Treatment of breast cancer

3-30-2004

Delbert Miles
University of Central Florida

Elena Goun
Perm State University

Elena Goun
University of Central Florida

Krasnych Pertrovna
Perm State University

Krasnych Pertrovna
University of Central Florida

See next page for additional authors

Find similar works at: http://stars.library.ucf.edu/patents

University of Central Florida Libraries http://library.ucf.edu

Recommended Citation

Miles, Delbert; Goun, Elena; Goun, Elena; Pertrovna, Krasnych; Pertrovna, Krasnych; Valentinovna, Pimenova; Yurjevich, Solodnikov; and Yyrjevitsh, Solodnikov, "Treatment of breast cancer" (2004). UCF Patents. Paper 615.

http://stars.library.ucf.edu/patents/615

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
TREATMENT OF BREAST CANCER

Inventors: D. Howard Miles, Winter Springs, FL (US); Solodnikov Sergey Yurjevich, Perm (RU); Krasnykh Olga Petrovna, Perm (RU); Pimenova Elena Valentinovna, Perm (RU); Elena A. Goun, Stanford, CA (US)

Assignee: University of Central Florida, Orlando, FL (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 135 days.

Filed: Dec. 4, 2002

Related U.S. Application Data

Division of application No. 10/164,541, filed on Jun. 7, 2002, now Pat. No. 6,602,907.

Provisional application No. 60/296,823, filed on Jun. 8, 2001.

Abstract

Compounds of the class of 4-oxo-butenolic acid derivatives are disclosed along with the surprising use property of these compounds as anti-tumor agents in humans against breast carcinoma, which include: 2-(N'-fluoren-9-ylidene-hydrazino)-5,5-dimethyl-4-oxo-hex-2-enoic acid methyl ester (OF-06), 1-(2,4-Dimethyl-phenyl)-2,4-dihydroxy-3-(4-methyl-benzoyl)-5-oxo-2,5-dihydro-1H-pyrrole-2-carboxylic acid methyl ester (1F-07), 4-(4-Methoxy-phenyl)-2,4-dioxy-3-(phenyl-hydrazono)-butyric acid (3F-10), 4-(4-Chloro-phenyl)-2,4-dioxy-3-(phenyl-hydrazono)-butyric acid ethyl ester (3F-11), 2-Hydroxy-4-oxo-4-(2,3,5,6-tetrafluoro-4-methoxy-phenyl)-but-2-enoic acid (3F-15), and 4,4-Dihydroxy-5-(4-methyl-benzoyl)-2-phenyl-2,4-dihydro-pyrazol-3-one (3F-16) as well as some novel derivatives of these compounds claimed (see Table 2). The invention also encompasses a class of the compounds with the novel property of anti-tumor activity against human breast cancer, which includes the following compounds 4-(4-Ethoxy-phenyl)-2-(N'-fluoren-9-ylidene-hydrazino)-4-hydroxy-4-oxo-butyric acid methyl ester (OF-04); 2-[N'-[1-(4-Chloro-phenyl)-ethylidene]-hydrazino]-4-oxo-4-phenyl-but-2-enoic acid methyl ester (OF-05), and 4-Chloro-4-(4-ethoxy-phenyl)-2-(fluoren-9-ylidene-hydrazino)-but-3-enoic acid methyl ester (3F-19).

2 Claims, 2 Drawing Sheets
TREATMENT OF BREAST CANCER

This is a Divisional of application Ser. No. 10/164,541 filed Jun. 7, 2002 now U.S. Pat. No. 6,602,907.

FIELD OF THE INVENTION

This invention relates to novel 4x0-butoenoic acid derivatives and to the use of these compounds and related compounds with novel biological activity in humans as therapeutic means for the prevention and treatment of breast cancer and several non-breast cancer-related diseases.

BACKGROUND OF THE INVENTION

Cancer is a global killer of humans with breast cancer among the leaders of killing humans yearly. Breast cancer is the primary killer of women. One in eight American women will develop breast cancer in her lifetime. In 2001, an estimated 192,700 women in the U.S. will be diagnosed with invasive breast cancer and 42,600 with in situ (tumors contained in the milk ducts). An estimated 40,000 will die from the disease.

An estimated 3 million women in the U.S. today are living with breast cancer of TREATMENT OF BREAST CANCER which 2 million have been diagnosed with the disease and 1 million have the disease but do not yet know it. The incidence of breast cancer in the U.S. has more than doubled in the past 30 years. In 1964, the lifetime risk was 1 in 20. Today it's 1 in 8. Breast cancer is the most commonly diagnosed cancer in women in both America and worldwide. Breast cancer rates are the highest in industrialized countries. It is estimated that 1.2 million new diagnoses and 500,000 deaths from breast cancer will occur worldwide this year. Further, it appears that breast cancer is the leading cause of death for American women of ages 25 to 55 years.

No vaccine or other universally successful method for the prevention or treatment of breast cancer is currently available. Management of the disease currently relies on a combination of early diagnosis (through routine breast screening procedures) and aggressive treatment, which may include one or more of a variety of treatments such as surgery, radiotherapy, chemotherapy and hormone therapy. The course of treatment for a particular breast cancer is often selected based on a variety of prognostic parameters, including an analysis of specific tumor markers. Consequently, there is a need for an anti-cancer drug for humans that mitigates the above mentioned disadvantages of current drug therapy and effectiveness against breast cancer.

Accordingly, there is a need for improved methods for chemotherapy for breast cancer. The present invention fulfills this need and further provides other related advantages.

SUMMARY OF THE INVENTION

The first objective of the present invention is to provide a drug effective for treatment of breast cancer.

Another object of this invention is to provide novel 4-oxo-butoenoic acid derivatives.

A further object of this invention is to provide 4-oxo-butoenoic acid derivatives with novel activity against breast cancer.

A preferred embodiment of the invention encompasses a class of compounds having the property of anti-tumor activity against human breast cancer comprising the novel structure of 4-oxo-butoenoic acid derivatives including:

- 4-(4-Methoxy-phenyl)-2,4-dioxo-3-(phenyl-hydrazono)-butyric acid ethyl ester (3F-15); and
- 4,4-dimethyl-benzoyl)-5-oxo-2,5-dihydro-1H-pyrrole-2-carboxylic acid methyl ester (lF-07); 4-(4-Methoxy-phenyl)-2,4dioxo-3-(phenyl-hydrazono)-butyric acid (3F-10); and
- 2-{(N'-Fluorenyl-9-ylkene-hydrazone)-5,5-dimethyl-4-oxo-2-enoic acid methyl ester (OF-06); and
- 4-(3-Pheny1)-5,5-dihydroxy-3-(4-methyl-benzoyl)-5-oxo-2,5-dihydro-1H-pyrrole-2-carboxyl chloride methyl ester (1F-07); 4-(4-Methoxy-phenyl)-2,4dioxo-3-(phenyl-hydradono)-butyric acid (3F-10); and
- 4-(4-Chloro-phenyl)-2,4dioxo-3-(phenyl-hydradono)-butyric acid ethyl ester (3F-11); 2-Hydroxy-4-oxo-4-(2,3,5,6-tetrafluoromethoxy-phenyl)-but-2-enoic acid (3F-15); and
- 4,4-Dihydroxy-5-(4-methyl-benzoyl)-2-phenyl-2,4-dihydropyrazol-3-one (3F-16) as well as novel derivatives of these compounds (see Table 2).

The use of the following compounds for humans as therapeutic means for the eradication of human breast cancer
further encompasses the following: 4-(4-Ethoxy-phenyl)-2-(N-fluoren-9-ylidene-hydrazino)-2-hydroxy-4-oxo-butyric acid methyl ester (OF-13); 2-(N'-[1-(4-Chloro-phenyl)-ethylidene-hydrazino]-4-oxo-4-phenyl-but-2-enoic acid methyl ester (OF-20); 2-(N'-Fluoren-9-yldiene-hydrazino)-4-oxo-4-phenyl-but-2-enoic acid methyl ester (1F-04); and 4-Chloro-4-(4-ethoxy-phenyl)-2-fluoren-9-yldiene-hydrazono)-but-3-enoic acid methyl ester (3F-19).

Further objects and advantages of this invention will be apparent from the following detailed description of presently preferred embodiments, which are illustrated structurally in the accompanying drawings.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates structurally a chemical compound designated as OF-06.

FIG. 2 illustrates structurally a chemical compound designated as 1F-07.

FIG. 3 illustrates structurally a chemical compound designated as 3F-10.

FIG. 4 illustrates structurally a chemical compound designated as 3F-11.

FIG. 5 illustrates structurally a chemical compound designated as 3F-15.

FIG. 6 illustrates structurally a chemical compound designated as 3F-16.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Before explaining the disclosed embodiments of the present invention in detail, it is to be understood that the invention is not limited in its application to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.

As earlier recited this application has been filed in order to disclose: new 4-oxo-butenoic acids that have been found to have high activity against human breast cancer and low toxicity in animals. The percent activity and animal toxicity for each compound is as follows:

Table: Activity and Toxicity of Selected Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Activity (mg/kg)</th>
<th>Toxicity (LD50, mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OF-06</td>
<td>100%</td>
<td>>500</td>
</tr>
<tr>
<td>1F-07</td>
<td>100%</td>
<td>>500</td>
</tr>
<tr>
<td>3F-10</td>
<td>100%</td>
<td>>3000</td>
</tr>
<tr>
<td>3F-11</td>
<td>100%</td>
<td>>2000</td>
</tr>
<tr>
<td>3F-15</td>
<td>100%</td>
<td>>1000</td>
</tr>
<tr>
<td>3F-16</td>
<td>100%</td>
<td>>500</td>
</tr>
</tbody>
</table>

These compounds have very high activity against human breast cancer and a very low toxicity as Lethal Dose 50 (LD50) in animals. The percent activity and animal toxicity for each compound is as follows:

Table: Activity and Toxicity of Selected Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Activity (mg/kg)</th>
<th>Toxicity (LD50, mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OF-06</td>
<td>100%</td>
<td>>500</td>
</tr>
<tr>
<td>1F-07</td>
<td>100%</td>
<td>>500</td>
</tr>
<tr>
<td>3F-10</td>
<td>100%</td>
<td>>3000</td>
</tr>
<tr>
<td>3F-11</td>
<td>100%</td>
<td>>2000</td>
</tr>
<tr>
<td>3F-15</td>
<td>100%</td>
<td>>1000</td>
</tr>
<tr>
<td>3F-16</td>
<td>100%</td>
<td>>500</td>
</tr>
</tbody>
</table>

PREPARATION OF (OF-06)

EXAMPLE 1

The preparation of 2-(N'-Fluoren-9-yldiene-hydrazino)-5,5-dimethyl-4-oxo-hex-2-enoic acid methyl ester (OF-06) was carried out as follows:

EXAMPLE 2

The synthesis of 3F-16 is an example of well known amination/dehydration reactions.
PREPARATION OF (1F-07)

EXAMPLE 2

The preparation of 1-(2,4-Dimethyl-phenyl)-2,4-dihydroxy-3-(4-methyl-benzoyl)-5-oxo-2,5-dihydro-1H-pyrrole-2-carboxylic acid methyl ester (1F-07). To a solution of 1.65 g (0.0051 moles) of 2-(2,4-dimethyl-phenylamino)-4-oxo-4-p-tolyl-but-2-enoic acid methyl ester (1) in 20 mL of anhydrous chloroform was added 0.68 g (0.0054 moles) oxalyl chloride. After refluxing for 30 min, 10 mL of anhydrous hexane was added and 15 ml of solvent was distilled out. The remainder of the solvent was evaporated by keeping the flask open for 12 hr. The resulting precipitate was filtered and recrystallized from dichloroethane—tetrachloromethane (1:2) to give 1.25 g (62%) of compound 1F-7 in the form of white crystals, mp 133-135 °C. (decomp.)

Solubility: highly soluble in DMSO, DMFA, slightly soluble in dichloroethane, benzene, insoluble in hexane tetrachloromethane and water.

PREPARATION OF (3F-10)

EXAMPLE 3

The preparation of 4-(4-Methoxy-phenyl)-2,4-dioxo-3-(phenyl-hydrazono)-butyric acid (3F-10). To a hot stirred solution of 0.075 moles of 2-Hydroxy-4-(4-methoxy-phenyl)-4-oxo-but-2-enoic acid in 300 ml of dioxane small portions of an aqueous solution prepared from 0.075 moles of aniline, 0.92 moles of sodium nitrate and 19 ml of concentrated HCl in 90 ml of water (DI) was added. During cooling 11.4 g of sodium acetate was added and the reaction was kept at the r.t. for 2 hr. Then 2 L of water was added to the reaction mixture and the resulting precipitate was filtrated and recrystallized from 1:1 mixture of dimethyl chloride/dichloroethane to give 15.93 g of yellow crystals (60% yield) with m.p. of 176-177 °C (decomp).

Solubility: highly soluble in DMSO, DMFA, slightly soluble in dichloroethane, benzene, insoluble in hexane tetrachloromethane and water.

PREPARATION OF (3F-11)

EXAMPLE 4

The preparation of 4-(4-Chloro-phenyl)-2,4-dioxo-3-(phenyl-hydrazono)-butyric acid ethyl ester (3F-11). A solution of 0.5 g (0.0016 moles) of 5-(4-Chloro-benzoyl)-2-phenyl-2H-pyrazole-3,4-dione (1) (synthesis was previously published by Pimenova, E. V.; Andreichikov, Yu. S. (1992) Zh. Org. Khim. 28, 376-89), in 2 mL of anhydrous ethanol was refluxed for 1 hr. The resulting solution was cooled and the precipitate was filtered to give 0.48 g (85% yield) of yellow crystals with m.p. of 141-142 °C. (decomp.)
EXAMPLE 7

The preparation of 4,4-Dihydroxy-5-(4-methyl-benzoyl)-2-phenyl-2,4-dihydropyrazol-3-one (3F-16). A solution of 0.5 g (0.0017 moles) of 5-(4-Methyl-benzoyl)2-phenyl-2H-pyrazole-3,4-dione (1) (synthesis was previously published by Pimenova, E. V.; Andreichikov, Yu S. (1992) Zh. Org. Khim. 28, 376-89), and 5 mL of water (DI) was kept at the rt until the solution became colorless and precipitate was formed. The precipitate was filtered and recrystallized from dichloroethane-water (10:1) to give 0.45 g (85%) of yellow-brown crystals, mp 134-135 °C.

EXAMPLE 6

The preparation of 2-Hydroxy-4-oxo-4-(2,3,5,6-tetrafluoro-4-methoxy-phenyl)-but-2-enoic acid (3F-15). A 25 solution of sodium methoxide was prepared from 0.46 g (20 mmol) of sodium and 30 mL of absolute methanol by adding small portions to a mixture of 6.35 g (10 mmol) of 1-pentafluorophenyl-ethanone 1 and 3.54 g (10 mmol) of dimethyl oxalate 2. After stirring the reaction for 24 hr at rt, 50 mL of 25% aqueous solution of HCl was added. The resulting mixture was extracted with ether (240 mL), washed by solution of brine and dried over anhydrous Na₂SO₄. The solvent was removed in vacuum and 10 mL of saturated solution of NaOH in ethanol was added with stirring. After 1 hr the reaction mixture was diluted with water and acidified with H₂SO₄ (10%) to obtain pH of 1-2. The resulting precipitate of 3F-15 was filtered and recrystallized from toluene to give 1.73 g (81% yield) in the form of white-yellow crystals, mp 155-156 °C. (decomp.)

EXAMPLE 8

The preparation of 4-(4-Ethoxyphenyl)-2-(N'-fluoren-9-ylidene-hydrazino)-2-hydroxy-4-oxobutyric acid methyl ester (OF-13). A solution of 5.0 g (0.02 moles) of methyl 4-p-ethoxyphenyl-2-hydroxy-4-oxo-2-butenoate (1) and 3.88 g (0.02 moles) of fluorene-9-ylidene-hydrazine (2) in 80 mL of absolute benzene and absolute toluene (1:1) was refluxed for 1 hr 30 min with a Dean-Stark trap (the end of the reaction was determined by TLC), cooled and the precipitate was filtered and recrystallized from benzene-diethyl ether-hexane mixture (1:3:2) to give 2.65 g (53% yield) of colorless crystals with mp 114-116 °C.

Solubility: highly soluble in DMSO, DMFA, dichloroethane, acetonitrile, insoluble in hexane. The compound is not stable in solutions and decomposes quickly when the solution is heated or stored for a long time with the formation of OF-12.
It is seen from the above that (OF-13) is an intermediate product during the synthesis of (OF-12).

PREPARATION OF (3F-19)

EXAMPLE 9

The preparation of 4 Chloro 4 (4 ethoxy phenyl) 2 (fluoren 9 ylidene hydrazono) but 3 enoic acid methyl ester (3F-19) from 4 (4 Ethoxy phenyl) 2 (N' fluoren 9 ylidene hydrazine) 4-oxo-but-2-enolic acid methyl ester (OF-12) (synthesis was previously published by Konyukhova, N. A.; Krasnykh, O. P.; Aliev, Z. G.; Maslivets, A. N. *Chemistry of Heterocyclic Compounds* (New York, N.Y., United States) (Translation of Khimiya Geterotsiklicheskikh Soedinenii) (2001), 37(6), 779-780) in 5 mL of anhydrous benzene 0.3935 g (0.0031 moles) oxalyl chloride was added. The reaction mixture was refluxed for 1 hour 40 min, cooled, precipitate was filtered and recrystallized from absolute benzene to give 0.62 g (54%) of yellow crystals, m.p. 163–163 (decom).
<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
<th>Name</th>
<th>Activity (ATCC HTB123)</th>
<th>LD₅₀ mg/kg</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0F-13</td>
<td></td>
<td>4-(4-Ethoxy-phenyl)-2-(N'-fluoren-9-ylidene-hydrazino)-2-hydroxy-4-oxo-butyric acid methyl ester</td>
<td>100%</td>
<td>>1500</td>
<td>Miles et al. UCF-303A</td>
</tr>
<tr>
<td>0F-20</td>
<td></td>
<td>2-{N'-[1-(4-Chlorophenyl)-ethylidene] hydrazino}-4-oxo-4-phenyl-but-2-enoic acid methyl ester</td>
<td>83%</td>
<td>>250</td>
<td>Miles et al. UCF-311C</td>
</tr>
<tr>
<td>1F-04</td>
<td></td>
<td>2-(N'-Fluoren-9-ylidene-hydrazino)-4-oxo-4-phenyl-but-2-enoic acid methyl ester</td>
<td>93%</td>
<td>>1000</td>
<td>Andrejchikov, Yurij S.; Maslivets, Andrej N.; Krasnykh, Olga P.; Aleksandrov, Galina A.; Vozhakova, Alla V. Russ. (1993); CODEN: RUXIE7 RU 2003655 C1 19931130 Application: RU 91-5013322 19910704.</td>
</tr>
<tr>
<td>#</td>
<td>Structure</td>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>3-[4-Chloro-phenyl]-hydrazono]-2,4-dioxo-4-phenyl-butyric acid methyl ester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3-[4-Chloro-phenyl]-hydrazono]-2,4-dioxo-4-p-tolyl-butyric acid methyl ester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2,4-Dioxo-4-p-tolyl-3-(p-tolyl-hydrazono)-butyric acid methyl ester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3-[4-Chloro-phenyl]-hydrazono]-4-(4-methoxy-phenyl)-2,4-dioxo-butyric acid methyl ester</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-continued

<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>4-(4-Chloro-phenyl)-2,4-dioxo-3-(p-tolyl-hydrazono)-butyric acid methyl ester</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>4-(4-Chloro-phenyl)-3-[4-methoxy-phenyl]-hydrazono]-2,4-dioxo-butyric acid methyl ester</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4-(4-Chloro-phenyl)-2,4-dioxo-3-(phenyl-hydrazono)-butyric acid ethyl ester</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2,4-Dioxo-3-(phenyl-hydrazono)-4-p-tolyl-butyric acid ethyl ester</td>
</tr>
</tbody>
</table>
TABLE 2-continued

<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>2,4-Dioxo-4-phenyl-3-(phenyl-hydrazono)-butyric acid methyl ester</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2,4-Dioxo-3-(phenyl-hydrazono)-4-p-tolyl-butyric acid methyl ester</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>4-(4-Bromo-phenyl)-2,4-dioxo-3-(phenyl-hydrazono)-butyric acid methyl ester</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>4-(4-Methoxy-phenyl)-2,4-dioxo-3-(phenyl-hydrazono)-butyric acid methyl ester</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>4-(4-Ethoxy-phenyl)-2,4-dioxo-3-(phenyl-hydrazono)-butyric acid methyl ester</td>
</tr>
</tbody>
</table>
TABLE 2-continued

<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
<td>4-(4-Fluoro-phenyl)-2,4-dioxo-3-(phenyl-hydrazono)-butyric acid methyl ester</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>4-(4-Chloro-phenyl)-2,4-dioxo-3-(phenyl-hydrazono)-butyric acid methyl ester</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>3-[4-Methoxy-phenyl]-hydrazono]-2,4-dioxo-4-phenylbutyric acid methyl ester</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>3-[4-Chloro-phenyl]-hydrazono]-2,4-dioxo-4-phenylbutyric acid methyl ester</td>
</tr>
</tbody>
</table>

CYTOTOXICITY ASSAY

The activity in human breast cancer of the novel compounds (as earlier reported) was realized by the following procedure which determines the inhibitory effect of test samples on the growth of human breast cancer cells.

(ATCC HTB123) The HTB123 cells are grown in RPMI 1640 media+10% Fetal bovine serum+4.5g/L glucose+10 mM HEPES+1.0 mM sodium pyruvate+1% Antibiotic/antimycotic for approximately 48 hours at 37°C/5% CO₂ in the presence of the test compound.

Growth/Non-Growth of the cells (e.g., cell density) is determined using Promega’s MTS/PMS assay system. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) is an aqueous compound that is reduced to soluble formazan by the presence of NADH formed by dehydrogenases present within the HTB123 cells. The absorbance of the formazan
can be measured at 490 nm and is directly proportional to the number of living cells present in the culture. PMS (Phenazine Methosulfate) is added an electron coupling reagent and greatly increases the rate of reduction.

To facilitate a full understanding of the procedure the following definitions are offered:

Test wells—wells containing test sample and Diluted HTB123 cells

Test values—absorbance of test wells

Blank wells—wells containing test sample and HTB123 media (HHTB2-01S); used to obtain background absorbance due to test sample

Blank values—absorbance of blank wells

Negative Control—maximal cell growth; results of test samples will be expressed as a percent of the Negative Control

Positive Control—known inhibitor of HTB123 cells; used to validate assay system

Matrix—solvent that the samples are prepared/diluted in

Assay samples of similar origin and matrix (e.g., methanol extraction, monohyde extraction, water soluble samples, etc.) together on the same plate in order to reduce the number of steps performed per plate.

Blank values will be determined for each sample to account for any color contribution due to the sample itself. These blank wells must contain the same amount of sample plus HTB123 media (no cells). After completion of MTS/PMS reaction, blank values will be subtracted from the test value to obtain a net absorbance that will be used to calculate cell density.

All results are based upon a comparison to the Negative Control value of the plate. The Negative Control must contain the same amount of matrix (e.g., solvent) to offset any destructive effect the matrix may have on the growth of the HTB123 cells (allows for baseline values to be set).

For most samples, a HTB123 cell growth (diluted two to four-fold, depending upon the appearance of the inoculum) of approximately 48 hours followed by and incubation of 3 hours with the MTS/PMS reagent is optimal.

*Due to the nature of the HTB123 cells it is very difficult to obtain accurate cell densities. Continuation of the HTB123 cell line typically consists of the dilution of mature cells at two or three-fold into fresh media and growth at 37°C, 5% CO₂, for two to three days.

In order to establish the accuracy of this assay a Positive Control consisting of 50 µM Methotrexate should not decrease the net absorbance to less than 90% of the Negative Control (HTB123 cells are somewhat resistant to methotrexate) is utilized.

ANIMAL TOXICITY BIOASSAY

Acute toxicity was studied on white mice of both sexes with weight ranging between 18–26 grams under intraperitoneal injection of 2% solution of tested compound in starch (the compound was dissolved in starch slime and injected) on the basis of 0.1 ml of solution per 10 g of the animal weight. Each dose was tested on the group of 6 animals that were observed during 14 days period. (This method was approved by the Pharmacology committee of Russian Ministry of Health and has been widely used since 1968.)

Averaged lethal dose (LD₅₀) of the compound was computed using results of experiments on 5–7 groups of animals using method of Litchfield and Wilkinson. (Balenki I. M. L. "Elements of quantitative determination of the pharmacological effect," Leningrad, 1963, 71 pages).

USE OF THE INVENTION FOR TREATMENT OF HUMAN BREAST CANCER

The compounds of the invention, i.e. 4oxo-butanonoic acids derivatives and more specifically those novel derivatives:
administering an effective, non-toxic, amount of a heterocyclic compound according to the invention or a tautomeric form thereof and/or a pharmaceutically acceptable salt thereof and/or a pharmaceutically acceptable solvate thereof, to a breast carcinoma invaded human mammal in need thereof.

ADVANTAGES OF THE INVENTION

Breast cancer is a significant health problem for women in the United States and throughout the world. Although advances have been made in detection and treatment of the disease, breast cancer remains the second leading cause of cancer-related deaths in women, affecting more than 180,000 women in the United States each year. For women in North America, the lifetime odds of getting breast cancer are now one in eight.

No vaccine or other universally successful method for the prevention or treatment of breast cancer is currently available. The available drugs on the market have a variety of strong side effects, high cost and complicated synthesis. For example, Taxol is the most promising antitumor agent developed in the past three decades. It was approved by the FDA for the treatment of refractory ovarian cancer in December, 1992, and was introduced into the marketplace in January, 1993 by Bristol-Myers Squibb Company (BMS) operating under a Cooperative Research and Development Agreement (CRADA) with the National Cancer Institute (NCI). It was approved for the treatment of breast cancer in 1994, and is now in transition from second line to first line therapy. Worldwide sales of Taxol reached $1.2 billion in 1998. However, Preclinical development continued from 1977 until 1983, hampered by a number of obstacles, especially the formulation problem. Taxol is highly lipophilic and is insoluble in water. Finally, a vehicle consisting of a mixture of Cremophore EL (polyethoxylated caster oil), ethanol and saline was chosen, but its toxicity was a significant problem in preclinical studies. The main side effects of this drug were found to be congenital malformation in the fetus and reproductive disorders. The supply of Taxol was also a problem. To obtain Yew bark, the tree had to be killed. A large Pacific Yew two feet in diameter requires 200 years to grow and yields about five pounds of bark. In extractions by Polysciences, then the only extraction contractor, an 0.004% yield of Taxol was obtained. Furthermore, the Pacific Yew was a scarce understory tree, and its extinction and destruction of the old growth forests was threatened by the harvest. Few believed, because of the complexity of the molecule, that the problem of a commercial supply of Taxol could be solved by total synthesis. The first total synthesis was finally reported in 1994 by the Holton group. Although three total syntheses have been subsequently achieved by others, the Holton synthesis is the most efficient, but still requires over 40 steps from camphor and provides an overall yield of approximately 2%.

Taxol is perhaps best viewed as an exciting and valuable lead in cancer chemotherapy. Although Taxol has extended the life of many people, it is not a cure, and many patients develop resistance to it. Many tumor types show minimal or no response to Taxol, and there are solubility problems in drug delivery.

Accordingly, there is a need in the art for improved methods for therapy and diagnosis of breast cancer. The present invention fulfills these needs and further provides other related advantages. The animal toxicity bioassay data indicated that LD_{50} dose for all of the compounds are in the range of 250–3000 mg/kg, which is much lower compare to some of the most promising agents against breast cancer. For example taxol intra-peritoneal LD_{50} dose in mice using the same bioassay system is 218 mg/kg (IZKEDZ Jun. 1, 1980), which is almost a number of magnitude higher then some of the claimed compounds. Such a low toxicity dose of the compounds claimed gives a strong potential for not to having such a serious side effects as the most potential drugs of the present time do. Secondly, more advantages from our invention are the cheapness and the simplicity of the synthesis of active compounds compare to the present drugs on the market. The synthesis of claimed compounds from commercially available reagents takes four to five synthetic steps with overall yield in the range of 60–85%. Versus for example taxol which takes minimum of 40 synthetic steps with only 2% overall yield, which increases the price of the compound dramatically.

Conclusion: Although the invented compounds have not yet been tested clinically, one can see from the Table 1 that all of them possess at least 10 times lower acute toxicity compare to the most promising antitumor agent developed in the past three decades, high activity values, ease of synthesis, and cheap cost. All these advantages provide a potential for the development of new drugs for the prevention or treatment of breast cancer.

While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.

We claim:

1. A compound consisting of 1-(2,4-Dimethyl-phenyl)-2,4-dihydroxy-3-(4-methyl-benzoyl)-5-oxo-2,5-dihydro-1H-pyrrole-2-carboxylic acid methyl ester.

2. A method of treating breast carcinoma in a human in need of such treatment comprising the steps of administering to said human, in a systemic, in vitro manner, an anti-tumor effective amount of a compound of claim 1 having the common property of anti-tumor activity against human breast cancer.

* * * * *