomes a more developmentally potent cell capable of differentiating to a less developmentally potent cell of its lineage of origin or a different lineage. In certain embodiments, the inventive methods further comprise the step of co-culturing the transfected less developmentally potent cell with neural-lineage cells or media conditioned with neural-lineage cells, wherein the transfected cells become a more developmentally potent cell capable of differentiating to a less developmentally potent cells of its lineage of origin or a different lineage.

In the practice of one embodiment of the invention, the phenotype of the less developmentally potent cell is changed when it becomes a more developmentally potent cell. Thus, the invention provides methods for changing a first phenotype of a less developmentally potent cell into a second phenotype of more developmentally potent cell. The change from a certain potency to a higher level of potency is considered "dedifferentiation" in accord with the teachings herein. In preferred embodiments, the less developmentally potent cell is a stem cell, more preferably a hematopoietic stem cell, a neural stem cell, an epithelial stem cell, an epidermal stem cell, a retinal stem cell, an adipose stem cell and a mesenchymal stem cell.

In yet further aspects of the invention are provided pharmaceutical compositions comprising said more developmentally potent cells prepared according to the methods of the invention and a pharmaceutically-acceptable carrier or excipient. The invention provides such pharmaceutical compositions comprising said more developmentally potent cells that are tissue stem cells for use in cell or tissue regeneration or for correcting a disease or disorder in a tissue or animal in need thereof.

Thus, the invention also provides methods for using the pharmaceutical compositions provided herein to treat an animal in need thereof by administering the more developmentally potent cells thereeto. In certain preferred embodiments, the more developmentally potent cells comprise a cluster of two or more of the more developmentally potent cells. Preferably, the animal has a cerebral or neurological deficit that can be treated or ameliorated by administration of said more developmentally potent cells, such as a deficit caused by a neurodegenerative disease, a traumatic injury, a neurotoxic injury, ischemia, a developmental disorder, a disorder affecting vision, an injury or disease of the spinal cord, a demyelinating disease, an autoimmune disease, an infection, an inflammatory disease, or a disorder of the eye or nervous system. As provided by the methods of the invention herein, the cells are administered by injecting the more developmentally potent cells with a catheter or surgically implanting the more developmentally potent cells. In certain preferred embodiments, the more developmentally potent cells are administered by injecting the more developmentally potent cells with a syringe or catheter or surgically implanting the more developmentally potent cells. In certain preferred embodiments, the body cavity is a brain ventricle. In other embodiments, the more developmentally potent cells are inserted into a body cavity that is fluidly-connected to the area of neurological or corporal deficit. In certain preferred embodiments, the body cavity is a brain ventricle. In other preferred embodiments, the more developmentally potent cells are systemically (e.g., intravenously). Administration of the one or a plurality of more developmentally potent cells into an animal results in said cells differentiating into a terminally-differentiated cell. Thus, the invention provides methods for making a terminally-differentiated cell, comprising the step of administering the more developmentally potent cells of the invention into an animal in need thereof. As provided by the methods of the invention herein, the cells are administered by injecting the more developmentally potent cells with a syringe, inserting the more developmentally potent cells with a catheter or surgically implanting the more developmentally potent cells. In certain preferred embodiments, the body cavity is a brain ventricle. In other embodiments, the more developmentally potent cells are inserted with a catheter into a body cavity that is fluidly-connected to the area of neurological or corporal deficit. In certain preferred embodiments, the body cavity is a brain ventricle. In yet another embodiment, the invention relates to treating a stem cell, excluding those of neural origin, such that it is converted into a more developmentally potent cell, which enables it to differentiate into the various cell types found in eye tissue, tissue of anterior eye, choroid, and retinal pigment epithelium cells, rod and cone photoreceptor cells, horizontal cells, bipolar neurons, amacrine, ganglion and optic nerve cells. These non-limiting, exemplary cell types found in eye tissue are collectively referred to as retinal cells. The methods comprising the step of contacting more developmentally potent cells of the invention with an effective amount of one or a combination of growth factor selected from the group consisting of TGF-p, IGF-1 and CNTF for an effective period such that the growth factor-contacted cells can differentiate into retinal cells.

As used herein, the terms "multipotent neural stem cells (MNSCs);" "neural stem cells (NSCs);" and "neural progenitor cells (NPCs);" refer to undifferentiated, multipotent cells of the CNS. Such terms are commonly used in the scientific literature. MNSCs can differentiate into tissue-specific cell types, for example astrocytes, oligodendrocytes, and neurons
when transplanted in the brain. MNMSCs of the invention are distinguished from natural MNMSCs by their adaptation for proliferation, migration and differentiation in mammalian host tissue when introduced thereto.

As used herein, a "less developmentally potent cell" is a cell that is capable of limited multi-lineage differentiation or capable of single-lineage, tissue-specific differentiation, for example, an untreated mesenchymal stem cell can differentiate into, inter alia, osteocytes and chondrocytes, i.e., cells of mesenchymal lineage, but has only limited ability to differentiate into cells of other lineages (e.g., neural lineage.).

As used herein, a "more developmentally potent cell" is a cell that is readily capable of differentiating into a greater variety of cell types than its corresponding less developmentally potent cell. For example, a mesenchymal stem cell can readily differentiate into osteocytes and chondrocytes but has only limited ability to differentiate into neural or retinal lineage cells (i.e., it is a less developmentally potent cell in this context). Mesenchymal stem cells treated according to the methods of the invention become more developmentally potent because they can readily differentiate into, for example, mesenchymal-lineage and neural-lineage cell types; the plasticity of the cells is increased when treated according to the methods of the invention.

The invention provides methods of delivery and transplantation of the more developmentally potent cells of the invention to ameliorate the effects of age, physical and biological trauma and degenerative disease on the brain or central nervous system of an animal, as well as other tissues such as, for example, retinal tissue. It is well recognized in the art that transplantation of tissue into the CNS offers the potential for treatment of neurodegenerative disorders and CNS damage due to injury. Transplantation of new cells into the damaged CNS has the potential to repair damaged circuitries and provide neurotransmitters thereby restoring neurological function. It is also recognized in the art that transplantation into other tissue, such as eye tissue, offers the potential for treatment of degenerative disorders and tissue damage due to injury. As disclosed herein, the invention provides methods for generating more developmentally potent cells adapted for proliferation, migration and differentiation in mammalian tissue when introduced thereto. The use of more developmentally potent cells in the treatment of neurological disorders and CNS damage, as well as the use of more developmentally potent cells in the treatment of other tissue damage or degeneration, can be demonstrated by the use of established animal models known in the art.

In one embodiment, differentiated cells or more developmentally potent cells of the invention can be administered to an animal with abnormal or degenerative symptoms obtained in any manner, including those obtained as a result of age, physical or biological trauma, or neurodegenerative disease and the like, or animal models created by man using recombinant genetic techniques, such as transgenic and "gene knockout" animals.

Recipients of the more developmentally potent cells of the invention can be immunosuppressed, either through the use of immunosuppressive drugs such as cyclosporin, or through local immunosuppression strategies employing locally applied immunosuppressants, but such immunosuppression need not necessarily be a prerequisite in certain immunoprivileged tissues such as, for example, brain and eye tissues. In certain embodiments, the delivery method of the invention can cause less localized tissue damage to the site of cell damage or malfunction than existing methods of delivery.

More developmentally potent cells of the invention can be prepared from the recipient's own tissue. In such instances, the progeny of the more developmentally potent cells can be generated from dissociated or isolated tissue and proliferated in vitro using the methods described herein. In the case of mesenchymal stem cells (MeSCs), progeny can be generated from MeSCs isolated from, for example, bone marrow. Upon suitable expansion of cell numbers, the stem cells of the invention can be harvested and readied for administration into the recipient's affected tissue.

There are significant differences in the method of delivery to the brain of the more developmentally potent cells compared to the prior art. One exemplary difference is as follows: the more developmentally potent cells of the invention are transplanted intraventricularly. Further, while the transplantation of one or more separate more developmentally potent cells is efficacious, the more developmentally potent cells of the invention are preferably transplanted in the form of clusters of two or more cells via a surgical procedure or injection using a syringe large enough to leave the clusters substantially intact. The results disclosed in the Examples below indicate that ventricular delivery of more developmentally potent cells of the invention in the form of a cluster of two or more cells can result in migration to the area of damage in the brain and proper neuronal differentiation. Another benefit of intraventricular injection is less tissue destruction, resulting in less localized recruitment of immune cells by the host. This is evidenced by the lack of ventricular distortion, tumor formation, and increased host astrocyte staining without any immunosuppression.

The method of delivery of the more developmentally potent cells of the invention to the brain can be essentially duplicated for other immunoprivileged tissue such as, for example, the eye. Delivery of one or more separate or two or more of the more developmentally potent cells in the form of a cluster via injection using a syringe large enough to leave the any cluster of two or more cells that is present substantially intact can result in migration to the area of damage in the eye and proper tissue-specific differentiation.

In the context of the present application, a polynucleotide sequence is "homologous" with the sequence according to the invention if at least 70%, preferably at least 80%, most preferably at least 90% of its base composition and base sequence corresponds to the sequence according to the invention. According to the invention, a "homologous protein" is to be understood to comprise proteins which contain an amino acid sequence at least 70% of which, preferably at least 80% of which, most preferably at least 90% of which, corresponds to the amino acid sequence shown in FIG. 9; wherein corresponds is to be understood to mean that the corresponding amino acids are either identical or are mutually homologous amino acids. The expression "homologous amino acids" denotes those which have corresponding properties, particularly with regard to their charge, hydrophobic character, steric properties, etc. Thus, in one embodiment the protein may be from 70% up to less than 100% homologous to nanog.

Homology. sequence similarity or sequence identity of nucleotide or amino acid sequences may be determined conventionally by using known software or computer programs such as the BestFit or Gap pairwise comparison programs (GGC Wisconsin Package, Genetics Computer Group, 575 Science Drive, Madison, Wis. 53711). BestFit uses the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2: 482-489 (1981), to find the best segment of identity or similarity between two sequences. Gap performs global alignments: all of one sequence with all of another similar sequence using the method of Needleman and Wunsch, J. Mol. Biol. 48:443-453 (1970). When using a sequence alignment program such as BestFit, to determine
the expression products of the nanog gene, and polynucleotide sequences listed in Table 1 below in Example 3. Accordingly, polynucleotide sequences that hybridize to the complement of the sequence in FIG. 9 are contemplated for use in dedifferentiating cells as taught herein.

US Patent Application Nos. 2003/0211898, 2003/0148513, and 2003/0139410 are incorporated by reference to the extent they are not inconsistent with the teachings herein. These first two of these patent applications describe multiple uses of increased potency cells obtained from the taught methods, and in particular, the implantation of stem cells for different therapeutic treatments of neurological trauma and degenerative conditions. The third patent application is directed to the use of certain compounds to stimulate proliferation and migration of stem cells. Those skilled in the art will readily appreciate that the dedifferentiated cells of the subject invention could be substituted in place of the potent cells taught in the aforementioned patent applications, without undue experimentation. Also, the methods of the third patent may be combined with the present invention without undue experimentation.

According to another embodiment, the subject invention comprises a method of influencing transcription of an endogenous polynucleotide sequence comprising contacting a non-embryonic cell or cellular component comprising an endogenous polynucleotide sequence with a nanog protein or protein encoded by a polynucleotide sequence that hybridizes to a complement of the sequence shown in FIG. 9 under stringent conditions (i.e. nanog-like protein). Such influence may further include, but is not limited to, demethylation of DNA and reversal histone acetylation. The nanog protein or
nanog-like protein may be one expressed by a polynucleotide sequence introduced in the cell or cellular component, or protein delivered into the cell or cellular component, or protein expressed by an endogenous polynucleotide sequence that has been activated. Nanog expression may be activated by the provision of Oct 4 and/or Sox2, which typically form a dimer. In a specific embodiment, the cellular component is a nucleus, liposome, or mitochondria. Such endogenous polynucleotide sequence or cellular component contacted by nanog or nanog may be removed from a cell or cellular component and introduced into another cell or cellular component.

In another specific embodiment, the invention pertains to increasing the efficacy of nuclear transfer comprising fusing a cell with a polynucleotide encoding nanog or nanog-like protein to obtain a treated nucleus and introducing the treated nucleus into a cell. The cell may be any suitable cell but would typically be an ovum with its nucleus removed.

Example 1

Dedifferentiation of Mesenchymal Stem Cells

Introduction

Embryonic stem cells are derived during the blastocyst stage from the inner cell mass of prenatal mammalia; and possess the intrinsic properties of rapid self-renewal and pluripotency. Under the influence of endogenous and extracellular signals, these cells migrate and differentiate during the developmental process. Extracellular signals regulating self-renewal or differentiation have been demonstrated in vitro by differentiating embryonic stem cells into cell types comprising all three germ layers. These varieties include neuronal, pancreatic, cardiac and hematopoietic tissue using well-established culturing protocols.Embryonic stem cells form embryoid bodies, non-adherent proliferating clusters, in the presence of leukemia-inhibitory factor (LIF) and a feeder layer of typically fibroblast cells. Upon removal of LIF or transfer to non-feeder cell cultures, embryoid bodies undergo spontaneous differentiation. Early differentiation is characterized by loss of stem cell-specific surface antigens (SSEA-1) and alkaline phosphatase activity. Additionally, endogenous signals, including regulatory intracellular proteins, continually change throughout development. Numerous gene expression studies show distinct variations among different embryonic and adult stem cells, pointing toward underlying mechanisms responsible for the continual loss of potency corresponding with differentiation. Several key genes, namely Oct-3/4, LIF, DNMT3B and Nanog, are repeatedly shown to be almost exclusively expressed in embryonic stem cells that regulate pluripotency [10-14]. The immediate down-regulation of these genes may explain irreversible loss of potency, making embryonic stem cells an attractive source for clinical therapies. However, serious questions remain concerning the production of these cells in sufficient quantities for therapies, biochemical potential immune response and tumor formation [15].

The inventors believe that adult stem cells offer a practicable alternative to the use of embryonic tissue as they are easily harvested and potentially taken from autologous sources to preclude immune response. Stem cell populations have been found in several adult tissues including adipose [16], muscle [17], pancreas [18] and liver [19] and primarily bone marrow [20-23]; all potential sources for cellular transplants [24]. Previous in vitro studies with adult bone marrow-derived stem cells have demonstrated the ability to differentiate into brain [21], liver [23] and cardiac cells [22]. In vivo studies have shown evidence that adult stem cells can migrate and differentiate into various tissues, albeit at extremely low frequencies [20]. However, challenges have been raised over the plasticity of these cells given both the low frequencies of detected cells and new found evidence of cell fusion, in conjunction with false positives [25-27]. An ideal therapeutic alternative may exist if adult cells can be dedifferentiated to an embryonic-like state and recommitted to differentiate to a desired cell fate.

Nanog, also referred to as early embryo specific NK (ENK) [28], is a recently discovered gene responsible for maintaining pluripotency in embryonic stem cells [8, 9, 28, 29]. This unique gene and its cousin, Nanog2, are genetically distinct members of the ANTP class of homeodomain proteins [30] and have at least twelve identified pseudogenes [31]. Structurally, Nanog contains three alpha helices encoded within the homeodomain portion and can be divided into three regions with respect to the central homeodomain sequence [30]. The N-terminal region is rich in serine and threonine residues indicating phosphate-regulated transactivation, possibly through SMAD4 interactions, while the C-terminal domain is seven times as active with an unusual motif of equally spaced tryptophans separated by four amino acids, each flanked with serine or threonine residues. Gene expression studies have shown nanog to be active in embryonic stem cells, tumors and some adult tissue. Nanog expression precipitously decreases with differentiation and maintains self-renewal in embryonic stem cells by gene transfection. In culture, nanog guards against differentiation and acts concomitantly with Oct-4, Wnt and BMP-4, yet utilizes a STAT-3 independent mechanism to maintain an undifferentiated state. Inventors believe that the role of nanog in regulating pluripotency makes this gene a potential candidate for increasing the potency of adult stem cells.

Previous studies regulating gene expression in stem cell lines have provided valuable insight into underlying mechanisms of proliferation, self-renewal and differentiation. Gene manipulation experiments can either prevent or enhance differentiation. In particular, differentiation can be prevented in embryonic stem cell lines by over expression of Pem or nanog, genes that regulate pluripotency. Conversely, overexpression of lineage specific gene Nurrl promotes the differentiation of neural stem cell lines to produce dopamine-secreting cells. Taken together, these vectors can maintain cells in a specific state or allow for lineage committed cells to develop into a specific subpopulation. In one embodiment, the subject invention pertains to a method of dedifferentiating adult stem cells by expressing genes regulating pluripotency to enhance transdifferentiation. This technology allows for adult cells to be used for autologous transplantation and thereby provide a greater understanding of stem cell biology.

FIG. 17 shows a schematic representation of the nanog sequence cloned inside a CMV mammalian promoter vector. The 5'UTR contains an Oct-4 and Sox2 binding region. The nanog protein coding sequence can be divided into an N-terminal, homeodomain and C-terminal region. The C-terminal region can be further subdivided into a C1, Cw and C2 domains. The 3' UTR contains an Alu sequence element.

Methods and Results

Human mesenchymal stem cells (hMeSC) are initially plated in 6-well plates, adhere to the surface and allowed to divide to varying degrees of confluence. They are cultured in serum-DMEM (Dulbecco’s modified Eagle’s medium) containing 10% FCS, 5% HSF, 292 mg/ml glutamine, 50 U/ml streptomycin and penicillin (all from Invitrogen).

Cloning of nanog was achieved by first performing polymerase chain reaction with primers corresponding to the
the inventors developed a two-step process of dedifferentiation: transfection. Transferring non-adherent cells to wells without a feeder layer resulted in apoptosis, related to either absence of feeder cell proteins or decreased cell density. Cellular transformation occurred in a pattern of transfection, non-adherence, survival and proliferation. Transformed cells proliferated in three-dimensional clusters for months in culture. These characteristics are similar to embryonic stem cells.

To determine if nanog could restore pluripotency in adult cells rather than simply maintain the state in embryonic cells, the inventors developed a two-step process of dedifferentiation and development along an alternative lineage, discussed in Example 2 below. Human mesenchymal stem cells were cultured in a six-well culture plates and were allowed to adhere and grow for at least 48 hours to achieve approximately 75% confluence. Cells were subsequently transfected with a mammalian cell vector or control vehicle, cultured and examined. Cells transfected with NANOGB became non-adherent and proliferated in the presence of remaining adherent mesenchymal stem cells.

Dedifferentiation of Cells Utilizing Genes Affecting Pluripotency

Following the transfection and evaluation protocol provided above in Example 1, PCR products of the genes in Table 1 are evaluated for their ability to dedifferentiate cells, particularly mesenchymal stem cells.

Example 1

Example 2

Neuronal Differentiation of Dedifferentiated Mesenchymal Cells

To test whether cells can be dedifferentiated using nanog and committed to an alternate lineage we utilized a co-culture system of differentiated human neural stem cells and transformed mesenchymal cells. Neural stem cells were placed in 12 well plates and differentiated using serum-free basal media as previously described. Neuronal stem cells began to differentiate by becoming adherent and migrating radially outwards from the original neural sphere. Following neural stem cell differentiation, these cells were utilized as feeder cells in our co-culture system by placing modified cells inside co-culture chamber that separated modified stem cells from the feeder layer with a 0.2 µm semipermeable membrane.

Example 3

Dedifferentiation of Cells Utilizing Genes Affecting Pluripotency

Following the transfection and evaluation protocol provided above in Example 1, PCR products of the genes in Table 1 are evaluated for their ability to dedifferentiate cells, particularly mesenchymal stem cells.

Table 1

<table>
<thead>
<tr>
<th>Gene Accession</th>
<th>Gene Symbol</th>
<th>Expression in Neuronal Sphere</th>
<th>Expression in Dedifferentiated Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSG00000160016</td>
<td>Nanog</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160022</td>
<td>Rex-1</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160034</td>
<td>Sox2</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160035</td>
<td>Hesx1</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160036</td>
<td>Foxd3</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160037</td>
<td>Gbx2</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160038</td>
<td>Nanog</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160039</td>
<td>Lins</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160040</td>
<td>Tgf</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160041</td>
<td>Dnmt3a</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160042</td>
<td>Tgff1</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160043</td>
<td>Rex1</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160044</td>
<td>Sox2</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160045</td>
<td>Hesx1</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160046</td>
<td>Foxd3</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160047</td>
<td>Gbx2</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160048</td>
<td>Nanog</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160049</td>
<td>Lins</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160050</td>
<td>Tgf</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160051</td>
<td>Dnmt3a</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160052</td>
<td>Tgff1</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>ENSG00000160053</td>
<td>Rex1</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

Numerical References

Example 4

Cardiac Differentiation of Human Mesenchymal Cells

Cardiac differentiation of human mesenchymal stem cells (MeSCs) is achieved through treatment with nucleotide
derivatives BrdU and 5-azaC and/or forced expression of embryonic stem cell gene nanog. Following treatment, cells were plated in a co-culture with cardiac cells (cardiomyocyte cell line H9C2). Human MeSCs plated in 6-well culture plates and expanded in serum-DMEM (Delbecco's Modified Eagle's Medium) containing 10% non-conditioned FBS and antibiotics/antimycotics. MeSCs were treated with varying concentrations (1-10 uM) of BrdU and/or 5-azaC for 3 weeks or transfected with mammalian expression vector containing a nanog encoding sequence. Cell media was changed every three days prior to co-culture with cardiomyocytes. Cardiomyocytes were expanded and grown to near confluence in serum-DMEM with 10% non-conditioned FBS and antibiotics/antimycotics. To differentiate cardiac cells, serum media was allowed to differentiate. Co-cultures were created by combining MeSCs with cardiac cells and culturing in cardiac media. Following co-culture, cells were treated with TRizol and gene expression was assessed using RT-PCR and cardiac specific primers. Gel electrophoresis of samples revealed expression of cardiac specific genes following treatment.

The first (Electrophoresis 050101, FIG. 10) shows screens for each primer tested. The key shows which sample is in a given lane. Negative control represents untreated mesenchymal stem cells and Positive controls 1x and 2x are nanog transfected cells. Each sample was co-cultured with rat cardiomyocytes and primers are human specific and represent markers of cardiomyocyte related gene expression. The second data set (Electrophoresis 050115, FIG. 11) shows gene expression for each primer following 3 uM treatment of either BrdU or 5azaC. The high and low RNA is because we had low cell numbers and tested one well (low RNA) against combining two wells of equal treatment (high RNA). The third attachment (Electrophoresis 050116, FIG. 12) shows the effects of three weeks treatment of combined (3 uM or 1 uM of both 5azaC and BrdU), 3 uM of either 5azaC or BrdU, or nanog transfected cells (marked “control”). The poor quality is the result of low cell numbers and the use of a different RT-PCR kit (BioRad instead of the usual Invitrogen). See also FIG. 13. FIGS. 14-16 pertain to photograph images of MeSCs treated with 3 uM of 5azaC (A 050123 3 uM 5azaC 3 weeks MSC.jpg, FIG. 14), of 3 uM of BrdU (A 050123 3 uM BrdU 3 weeks MSC.jpg, FIG. 15) and of nanog transfected cells combined with rat cardiac cells in co-culture (A 41227 of nMSC 1213 2.jpg, FIG. 16). The cell differentiation is due to environmental signals and cell to cell contacts.

The inventors demonstrate that treatment with nucleotide derivatives and/or nanog transfection provides for cardiac differentiation of mesenchymal stem cells. Accordingly, an embodiment of the invention pertains to a method of increasing the potency of a cell comprising introducing a gene comprising nanog activity, optionally in conjunction with treatment of such cell with a compound, such as a nucleotide derivative, known to exert a dedifferentiating influence on cells.
Gln Leu Cys Val Leu Arg Arg Phe Gln Arg Gln Tyr Leu Ser
110 115 120

cag cag cag atg caa gaa ctc tcc aac tct cag aag ctc agc taa
Leu Gln Gln Met Gln Glu Leu Ser Arg Ile Leu Arg Tyr Lys
125 130 135 140 145 150

cag gtg aag acc tgg ttc cag aac cag aga atg aaa tct aag agg tgg
Gln Val Lys Thr Trp Phe Gln Arg Met Lys Ser Lys Arg Trp
140 145 150

cag aca aac aac tgg ccc aag aat agc aat ggt gtt acg cag aag ccc
Gln Lys Arg Met Arg Pro Ala Arg Arg Ala Arg Trp
150 155 160 165

tca gca cct acc tac ccc aag ctc tac tct tcc tac cac cag gga tgc
Ser Ala Pro Thr Tyr Pro Ser Leu Tyr Ser Ser Tyr His Gln Gly Cys
170 175 180 185

cgt gtt aac cag ggc act ggg aac ctt ctg aac etc age tac aac
Leu Val Pro Thr Gly Arg Pro Ser Thr Thr Leu Gln Tyr Arg
190 195 200

<210> SEQ ID NO 2
<211> LENGTH: 305
<212> TYPE: PRT

<216> 438
<226> 486
<236> 534
<246> 582
<256> 630
<266> 678
<276> 726
<286> 774
<296> 822
<306> 870
<316> 918
<326> 965
<336> 1025
<346> 1085
<356> 1145
<366> 1205
<376> 1265
<386> 1325
<396> 1385
<406> 1445
<416> 1505
<426> 1565
<436> 1625
<446> 1628

att
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 2

Met Ser Val Asp Pro Ala Cys Pro Gln Ser Leu Pro Cys Phe Glu Glu
1 5 10 15
Ser Asp Cys Lys Glu Ser Ser Pro Met Pro Val Ile Cys Gly Pro Glu
20 25 30
Glu Asn Tyr Pro Leu Glu Met Ser Ser Ala Glu Met Pro His Thr
35 40 45
Glu Thr Val Ser Pro Leu Pro Ser Ser Met Asp Leu Leu Ile Glu Asp
50 55 60
Ser Pro Asp Ser Ser Thr Ser Pro Lys Gly Lys Glu Pro Thr Ser Ala
65 70 75 80
Glu Asn Ser Val Ala Lys Lys Glu Asp Lys Glu Pro Val Lys Lys Glu
85 90 95
Lys Thr Arg Thr Val Phe Ser Ser Thr Gln Val Leu Gln Glu Asn Asp
100 105 110
Arg Phe Gln Arg Gln Lys Tyr Leu Ser Leu Glu Gln Met Gln Glu Leu
115 120 125
Ser Asn Ile Leu Asn Leu Ser Tyr Lys Glu Val Lys Thr Trp Phe Gln
130 135 140
Asn Gln Arg Met Lys Ser Lys Arg Trp Gln Lys Asn Asn Pro Lys
145 150 155 160
Asn Ser Asn Gly Val Thr Gln Lys Ala Ser Ala Pro Thr Tyr Pro Ser
165 170 175
Leu Tyr Ser Ser Tyr His Gln Gly Cys Leu Val Asn Pro Thr Gly Asn
180 185 190
Leu Pro Met Trp Ser Asn Thr Trp Asn Leu Ser Thr Ser Thr Ser Asn
195 200 205
Gln Thr Gln Asn Ile Gln Ser Trp Asn Ile Ser His Ser Trp Asn Asn Thr Gln
210 215 220
Thr Trp Cys Thr Gln Ser Trp Asn Gln Ala Trp Asn Ser Pro Phe
225 230 235 240
Tyr Asn Cys Gly Glu Glu Ser Leu Gln Ser Cys Met His Phe Glu Pro
245 250 255
Asn Ser Pro Ala Ser Asp Leu Glu Ala Ala Leu Glu Ala Ala gly Glu
260 265 270
Gly Leu Asn Val Ile Gln Glu Thr Thr Arg Tyr Phe Ser Thr Pro Gln
275 280 285
Thr Met Asp Leu Phe Leu Asn Tyr Ser Met Asn Met Glu Pro Glu Asp
290 295 300
Val
305

<210> SEQ ID NO 3
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<400> SEQUENCE: 3

ttttttctcc tttttctttc

<210> SEQ ID NO 4
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence

<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<400> SEQUENCE: 4

atggtgatg aagatgtatt

<210> SEQ ID NO 5
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence

<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic 6 His Tag

<400> SEQUENCE: 5

His His His His His His

<210> SEQ ID NO 6
<211> LENGTH: 1417
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 6

tccotctgca agcctctcaatt tcaccaaggg cccggttcttc ttcccctatgg 60
cgggacacct ggtgctggatt ttcgctctct ggctctctcc aggttggtgg ggtgatgggc 120
caggggggcc gagcgggcccc tgcgggtgtgct tgtggagctgt gcccttgctggag 180
tgggagcccc aggaaagggg cgtggtgattg ggtgctgggcttg aagggctccc 240
cattggccgcccc gcctgtgattg aattggtttt ggttgcccttg aagggctccc 300
tgggtgttcgct gcccggattc ccgtccccgg gccgctgcttc gccgggggcttcttctg 360
ggggggtgagacct gggggtgccgg gctgggtgctct gcgggggtttc cggttggtttcttctg 420
tgaagggcttt gcggccgggt ttcgctgggcttt gcggggggttg gcggggggcttc 480
tggcagcccc acggcggccaa tgtggctggc cggggggtgtgg cggggggtttt 540
tgcggagctct gcggcgggtgg gcgtggtgattg gcggggtccc gcgggggggttgctg 600
tgcggggggtgcgg ccgtgggttg acctgctgctgc gggggtgcgcc gcgggggggtgctg 660
tgccgtgctgctgc gctttggattc ggggggttgggc ccgggggggtctgc gcggggggttc 720
tgtaaggcgt gcgggggggt gcgggggtttt gcgggggggtttt gcgggggggttc 780
gggtgggttg tgctgggttg gccgggggttgc gcgggggggtttt gcgggggggttc 840
tgccgggggc gcgggggggt gcgggggggtttt gcgggggggtttt gcgggggggttc 900
gcgggggggc gcgggggggt gcgggggggtttt gcgggggggtttt gcgggggggttc 960
gtgggggggg gcgggggggt gcgggggggtttt gcgggggggtttt gcgggggggttc 1020
tccggggggt gcgggggggt gcgggggggtttt gcgggggggtttt gcgggggggttc 1080
ggggggggg gcgggggggt gcgggggggtttt gcgggggggtttt gcgggggggttc 1140
gtgggggggg gcgggggggt gcgggggggtttt gcgggggggtttt gcgggggggttc 1200
gggtgggttg gcgggggggt gcgggggggtttt gcgggggggtttt gcgggggggttc 1260
cgggggggg gcgggggggt gcgggggggtttt gcgggggggtttt gcgggggggttc 1320
gggtgggttg gcgggggggt gcgggggggtttt gcgggggggtttt gcgggggggttc 1380
<210> SEQ ID NO 7
<211> LENGTH : 360
<212> TYPE : PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE:

Met Ala Gly His Leu Ala Ser Asp Phe Ala Phe Ser Pro Pro Pro Gly
1 5 10 15
Gly Gly Asp Gly Pro Gly Gly Pro Glu Pro Gly Trp Val Asp Pro
20 25 30
Arg Thr Trp Leu Ser Phe Glu Gly Pro Pro Gly Gly Pro Gly Ile Gly
35 40 45
Pro Gly Val Gly Pro Gly Ser Glu Val Trp Gly Ile Pro Cys Pro
50 55 60
Pro Pro Tyr Glu Phe Cys Gly Met Ala Tyr Cys Gly Pro Glu Val
65 70 75 80
Gly Val Gly Leu Val Pro Glu Val Gly Gly Leu Glu Thr Ser Glu Pro Glu
95 100 105 110
Gly Glu Ala Gly Val Gly Ser Asn Ser Asp Gly Ala Ser Pro
115 120 125
Glu Pro Cys Thr Val Thr Pro Gly Ala Val Lys Leu Glu Lys Glu Lys
130 135 140
Leu Glu Glu Asp Pro Glu Ser Glu Asp Ile Lys Ala Leu Glu Lys
145 150 155 160
Glu Leu Glu Glu Phe Ala Lys Leu Leu Lys Glu Arg Ile Thr Leu
165 170 175
Gly Tyr Thr Glu Ala Asp Val Gly Leu Thr Leu Gly Val Leu Phe Gly
180 185 190
Lys Val Phe Ser Glu Thr Thr Ile Cys Arg Phe Glu Ala Leu Glu Leu
195 200 205
Ser Phe Lys Asn Met Cys Lys Leu Arg Pro Leu Leu Glu Lys Trp Val
210 215 220
Glu Glu Ala Asp Asn Glu Asn Leu Glu Glu Ile Cys Lys Ala Glu
225 230 235 240
Thr Leu Val Gln Ala Arg Lys Arg Arg Thr Ser Ile Glu Asn Arg
245 250 255 260
Val Arg Gly Asn Leu Glu Asn Leu Phe Leu Glu Cys Pro Lys Pro Thr
265 270 275 280 285
Leu Glu Glu Ile Ser His Ile Ala Glu Glu Leu Glu Lys Asp
285 290 295 300
Val Val Arg Val Trp Phe Cys Asn Arg Arg Glu Lys Lys Arg Ser
305 310 315 320
Ser Ser Asp Tyr Ala Gln Arg Glu Asp Phe Glu Ala Ala Gly Ser Pro
325 330 335 340
Phe Ser Gly Gly Pro Val Ser Phe Pro Leu Ala Pro Gly Pro His Phe
345 350 355 360
ctattaacct gttgaaaaaaa gttcagacg ttgtcagacg agagaagaga gttgttgcaag 60
aaggggaaaa gtagttggcc gcctttttaaa gacttgact gcagaagaga agaggagaaga 120
gaaagaaagg gagaagaagtt tgagcccccc gcttaagcct tttccaaaaa tattaataac 180
aatcatacgg gcgcgcacgga tgcgacagag gagagagagga gcgtttctttt tgaatctgat 240
tcagttttttg tctctctt
atgcaggttg aacccgttgg taattttataa tagcttttgt tcgatcccaa ctttccattt
tgttcagata aaaaaaaaca tgaatttact gttttgaaat tattttttta tcgttgatgtg
tattttggaa tttttttttt tttttaacct attttttttt tttttttttt
tt
What is claimed is:

1. A method of transforming an adult mesenchymal stem cell into a pluripotent cell, said method comprising introducing into said adult mesenchymal stem cell an oct4 gene and a sox2 gene and culturing said adult mesenchymal stem cell under conditions to produce expression of said oct4 and sox2 genes, wherein said expression results in said adult mesenchymal stem cell becoming a pluripotent cell.

* * * * *