Stability and Control in Complex Networks of Dynamical Systems

2015

Saeed Manaffam
University of Central Florida

Find similar works at: http://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Engineering Commons

STARS Citation

http://stars.library.ucf.edu/etd/692

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
STABILITY AND CONTROL IN COMPLEX NETWORKS OF DYNAMICAL SYSTEMS

by

SAEED MANAFFAM
M.Sc. in Electrical Engineering, University of Rochester, NY, 2012
M.Sc. in Digital Communications Systems, Sharif University of Technology, Iran, 2008
B.Sc. in Electrical Engineering, Amirkabir University of Technology, Iran, 2006

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science
at the University of Central Florida
Orlando, FL

Summer Term
2015

Major Professor: Azadeh Vosoughi
ABSTRACT

Stability analysis of networked dynamical systems has been of interest in many disciplines such as biology and physics and chemistry with applications such as LASER cooling and plasma stability. These large networks are often modeled to have a completely random (Erdős-Rényi) or semi-random (Small-World) topologies. The former model is often used due to mathematical tractability while the latter has been shown to be a better model for most real life networks.

The recent emergence of cyber physical systems, and in particular the smart grid, has given rise to a number of engineering questions regarding the control and optimization of such networks. Some of the these questions are: How can the stability of a random network be characterized in probabilistic terms? Can the effects of network topology and system dynamics be separated? What does it take to control a large random network? Can decentralized (pinning) control be effective? If not, how large does the control network needs to be? How can decentralized or distributed controllers be designed? How the size of control network would scale with the size of networked system?

Motivated by these questions, we began by studying the probability of stability of synchronization in random networks of oscillators. We developed a stability condition separating the effects of topology and node dynamics and evaluated bounds on the probability of stability for both Erdős-Rényi (ER) and Small-World (SW) network topology models. We then turned our attention to the more realistic scenario where the dynamics of the nodes and couplings are mismatched. Utilizing the concept of ε-synchronization, we have studied the probability of synchronization and showed that the synchronization error, ε, can be arbitrarily reduced using linear controllers.
We have also considered the decentralized approach of pinning control to ensure stability in such complex networks. In the pinning method, decentralized controllers are used to control a fraction of the nodes in the network. This is different from traditional decentralized approaches where all the nodes have their own controllers. While the problem of selecting the minimum number of pinning nodes is known to be NP-hard and grows exponentially with the number of nodes in the network we have devised a suboptimal algorithm to select the pinning nodes which converges linearly with network size. We have also analyzed the effectiveness of the pinning approach for the synchronization of oscillators in the networks with fast switching, where the network links disconnect and reconnect quickly relative to the node dynamics.

To address the scaling problem in the design of distributed control networks, we have employed a random control network to stabilize a random plant network. Our results show that for an ER plant network, the control network needs to grow linearly with the size of the plant network.
Every challenging work needs self efforts as well as guidance of elders especially those who are very close to our hearts. My humble effort, I dedicate to

my loving Mother & memory of my Father,

whose affection, love and encouragement made me to get such a success and honor.

In memory of

Prof. Alireza Seyedi

without whom this would not be possible.
ACKNOWLEDGMENTS

I would like to extend my gratitude to late Prof. Alireza Seyedi (1974-2014) who had the attitude of a genius, he continually and convincingly conveyed a spirit of adventure in regard to research and scholarship as well as teaching. Without his guidance and persistent helps this dissertation would not have been possible.

I would like to express the deepest appreciation to my committee chair, Professor Azadeh Vosoughi, for her outmost support in concluding of this research and continuing Prof. A. Seyedi’s legacy as well as preparation of this dissertation as it had been overshadowed by Prof. Alireza Seyedi’s passing.

I also would like to thank my committee members, Prof. T. Javidi, Prof. N. Rahnavard, Prof. A. Behal and Prof. G. Atia and Prof. T. Das.
TABLE OF CONTENTS

LIST OF FIGURES ... xii

LIST OF TABLES ... xvi

CHAPTER 1: LITERATURE REVIEW 1

- Background and Basic Concepts 1
 - Dynamical Systems ... 1
 - Stability ... 6
 - Lyapunov Exponent .. 6
 - Lyapunov Direct Method ... 8
 - Complex Networks ... 9
 - Network Models ... 12
 - Synchronization in Complex Networks 14
 - Synchronization in Network of Dynamical Systems-Basic Formulation 16
 - Literature Review on Synchronization in Complex Networks 20
 - Switching Networks ... 22
 - Control of complex networks 24
CHAPTER 2: PROBABILITY OF SYNCHRONIZATION IN LARGE COMPLEX NETWORKS

System Model

Network stability condition

Probability of Stability

Erdős-Rényi networks

Small-World Networks

Numerical Results

Conclusion

CHAPTER 3: PROBABILITY OF STABILITY OF SYNCHRONIZATION IN NETWORK OF MISMATCHED OSCILLATORS

Notation and Main Variables

System Description

Invariant Synchronization Manifold
CHAPTER 6: STABILIZING A RANDOM DYNAMICAL NETWORK WITH RANDOM FEEDBACK NETWORK

Notations and System Description .. 111

Notations ... 111

System Description ... 112

Network Stability Condition ... 113

Stability of a Dynamics Network with Random Communications Network 117

Degree distribution of random subgraph G_C .. 117

Probability of Stability ... 120

Erdős-Rényi Dynamics Network ... 121

Numerical Results ... 123

Conclusion ... 128

CHAPTER 7: SWITCHING CONTROL OF LINEAR TIME-VARYING NETWORKED SYSTEMS WITH SPARSE OBSERVER-CONTROLLER NETWORKS

Introduction ... 129

Notation and Problem Definition ... 133

Notation ... 133

Problem Definition ... 133
Piecewise Quadratic Switching Stabilization 136
Sparse Control Network Design ... 146
Numerical Example ... 148
Concluding Remarks ... 150

CHAPTER 8: CONCLUSION .. 154

LIST OF REFERENCES ... 157
LIST OF FIGURES

Figure 1.1: Behavior of trajectories near attracting (left) and repelling (right) fixed points, \(c = 1 \) .. 3

Figure 1.2: The van der Pol limit cycle, \(\gamma = 1 \) ... 5

Figure 1.3: Sample trajectories of Rössler oscillator with chaotic behavior, \([\alpha, \beta, \gamma] = [0.165, 10, 0.2] \) ... 5

Figure 1.4: The transition from regular network to SW and random network........ 12

Figure 1.5: Three types of master stability function of interest [1] 19

Figure 2.1: Probability of stability of Erdös-Rényi networks as a function of \(p \) 42

Figure 2.2: Probability of stability of Erdös-Rényi networks as a function of \(N \) 44

Figure 2.3: Probability of stability of Erdös-Rényi networks as a function of \(c \) 44

Figure 2.4: Probability of stability of small-world networks as a function of \(N \) 46

Figure 2.5: Probability of stability of small-world networks as a function of \(p \) 46

Figure 2.6: Probability of stability of small-world networks as a function of \(c \) 47

Figure 3.1: Maximum Lyapunov Exponent (MLE) as a function of eigenvalues of Laplacian matrix of the network, \(\mu \) 70
Figure 3.2: Synchronization manifold, s, and a sample trajectory, \(x_1 \), for a ring network of van der Pol oscillators.

Figure 3.3: \(P_{\text{stab}}^{\text{LB}} \) in the ring network as a function of \(\sigma_{\theta_2} \) and \(\sigma_\gamma \) for \(\varepsilon = 0.4 \).

Figure 3.4: Probability of stability as a function \(N \), for the ring network.

Figure 3.5: Probability of stability as a function \(N \), for the Erdös-Rényi network.

Figure 3.6: Probability of stability as a function \(N \), for the Newman-Watts network.

Figure 3.7: \(P_{\text{stab}} \) as a function of \(\varepsilon \) for the ring, NW and Erdös-Rényi networks:
\[N = 100, \bar{d} = 10. \]

Figure 3.8: \(P_{\text{stab}} \) as a function of \(\varepsilon \) for the ring, NW and Erdös-Rényi networks:
\[N = 200, \bar{d} = 10. \]

Figure 3.9: \(P_{\text{stab}} \) as a function of \(\varepsilon \) for the ring, NW and Erdös-Rényi networks:
\[N = 200, \bar{d} = 20. \]

Figure 4.1: Percentage of required pinning points (\(\delta = \ell/N \)) versus coupling strength, \(c \), for different values of controller gain constraint, \(p \), in a scale-free network (\(N = 300, m = 10 \) and \(\rho = 0.005 \)), using our proposed method.

Figure 4.2: Histogram of eigenvalues of Laplacian matrix of a scale-free network (\(N = 300, m = 10 \) and \(\rho = 0.005 \)), for one realization.

Figure 4.3: Percentage of required pinning points (\(\delta = \ell/N \)) versus coupling strength, \(c \), proposed method for different values of controller gains, \(p \), in a scale-free network (\(N = 300, m = 10 \) and \(\rho = 0.005 \)).
Figure 4.4: Total required power consumed by controllers in a scale-free network for different coupling strengths. 94

Figure 5.1: Pinning ratio ρ and controller gain k as a function p for different network sizes. .. 108

Figure 5.2: Pinning ratio ρ and controller gain k as a function N for some values of p. 110

Figure 6.1: Probability of stability versus randomness parameter q, in the ring configuration of different coordination numbers, k, for dynamics network and $N = 100$, and coupling strength of $c = 0.05$. 124

Figure 6.2: Probability of stability as a function of randomness parameter q of the communications network for different network size, N and coupling strength, c. 125

Figure 6.3: Probability of stability versus network size, N, in Erdős-Rényi network for different values of c and q. 126

Figure 6.4: Probability of stability versus coupling strength, c, in Erdős-Rényi dynamics network for different q and network size $N = 100$. 127

Figure 7.1: A Networked Control System (NCS) 131

Figure 7.2: Network of three coupled inverted pendulums 149

Figure 7.3: (a,b) Norm of $P_{k,i}$ versus time, (c,d) Norm of $\hat{P}_{k,i}$ versus time, (e, f) Norm of local controller gains $K_{k,i}$ and $M_{k,i}$ versus time. 152
Figure 7.4: (a, b) Norm of coupling controller and observer gains $L_{k,ij}$ and $O_{k,ij}$ versus time. Note that the rest of links, i.e., $L_{k,21} = L_{k,32} = L_{k,13} = L_{k,31} = 0$ and $O_{k,21} = O_{k,32} = O_{k,13} = O_{k,31} = 0$ for all t_k. (c) Number of required links versus time for the two cases: (i) proposed simple suboptimal relaxation-thresholding approach and (ii) optimal exhaustive search approach, (d) Updating times, T_k. 153
LIST OF TABLES

Table 1.1: Spectra of Lyapunov exponents and the associated attractors for 3D state space [2] .. 8

Table 3.1: Main variables .. 50

Table 5.1: Frequently used variables .. 97

Table 6.1: Frequently used variables .. 112
CHAPTER 1: LITERATURE REVIEW

The study of collective dynamics of networked systems has found significant interest and applications in a variety of disciplines including but not limited to social sciences (random gossip), biology (nervous system), physical sciences (plasma, laser cooling) and engineering (autonomous agents, communications networks and smart grids) [3–16].

Recently as the study of collective behavior of dynamical systems has reached some level of maturity [3], the stabilization and control of these complex networks have started to receive a great deal of attention by engineers and scientists [17–19].

In this chapter, we will introduce the basic concepts and review the significant contributions and literature relevant to the study of the collective behavior of these large complex networks as well as stabilization and control of these dynamics.

Background and Basic Concepts

There are two important aspects to the study of the collective dynamics in the networked systems. The first feature of networked systems is the dynamics of isolated systems, referred to as nodes. The second feature is the particular structure in which these nodes interact with each other. A brief introduction of the concepts related to these features is given below.

Dynamical Systems

Since systems which can be expressed with ordinary differential equations (ODE) constitutes a large class of dynamical systems, this introduction is limited to this class of systems. This
class of systems can be denoted as

\[
\dot{x} = f(x, t), \quad x(t_0) = x_0.
\] \tag{1.1}

In particular we study an autonomous system where the function \(f \) does not depend explicitly on \(t \)

\[
\dot{x} = f(x). \tag{1.2}
\]

\(f : \mathbb{R}^n \to \mathbb{R}^n \). We note that the study of autonomous systems can be generalized to non-autonomous systems via defining \(y = [x^T, t]^T \) and \(f'(y) = [f(x)^T, 1]^T \).

One important concept in the study of dynamical systems is the concept of an equilibrium point, also called a fixed point.

Definition 1. A point \(x = x^* \) is a fixed point of (1.2), if the state of the system starts at \(x^* \) and remains at \(x^* \) for all future time [20].

Since for all future time the trajectory starting at \(x^* \) stays there, \(f(x^*) = 0 \). Therefore, fixed points are the solution of \(f(x) = 0 \).

Based on the behavior of the trajectories of the system in the neighborhood of \(x^* \), fixed points are categorized as [2]:

1. **Attractors (sinks):** fixed points which attract all the nearby trajectories.

2. **Repellors (sources):** fixed points which repel all the nearby trajectories.

3. **Saddle points:** fixed points that attract trajectories on one side but repel them on the other.
Definition 2. The basin of attraction for a particular attractor is the set of initial points \{x_0\} such that the trajectories starting from each of these points approach the attractor as \(t \to \infty\) [2].

Theorem 1. Let \(x^*\) be a fixed point of \(\dot{x} = f(x)\), i.e., \(f(x^*) = 0\), and

\[
F = \left. \frac{\partial f(x)}{\partial x} \right|_{x=x^*},
\]

then the fixed point, \(x^*\), is exponentially stable if \(F < 0\) [2].

The maximum eigenvalue of \(F\) is called the characteristic value of \(x^*\).

Example 1. Let

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
x_1^2 - c^2 \\
x_1 - x_2
\end{bmatrix},
\]

then \(x^*_1 = (-|c|, -|c|)\) and \(x^*_2 = (|c|, |c|)\) are two equilibrium points of the system with
respective characteristic values of \(\max(-|c|, -1) \) and \(2|c| \). Hence, \(\mathbf{x}_1^* \) is an attracting/stable fixed point and \(\mathbf{x}_2^* \) is repelling/unstable fixed points of the system. Fig. 1.1 illustrates the behavior of the trajectories near these fixed points.

Oscillation or periodic behavior is another feature of dynamical systems.

Definition 3. A system is said to have a nontrivial periodic solution or limit cycle, if

\[
\exists T > 0 \ni \mathbf{x}(t+T) = \mathbf{x}(t).
\]

One example of such behavior can be found in van der Pol oscillator

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
-x_2 \\
-x_1 - \gamma(x_2^2 - 1)x_2
\end{bmatrix}
\]

Fig. 1.2 shows the oscillatory behavior of two trajectories in van der Pol system.

Another interesting behavior of nonlinear dynamical systems is *order determined* randomness, called *chaotic* behavior [2]. This order determinism comes from the fact that given the set of equations and initial conditions the evolution of the trajectories determines the subsequent behavior for future time [2]. One example of such systems is Rössler oscillator,

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{bmatrix} = \begin{bmatrix}
0 & -1 & -1 \\
1 & \alpha & 0 \\
0 & 0 & -\beta
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
\gamma + x_1x_3
\end{bmatrix},
\]

where \([\alpha, \beta, \gamma] \in \mathbb{R}^3\) are the set of known parameters. It is known that for certain ranges of these parameters, the system undergoes chaos [2].

Sample trajectories of Rössler oscillator are shown in Fig. 1.3.
Figure 1.2: The van der Pol limit cycle, $\gamma = 1$.

Figure 1.3: Sample trajectories of Rössler oscillator with chaotic behavior, $[\alpha, \beta, \gamma] = [0.165, 10, 0.2]$.
Stability

Here we will briefly review a central concept of systems theory known as stability theory.

Definition 4. [20] The equilibrium point $x = 0$ of system (1.2)

- is stable, if $\forall \epsilon > 0$, there exists $\delta > 0$ such that
 $$
 \|x(0)\| < \delta \Rightarrow \|x(t)\| < \epsilon, \ \forall t \geq 0,
 $$
 and otherwise it is unstable.

- is asymptotically stable, if the system is stable and δ can be chosen such that
 $$
 \|x(0)\| < \delta \Rightarrow \lim_{t \to \infty} x(t) = 0.
 $$

- is exponentially stable, if the system is stable and there exists $c, \alpha > 0$ such that
 $$
 \|x(0)\| < \delta \Rightarrow \|x(t)\| \leq c\|x(0)\|e^{-\alpha t}, \ \forall t \geq 0.
 $$

Lyapunov Exponent

As linearization is proven to be a useful tool in the study of nonlinear dynamical systems, it is often used to determine the behavior of the trajectories near a certain set of points in the state space [2] [20]. Of course, one should be wary of the conditions under which linearization results in correct predictions. For instance, some of the justifications of using linearization are based on checking the regularity of the dynamics, Lipschitz condition [21].
By linearization of an autonomous system in (1.2), we have

\[
\dot{x} = Fx, \quad x(t_0) = x_0, \quad (1.3)
\]

where \(F = \frac{\partial f}{\partial x} \) is the Jacobian of the function \(f \) calculated on the set of points which the behavior is sought to be determined. In general, \(F \) is time varying, but for brevity of notation, argument \(t \) is omitted.

One measure to determine the behavior of trajectories in (1.3) is to calculate what is called \textit{Lyapunov exponents} [2]. To calculate these exponents, one should first calculate the state transition matrix \(\Phi(t, t_0) \), for (1.3), then the \(i \)th Lyapunov exponent is

\[
\sigma_i = \limsup_{t \to \infty} \frac{1}{2t} \text{Real} \left\{ \ln \left(\lambda_i (\Phi(t, t_0)^T \Phi(t, t_0)) \right) \right\}, \quad i \in \{1, \cdots, n\} \quad (1.4)
\]

where \(\lambda_i(\cdot) \) returns the \(i \)th eigenvalue of the argument, and \(\text{Real}(\cdot) \) returns the real part of its argument.

Based on this measure, it is known that for a system to undergo chaos, at least one of the Lyapunov exponents should be positive. The set \(\{\sigma_i, i = 1, \cdots, n\} \) is called \textit{Lyapunov spectrum}. Based on signs and values of the Lyapunov exponents expected behavior of the system can be determined. Table 1.1 gives the possible behaviors expected for three dimensional systems based on the Lyapunov exponents.

Note that if all the Lyapunov exponents of an equilibrium point are negative then the equilibrium point is exponentially stable [2].

\[1\text{The state transition matrix can be computed by Peano-Baker series [2].}\]
Table 1.1: Spectra of Lyapunov exponents and the associated attractors for 3D state space [2].

<table>
<thead>
<tr>
<th>signs of σ’s</th>
<th>Types of attractors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-, -, -)$</td>
<td>Fixed points</td>
</tr>
<tr>
<td>$(0, -, -)$</td>
<td>Limit cycle</td>
</tr>
<tr>
<td>$(0, 0, -)$</td>
<td>Quasi-periodic Torus</td>
</tr>
<tr>
<td>$(+, 0, -)$</td>
<td>Chaotic attractor</td>
</tr>
</tbody>
</table>

Theorem 2. [2] *If the maximum Lyapunov exponent of (1.3) is negative, then $x = 0$ is exponentially stable.*

Lyapunov Direct Method

Another method of investigating the behavior of dynamical systems is known as Lyapunov direct method.

Theorem 3. [20] *Let $x = 0$ be an equilibrium point for (1.2). Let $V : \Omega \to \mathbb{R}$, be a continuously differentiable function on a neighborhood Ω of $x = 0$, such that*

$$V(0) = 0 \quad \text{and} \quad V(x) > 0 : \forall x \in D - \{0\},$$

$$\dot{V}(x) \leq 0, \quad \forall x \in D.$$

Then, $x = 0$ is stable. Moreover, if

$$\dot{V}(x) < 0, \quad \forall x \in D - \{0\}$$

then $x = 0$ is asymptotically stable.
$V(x)$ in Theorem 3 is called Lyapunov function. One unique feature of Lyapunov direct method is that no differential equation is needed to be solved. Also, it is noteworthy that Theorem 3 only provides sufficient condition on the stability [20].

As it can be seen the Lyapunov theorem is only applicable to equilibrium points. To extend the theorem to study of limit cycles and/or chaotic attractors, LaSalle invariant principle has been introduced [22]. The following is the definition of an invariant set which is used in the principle.

Definition 5. [20] The set \mathcal{M} is called invariant set with respect to (1.2) if

\[
x(0) \in \mathcal{M} \Rightarrow x(t) \in \mathcal{M}, \quad \forall t \in \mathbb{R}
\]

This means that if a solution belongs to \mathcal{M} at some time instant, it belongs to \mathcal{M} for all past and future time.

Theorem 4. [20, LaSalle Invariance Principle] Let Ω be a compact (closed and bounded) set with the property that every solution of (1.2) which starts in Ω stays in Ω for all future time. Let $V : \Omega \rightarrow \mathbb{R}$ be a continuously differentiable function such that $\dot{V}(x) \leq 0, \forall x \in \Omega$. Let \mathcal{E} be the set of all points in Ω where $\dot{V}(x) = 0$. Let \mathcal{M} be the invariant set in \mathcal{E}. Then every solution starting in Ω approaches \mathcal{M} as $t \rightarrow \infty$.

Complex Networks

The mathematical notion of a complex network is a graph \mathcal{G} consisting of a set of N nodes connected by a set of M links. This graph is uniquely represented by the adjacency matrix $A = [a_{ij}]$, where entries $a_{ij} = 1$ if a directed link from j to i exists, and 0 otherwise. In the general case of a weighted network, a_{ij} represents the weight of the link from node j to
node i [23] [24]. The number of the links which connects node i to other nodes is called the degree of node i and is denoted by d_i.

Investigating the statistical properties of many real-world and artificial complex networks reveals that despite different network representations, some categorizations of these properties are possible. The most representative statistical property is the degree distribution $P(d)$ which indicates the probability of a node having degree d. While historically, the degree distribution has been the first measure for studying the complex networks, several other measures are found to be more useful and effective [4]. Two of these prominent measures are the average shortest path length, ℓ^2, and the clustering coefficient, C. The average shortest path length is defined as

$$\ell = \frac{1}{(N-1)^2} \sum_{i,j=1}^{N} q_{ij},$$

where q_{ij} is the length of the shortest path\(^3\) between node i and node j. The clustering coefficient is defined as “the fraction of actual triangles (three vertices forming a loop) over possible triangles in the graph”. One way to calculate C is

$$C = \frac{1}{N} \sum_{i=1}^{N} C_i = \frac{1}{N} \sum_{i=1}^{N} \frac{2n_i}{d_i(d_i-1)},$$

where n_i is the number of links between nearest neighbors of node i and d_i is its degree [3].

Another important property of a given network is its spectra, which refers to the eigenvalues

\(^2\)Also known as characteristic path length.

\(^3\)In case of the weighted networks, and this is minimal sum of the weights belonging to a path from node i to node j.
of the Laplacian matrix\(^4\). The Laplacian matrix of a network, \(\mathbf{L} = [l_{ij}] \), is defined as

\[
l_{ij} \triangleq \begin{cases}
\sum_{m=1}^{N} a_{mi} & i = j \\
-a_{ij} & i \neq j
\end{cases}
\] \quad (1.6)

Per definition, the Laplacian matrix is positive semidefinite. Since the entries on each row add up to zero, zero is an eigenvalue of the Laplacian matrix, with the all-one vector as its right eigenvector [24]. It has been shown that if the network is connected, i.e., there exists a path from each node to any other arbitrary node in the network, zero is a simple eigenvalue of the Laplacian matrix [24]. The second smallest eigenvalue of the Laplacian matrix is a measure of network’s connectivity and is referred to as its algebraic connectivity [24] [25]. That is, a bigger algebraic connectivity implies a stronger connected network.

Classifying complex networks based on the degree distribution, \(P(d) \), separates the networks to homogenous or heterogenous classes [3]. Homogeneity of the network is determined by the tail of the degree distribution. If the tail of the degree distribution rolls off exponentially with the degree, the network is referred to as homogeneous, otherwise, the network is called heterogeneous [3].

This classification can be improved upon by additionally taking the average shortest path length of the network into account. This parameter can be used as a measure of smallness of the network. That is, a smaller \(\ell \) implies that the nodes in the network can be reached in smaller number of hops. This parameter is also referred to as small-world property [3]. Clustering coefficient, \(C \), is another useful parameter in classification of the networks, where larger \(C \) values imply the existence of redundant paths and smaller \(C \) values imply otherwise.

\(^4\)Also known as gradient matrix.
Network Models

Here, three common structures of mathematical interest for the networks are briefly reviewed.

Regular network or lattice: a connected network which has the property of $d_i = d$ is called a regular network or lattice [4]. This is also known as d-regular networks. Fig. 1.4-left shows a lattice with $d = 4$. A regular network is homogeneous and its characteristic path length scales as $\ell \sim N^{1/d}$ and its clustering coefficient is

$$C = \frac{3(d - 2)}{4(d - 1)}.$$

Erdős-Rényi or random network: if the link between two arbitrary nodes exists with probability p, and otherwise nonexistent, the resulted network is called Erdős-Rényi network, and is denoted by $\mathcal{G}(N, p)$. Fig. 1.4-right shows an example of random network. An Erdős-Rényi network is also homogenous. Its characteristic path length scales with logarithm of net-
work size given a constant average degree, \(\ell \sim \ln(N)/\ln(\bar{d}) \), where \(\bar{d} \) is the average degree of the network, hence even when the network is large the average shortest path length is small [3] [23].

Small-worlds: one of the seminal works on the modeling of the networks has been done by Watts and Strogatz [4]. This work was intended to create a comprehensive model to understand the effect of substrate networks on the synchronization phenomena in real-world networks. The model predicts the highly correlated connections between the nodes as if there are invisible long range links between distant nodes in the network. This property in the real-world networks is known as *small-world* (SW) effect [3] [4] [6]. This model shows that if we start from a regular network and remove one end of a small number of links with probability \(p \) and reattach the free-end of these links with equal probability (in random) to other nodes, for \(p \geq p_c \), the average distances between the nodes, \(\ell \), will be reduced drastically in the resulted network. As the number of rewired links increases the network becomes more and more random where for \(p = 1 \) the network is completely random. Fig. 1.4 shows this transition from regular networks to small-worlds and random networks.

A revision to the model came shortly after. In the revised model, instead of rewiring the existing connections, a small number of connections (with respect to the network order, \(M \)) is established in random to acquire the small-world [6]. This revision simplifies the original model, thus rendering it more suitable for analytical approaches [6]. In addition to having a small characteristic path length which scales logarithmically with the network size (like random networks), small-worlds also have the property of preserving the large clustering coefficients of the substrate regular network [6].

\[\text{Of course there were some experimental studies before this work, where small-world property was reported. Two instances of such studies are S. Milgram 's experiment of 1969 and “six degree of separation” concept by F. Karinthy in 1929 [3] [26, 27].}\]
Even though the small-world models bridge the gap between regular and random networks, real-world networks prove to be more complex. Since the new model failed to give a comprehensive understanding of the behavior of the substrate network, a pragmatic model was introduced by Barbási and Albert [7]. In this model, the inherent nature for the formation of the real-world networks, such as preferential attachment and connectivity saturation, was also taken into account [3] [7] [25]. The real-world networks are usually a result of mechanism, whereby in the evolution of the network, new comers prefer to attach to the existing nodes with a higher number of links, also called hubs. The resultant networks have power-law degree distribution, \(P(d) = d^{-\gamma} \) where \(\gamma \) is a positive constant. It has been shown that many real-world networks such as World Wide Web (WWW), electrical grids, etc. bear this property [7]. As it can be seen the degree distribution of power-law is independent of the network size, hence it does not scale with \(N \) and consequently, these networks are called “scale-free” (SF). Since the degree distribution is power-law, these networks have a small number of highly connected nodes, referred to as hubs, and a large number of nodes have very small number of links [7]. Since the degree distribution in scale-free networks has a heavy tail, these networks are classified as heterogeneous networks.

Synchronization in Complex Networks

One of the most intriguing collective behaviors found in complex network of dynamical systems is the phenomenon of synchronized states.

One of the earliest reports of the synchronization or “odd kind of sympathy” was reported by C. Huygens in 1665 where it was observed that two pendulum clocks with shared supporting

6That is, each node can handle/allow certain number/weight of connections, also called capacity constraint.
frame, swung with the same frequency in 180 degree phase difference [3]. The reported behavior would be also restored in case that the pendula were disturbed [3].

The problem formalization evolved with time and was first expressed in its current form by Wiener in his book, Cybernetics, to study and comprehend of synchrony between large groups of neurons, fireflies, or crickets at the same time [28].

It was not until A. T. Winfree’s paper in 1967 work that the breakthrough in the study of this kind of collective behavior occurred [29]. Winfree’s work was based on the mean field theory where the nodes (elements) in the network (population) were considered to be phase oscillators [3] [29]. In this formulation, only the synchronization of the phases in the oscillators was considered, while the amplitude of oscillators was ignored. Kuramoto’s oscillator is one of the common models used in this setup [3].

Following Winfree’s work, there has been considerable efforts to study the structural and dynamical effects of the network on the emergence of the synchrony.

Parallel to the study of phase synchronization, there has been a lot of attention devoted to analysis of state synchronization in the network of identical oscillators [3]. A breakthrough in this research thrust was accomplished by Pecora and Carroll. When solving the problem of state-synchronization, they introduced the concept of master stability function (MSF) and chose the negativeness of the maximum Lyapunov exponent (MLE) of traverse modes as a measure of the stability for the synchronization status of the network [5].

One of the key benefits of the master stability condition (MSC) approach is that the impact of topological characteristics of the network on the stability of the synchronization can be assessed separately from the dynamical properties of the nodes in the network [3] [5] [30].
Let $\mathcal{N} = \{1, \cdots, N\}$ and let $x_i \in \mathbb{R}^n$ be the state vector for node i, $i \in \mathcal{N}$, in the network of $|\mathcal{N}| = N$ identical nodes. Let the individual dynamics be $\dot{x}_i = f(x_i)$ where $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ [5]. Suppose $h : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is the inner coupling function of the states. Hence the dynamics of the network of N coupled oscillators can be expressed as

$$\dot{x}_i = f(x_i) - c \sum_{j \in \mathcal{N}} a_{ij} (h(x_j) - h(x_i)), \quad \forall i \in \mathcal{N}$$

$$x_i(t_0) = x_i^0,$$

or equivalently,

$$\dot{x}_i = f(x_i) - c \sum_{j \in \mathcal{N}} l_{ij} h(x_j), \quad \forall i \in \mathcal{N} \quad (1.7)$$

$$x_i(t_0) = x_i^0,$$

where c is the coupling strength, a_{ij} indicates the weight of the connection from node j to node i, and, $L = [l_{ij}]$ is the Laplacian matrix of the network. If the network is assumed to be connected, then zero is a simple eigenvalue of the Laplacian matrix of the network with the all-one vector as its corresponding eigenvector. Also in this section we assume that network is symmetric/bidirectional, hence the Laplacian is diagonalizable by the unitary matrix [31].

Let $N - 1$ constraints $x_1 = \cdots = x_N$ define the synchronization manifold, and s to be the synchronization state. Also, let the error vector of node i from the synchronization manifold be

$$e_i \triangleq x_i - s.$$
Then the variational equation corresponding to (1.7) is

\[
\dot{e}_i = F e_i - c \sum_{j \in N} l_{ij} H e_j, \quad \forall i \in N, \tag{1.8}
\]

\[e_i(t_0) = e_i^0,\]

where \(F = \partial f / \partial x|_{x=s}\) and \(H = \partial h / \partial x|_{x=s}\) are the Jacobians of the vector-functions \(f\) and \(h\) calculated on the trajectory, \(s\), respectively. Note that \(F\) and \(H\) are in general time varying, but we have dropped the notation for the sake of brevity.

Equation (1.8), can also be represented as

\[
\dot{e} = (I \otimes F - c L \otimes H) e, \tag{1.9}
\]

\[e(t_0) = e^0,\]

where \(e = [e_1^T, \ldots , e_N^T]^T\).

As it will be shown in the following chapters, equation (1.9) is equivalent to

\[
\dot{\eta} = (I \otimes F - c \Lambda \otimes H) \eta, \tag{1.10}
\]

\[\eta(t_0) = \eta^0,\]

where \(\eta = (U^H \otimes I)e\) and \(U\) is the unitary matrix which diagonalizes the Laplacian matrix, \(L = U \Lambda U^H\), and \(\Lambda\) is a diagonal matrix, with eigenvalues of the Laplacian matrix as its diagonal entries [5] [24] [31].

As it is noted in [5], \(\eta_N\) corresponding to \(\mu_N = 0\) gives the variations parallel to the synchronization manifold, \(s\), which will be ignored in this section. To study this term we identify the
synchronization manifold in Chapter 3. As \(\eta_i, i = 1, \cdots, N - 1 \) are traverse to the manifold, for the realization of synchronization state, it is necessary that these traverse modes to be damped out. In other words, 0 should be a stable equilibrium point of

\[
\dot{\eta}' = (I \otimes F - c \Lambda' \otimes H) \eta',
\]

\[
\eta'(t_0) = \eta^0,
\]

where \(\eta' = [\eta^T_1, \cdots, \eta^T_{N-1}]^T \) and \(\Lambda' = \text{diag}([\mu_1, \cdots, \mu_{N-1}]) \). Hence the synchronization is achievable if 0 is the stable equilibrium of the following

\[
\dot{\eta}_i = (F - c \mu_i H) \eta_i, \quad \forall i \in \mathcal{N} - \{N\},
\]

\[
\eta_i(t_0) = \eta^0_i,
\]

where \(\mu_i \) is the \(i \)th largest eigenvalue of the Laplacian matrix of the network.

From Theorem 2, we know if the MLE of \((F - c \mu_i H)\) is negative for \(i \in \mathcal{N} - \{N\} \), the synchronization would be achieved [5].

Calculation of MLE for the generic equation of

\[
\dot{z} = (F - c \lambda H)z
\]

as a function of \(\lambda \) gives the master stability function (MSF) of the network [5].

Based on the definition of MSF, \(\sigma(\cdot) \), can be defined as

\[
\sigma(\lambda) \triangleq \text{MLE}(F - c \lambda H),
\]

(1.13)
where MLE(·) returns the maximum Lyapunov exponent of the argument. Three types of MSFs of interest are [1]:

1. Type I: monotonically increasing MSF (e.g. H is negative definite) where the stability region is $c\lambda(L) \in (0, \alpha_1)$, with α_1 being the positive root of the MSF.

2. Type II: monotonically decreasing MSF (e.g. H is positive definite) where the stability region is $c\lambda(L) \in (\alpha_1, +\infty)$, with α_1 being the positive root of the MSF.

3. Type III: MSF which returns negative values in the finite interval (α_1, α_2) (e.g. H is positive semidefinite), where $\alpha_1 < \alpha_2$ are the positive roots of the MSF.

Fig. 1.5 shows the MSF types of practical interest.

Figure 1.5: Three types of master stability function of interest [1].
Following Pecora’s work, the vast majority of the existing literature on the subject have adopted the negativeness of the largest traversal Lyapunov exponent as a measure of stability of the synchronization. Of course, as noted in [5] and [21], the negativity of Lyapunov exponents, in general, is neither a necessary nor a sufficient condition on the stability of the synchronization manifold itself and it does not stop the manifold from bubbling and bursting [5]. The condition of having MSF to be negative is called master stability condition (MSC).

Since MSC leads to useful bounds on structural properties of the network, especially the eigenvalues of its Laplacian matrix, scientists have been more focused on studying ways to relate the bounds on the eigenvalues of the Laplacian matrix imposed by the MSC to other properties of the network, such as minimum or maximum degree of the nodes, average degree, etc. [5] [6] [11] [12] [30] [32] [33] [34]. These studies have been extended to understand the relation of synchronizability of the network to its macroscopic and/or qualitative characteristics such as regularity, smallness, randomness or scalability [30] [32] [33].

Even though the random networks are of limited practical interest, their study helps to pave the path to understand dynamical flow in the networks with some degree of randomness such as small-worlds or scale-free networks. Although, it has been numerically shown in [11] [35] [36] that in large random networks, the average degree is the parameter directly linked to the stability of the synchronization, rigorous analytical treatment has been lacking.

Due to practical interest in small-worlds, the synchronizability analysis in such networks has drawn a lot of attention in many disciplines [3] [30] [32] [33] [34] [37]. It has been shown that the synchronization is easier to achieve in small-worlds compared to regular
networks [30] [34]. It has been also shown that in addition to small characteristic path in small-worlds, homogeneity of these networks contributes to their enhanced synchronizability [33] [38]. That is, as the network becomes more heterogeneous, e.g., scale-free networks, the synchronization is harder to achieve [33] [38]. Furthermore, it has been shown that the synchronizability of the network is closely related to the spectra of the Laplacian matrix of the network. Along this line, there have been some attempts to approximate the distribution of the spectra for different network types, such as random networks [11], and small-worlds [39]. The approximations of the Laplacian spectra in these studies have been performed using low orders of moments of the Laplacian matrix specially in the case of small-worlds [39].

Most of these studies consider the networks to be unweighted and undirected, however, there have been some attempts in analysis of weighted-undirected and binary directed networks [40–42]. In [5], it has been shown that for directed networks, where the eigenvalues of the Laplacian matrix of the network are not real, the short and long wavelength bifurcation phenomena can happen in regular networks (lattices). Also, the stability of the synchronization in the context of time-varying or switching networks has been studied in [43–45].

Even though the study of the synchronization in the networks of identical nodes appears to be matured, there have been a few attempts made to study the networks under more realistic assumptions. One such assumption is to consider inner couplings and isolated dynamics being mismatched. One of the reports on the synchronization of slightly different oscillators is given in [46]. The authors report that even in the networks where the oscillator dynamics and their couplings vary slightly from each other, the network can be almost synchronized. That is, the states will converge to the vicinity of a certain synchronization state. In [47] and [48], a sensitivity analysis of synchronization has been performed for the network of mismatched oscillators. It has been shown that near-synchronization behavior can occur in a network of mismatched oscillators using master stability function. The general stability
of the synchronization in the network of dynamical systems with nonidentical dynamics for each node is studied in [49] and [50] using the Lyapunov direct method. However, in most of these studies the effects of uncertainties in the weights of the links and inner couplings have been ignored [51]. Also to the best of the author’s knowledge, there has been no attempt to investigate the phase transition in which the network undergoes this type of synchronization (neighborhood synchronization).

Switching Networks

Although the majority of the synchronization literature study static networks, where the links are considered to be fixed in time, in most applications the network evolves with time [52]. One of the interesting models of the time varying networks is the one with switching structure, where existing links are removed or new links are established through a deterministic or stochastic process. The use of non-conservative methods, such as MSF, for analysis of the switching networks requires simultaneous (joint) upper-triangularization of the Laplacian matrix of the set of networks which switching is chosen from\(^7\). This substantially limits the scope of the study of this kind of networks [53] [54]. Also the joint upper-triangularization of the matrix set guarantees the existence of common quadratic Lyapunov function (CQLF) for the linear time-invariant (LTI) systems [53]. Since CQLF is conservative, switched quadratic Lyapunov functions (SQLF) has attracted some attentions [55]. The idea is that if all the networks in the switching set are synchronizable, the Lyapunov function of each network can be concatenated based on the switching signal to form a global Lyapunov function. Alternatively, the synchronizability of the network-set under arbitrary switching can be checked by examining a set of linear matrix inequalities (LMI) [54]. Another method in analysis of the

\(^7\)The simultaneous upper-triangularization of any set of matrices is only possible if the Lie algebra produced by the matrix set is solvable (nilpotent) [53] [54].
synchronization/stability of the network is called multiple Lyapunov function (MLF) [56]. In this method, for each network in the set a Lyapunov function is found with negative definite derivative. The concatenation of these multiple Lyapunov functions constructs a positive semidefinite function, with guaranteed negative definite derivative everywhere with the exception of the switching instances\(^8\). Now if the values of the concatenated function at the switching instances are descending, then negative definiteness of the derivatives of all consisting Lyapunov functions the ensures stability of the synchronization [54]. Unlike SQLF\(^9\), MLF can correspond to different regions of the state space, which renders it useful in designing of the switching control signal [53]. The result for synchronization under arbitrary switching can be found in [54] and references therein.

Under the particular condition of deterministic (or stochastic) fast switching, it has been shown that the results obtained for the static network can be applied to the time-average (stochastic average, i.e., expected value) of the architecture of the network [52] [57]. The network is considered to be fast switching if the establishment and removal of connections are faster than the dynamics of individual nodes. Examples of such networks can be found in moving particles in plasma, mobile agents in wireless sensor networks, UAVs and etc. [43] [52] [58].

\(^8\)Hence MLF is not a Lyapunov function.

\(^9\)SQLF only partitions the time domain while MLF can partition state space as well.
Control of complex networks

In control theory, the controllability of a dynamical system is defined as the following [59] [60]

A system with a suitable choice of inputs is controllable if it can be driven from any arbitrary initial state to a certain target state within a finite time.

Although control theory is mathematically matured in many applications, its advance in complex networked systems is hindered [60]. The issue is that the controllability of such systems is determined by two independent factors, the first factor is the topology of the system, i.e., how the subsystems interact with each other; and the second factor is the governing dynamics of each individual subsystems [60]. With the availability of deeper understanding of structural/topological properties of complex networks, recently there have been profound results regarding the controllability of these networks (see [60–62] and the references therein).

The need to regulate the behavior of systems consisting of many interconnected components is a common feature for most applications in social, biological sciences and engineering. Hence, designing a network of controllers (control network) that can guarantee a specific behavior of a given network of plants is of utmost importance. Examples include but not limited to synchronous heart beat cells, synchronization of neurons in nervous systems, flight formation of unmanned aerial vehicle (UAV), networked control systems in industrial plants, opinion dynamics in social networks by leaders, and cell cycles in biology [62–64].

Historically, the first controllers designed for networks were centralized, where all the state information was known at a central point and control laws were determined using all that information [61]. Even though the optimal control is possible with this kind of controller
design, the scalability and complexity issues and the requirement of the availability of perfect state information of the whole network at all times forced engineers to trade-off the optimality of such controllers to overcome some of the obstacles in the implementation process [61].

To alleviate some of the issues regarding centralized control design, an extreme alternative is decentralized control. In this approach controllers use only the local state information to form a control law for each node. This way the complexity of the controller design is reduced and thus, the solution can be easily scaled. Decentralized control is more effective in a network of sparsely or weakly coupled subsystems [65–67]. Even though the simplicity and scalability of the design is achieved with this method, the performance drastically suffers. Pinning control is an example of decentralized control.

In pinning control, the set of nodes is divided into two subsets, one subset consists of nodes that have self-feedback and knowledge of the target set. These nodes are called pinned nodes. The nodes without any controllers form the other subset. The pinned nodes play the role of leaders or pacemakers in the network. The desired action is initiated only from these nodes and propagates to the rest of the network [62] [63].

\textit{Pinning Control}

As this study will mostly focus on the analysis of synchronization and its stability in complex networks, the effects of pinning on the synchronizability of such networks will be reviewed here. Since first proposed in [68], pinning control has been a viable candidate to achieve stability in complex networks. This technique is utilized to compensate for spectral requirement of the architecture of the original network and/or to achieve the robustness of the stability of the synchronization in the event of link failures and other sources of disturbances [17] [18] [34] [60] [62] [63]. Sometimes pinning is used when the network is expected
to reflect a predetermined behavior. For instance in opinion networks, such a predetermined behavior/opinion comes from leaders, the synchronous beats of heart cells which is generated by pacemaker cells in sinoatrial node, or following a reference trajectory in a group of UAVs, etc. [62] [63].

The pinning controllability has been defined in [62] and has been shown to be equivalent to the synchronizability of an augmented system. The augmented system includes an additional node which is the reference signal in the local controller and its connections are directed from that node to the pinned set and zero to the rest of nodes [58].

It has been shown in [17] that a network of oscillators can be stabilized by a single controller. Clearly, pinning a network in this manner requires a very large controller gain, which is practically undesirable if not impossible. This idea has been evolved to use multiple controllers with smaller controller gains to obtain a practical design of controllers with utilizing a small number of controllers [19] [49] [69]. In [69], pinning of higher degree nodes has been investigated which has been shown to be effective in scale-free networks. As it was pointed out previously, when the network evolves based on preferential attachment of new comers, controlling the hubs, where the arriving nodes are likely to be connected, helps the scalability and efficiency of the control. In [19], assuming that the inner coupling matrix is positive definite (MSF type II), it is proposed to pin the lower degree nodes to stabilize the network globally. It has been shown that this approach outperforms that of [69]. In [70], the condition of positive definiteness of the coupling matrix has been relaxed to positive definiteness of symmetric part of its product with another positive definite matrix. It has been also shown that the number of pinning controllers is inversely related to feedback gain. The adaptive pinning control is used in [17], [19] and [71], where the controller gains are evolved by a differential equation. This approach provides robustness in the presence of possible uncertainties and perturbations.
In most of these studies, controllers’ gains are considered to be equal, which makes the design of controllers conservative. Also these designs use the Lyapunov direct method, to form a control law and assign of the controllers, which adds another layer to their conservativeness. While this enhances the robustness of the controllers in the event of failures in the connections, the other approaches, in general, result in a fewer number of pinned nodes [63].

The optimal gains of controllers and their locations have been analyzed in [63]. The problem has been converted to a combinatorial and continuous optimization problem and solved by particle swarm optimization. This approach, even though effective in avoiding local optima compared to generic particle swarm optimization techniques, is computationally complex.

In [72], the cost optimization of pinning control and its effectiveness in several special networks such as, lattices, complete networks, cluster of star shaped sub-networks have been studied. Using MSF, it has been shown that pinning lower degree nodes yields in minimal cost of pinning for MSF-type II. In this work, cost function is assumed to be the sum of the controllers’ gains.

In [43], the idea of “spatial pinning” has been introduced, where depending on the application, the individual assignments of the controllers is either impossible (e.g. plasma) or undesirable (e.g. mobile agents). The proposed method applies controllers to any mobile agent located in a fraction of the total deployed area. It is assumed that if two nodes are in certain distance of each other they become neighbors, i.e., coupled. If the nodes move adequately fast or if the density of the nodes is sufficiently large, a fast switching network emerges and the results of [52] or [57] can be applied to control the network. It has been shown that by choosing a sufficiently large controller area, i.e., pinning area, the network is synchronizable.

Node-to-node pinning control has been proposed in [58]. In this strategy, only one node is
pinned at any time instant but the controller (pinning point) switches in faster rate than the
dynamics of individual nodes, hence the controller is passed around among the nodes. Even
though the authors in [?] assumed a time-invariant network, the result is very similar to
that of [43]. Considering the cost function to be the aggregate controllers’ gains, the authors
in [?] proved that the optimal gain assignment is to pin the nodes with uniform controller
gains as it was conjectured by the extensive numerical results in [62].

Most of these studies assume that the inner coupling matrix, H, is positive definite which
means the MSF of the network is of type II form (see Fig. 1.5). Moreover, the methods
of analysis in these literatures are mostly conservative (the Lyapunov direct method). Fur-
thermore, these results, like pinning a lower degree nodes, are primarily based on extensive
numerical simulations and not analytical. Also, the main part of these analyses is based on
using a single controller to pin the network which usually results in a very large controller

To mitigate some of the drawbacks in decentralized control, distributed control has been in-
troduced. In these controllers the state information of other (neighboring) nodes is combined
with the local state information to form the control law which increases the performance of
the controllers. Distributed control can be used in a wide range of networks to achieve the
stability of the entire network [61] [73]. Since this method uses the information from a wider
subset of the network nodes, it can be much more effective than the decentralized approach.
However, this approach attains the stability goal by increasing the size of the control net-
work, which directly increases the cost by introducing communications of the state in the
control network. Another drawback for this networked control method is that the availability
and the proper estimation of the states at given time has been proven to be challenging in
the implementation process [61].
Distributed Control

Here, the concept of distributed control is briefly described and the existing results are reviewed. Networked control systems are defined as [74]:

“Networked control systems (NCSs) are spatially distributed systems in which the communications between sensors, actuators, and controllers occur through a shared band-limited digital communication network.”

As the controllability of arbitrary distributed networks is still to be determined, the impact of topological characteristics of the network on its stability is largely under-studied [73–76]. One major step in this direction has been accomplished in [60], where the structural controllability in complex networks of LTI systems has been studied.

To address some of the issues such as imperfect communications and structural uncertainties, different types of controllers are proposed to be used in distributed networks. Adaptive controllers are used to cope with the architectural changes and also to compensate for noisy data where quantizations of states, noise in observation, and errors in estimation of the recovered data’s contribute to those uncertainties [74,77].

Since the important feature of the implementation of distributed algorithms is communication and controller actuation, the event/time triggered controllers are commonly used in NCSs. These controllers, in most cases, relax the requirement of continuous transmission of data and they can operate on centralized or decentralized triggering rules [74] [78] [79]. In centralized type of triggering, the time sequence of information updates is calculated and communicated by a central entity, based on a global measure in the network, hence
the sampling is performed in a synchronous fashion in the nodes. However, as the limita-
tion of communication and processing power gets contingent then the distributed, i.e.,
asynchronous, implementations are favorable. As an extension to event-triggering, a self-
triggering is considered in [78] [80], where each node calculates the next update time at the
current time. In this approach, the measurements are not needed to be tracked between two
consecutive updates.

Although, there have been great strides made in the subject of distributed control, the
question of scalability of the size of the controller network, also known as communication
network, have received very little attention. That is, if the order and/or size of the network
increase by some factors how does that effect the order and/or size of the control network?

Contributions of Thesis

As it is known the spectra of the Laplacian matrix is a major factor in determining the sta-
bility of the dynamical networks. However, there has been small progress on this subject. In
chapter 2, we will provide asymptotic analysis of the spectra of the Laplacian matrix for ran-
dom networks as well as small-worlds. Then in chapter 3, we will take on the synchronization
problem in complex networks with uncertainties in isolated node dynamics, inner coupling
and weights of the links. Additionally, with calculating the probability of the stability we
will assess the transition of the mismatched network to synchrony.

Chapter 4 will provide the study of the pinning control with multiple pinning controllers
under the assumption of the positive inner coupling matrices and constrained controllers’
gains. The analysis will be performed by MSF like methods and a heuristic algorithm will
be presented to identify the pinning set and the corresponding controllers’ gains. It will be
shown that the algorithm results in improved performance in the sense of the number of pinning controllers, compared to existing methods. In chapter 5, by removing the condition of positive definiteness of the inner coupling matrices, the pinning problem will be studied in the network of moving agents where it is assumed that coupling/linkage of the agents changes faster than the dynamics of the isolated nodes.

In chapter 6, the problem of scalability of the controller network in the network of LTI nodes will be analyzed. Here it will be assumed that the controller network is Erdös-Rényi. We will show that the best controller network should be a subnetwork of the substrate network, called the plant network. The scalability factor of the controller network will be calculated as a function of the average degree of the plant network. Chapter 7 is dedicated to networks of linear-time varying systems which are partially observable. Finally, chapter 8 will conclude this study.
CHAPTER 2: PROBABILITY OF SYNCHRONIZATION IN LARGE COMPLEX NETWORKS

In this chapter, we use an alternative master stability condition (MSC) derived from Lyapunov direct method to obtain a sufficient condition on the stability of the network, based on the eigenvalues of symmetric part of local and coupling dynamics. We perform our analysis in a generalized framework where the linkage matrices are not limited to be diagonal and/or binary components, allowing multi-state and cross-state linkages, possibly with different strengths [81] [82]. We then use the derived MSC to calculate a lower bound on the probability of stability for large Erdös-Rényi and Newman-Watts small-world networks.

System Model

Consider a network of N identical nodes with identical coupling dynamics

$$\dot{x}_i = f(x_i) - \sum_{j=1}^{N} l_{ij} h(x_j), \quad (2.1)$$

where $x_i \in \mathbb{R}^n, 1 \leq i \leq N$ denote the state vector of node i, and $f(\cdot)$ and $H(\cdot)$ denote the node and coupling dynamics, respectively. $L = [l_{ij}]$ is the Laplacian matrix of the network. We assume that the network is undirected, i.e. $l_{ij} = l_{ji}$ for all i,j. Since L has zero row-sum, this network has a synchronization state, x_0, which is the solution of local state equation, $\dot{x}_0 = f(x_0)$. This equation also defines the synchronization manifold. To maintain the synchrony throughout the network, all x_i should converge to a synchronous state, x_0. This means that all the modes traverse to the synchronization manifold should be damped out [5].

Denote the deviation of the state of each node from the synchronous state by $e_i = x_i - x_0$.

If \(e_i \) are small, (2.1) can be linearized around \(x_0 \) as

\[
\dot{e}_i = F e_i - \sum_{j=1}^{N} l_{ij} H e_j,
\]

(2.2)

where \(F \) and \(H \) are Jacobian matrices of \(f(\cdot) \) and \(H(\cdot) \) around \(x_0 \), respectively. Note that in general, \(x_0 \) is time dependent and so are \(F \) and \(H \). For cleaner notation, we have dropped their explicit dependence. Stacking (2.2) yields

\[
\dot{\mathbf{e}} = (I \otimes F - L \otimes H) \mathbf{e} = \tilde{F} \mathbf{e},
\]

(2.3)

where \(I \) is the identity matrix, \(\otimes \) denotes the Kronecker product, and \(\mathbf{e} = [e_1^T \cdots e_N^T]^T \) is the error vector with respect to \(1 \otimes x_0 \), where \(1 = [1 \cdots 1]^T \).

Network stability condition

The network synchronization is exponentially stable, if \(\tilde{F} \) is exponentially stable. Since \(L \) has zero row sum, its smallest eigenvalue, \(\mu_N \), is zero [24]. The mode for \(\mu_N = 0 \) in (2.3) represents the variations parallel to manifold and hence should be omitted in the study of stability for traversal exponents [5]. Furthermore, multiplicity of zero in the set of network eigenvalues is one, if and only if the the graph is connected [24]. The remaining modes in (2.3) are traverse to the synchronization manifold and decay exponentially if and only if the remaining modes of (2.3) are exponentially stable. Considering (2.3), norm of \(\mathbf{e} \) can be bounded by ([21] Thms. 1 and 2)

\[
\|\mathbf{e}(t)\| \leq \|\mathbf{e}(t_0)\| \exp \left[\frac{1}{2} \int_{t_0}^{t} \lambda_1 \left(\tilde{F}(\tau) + \tilde{F}^T(\tau) + \epsilon I \right) d\tau \right],
\]

33
for $t \geq t_0$ and $\epsilon > 0$, where $\lambda_i(.)$ denotes the ith largest eigenvalue of the argument. If $\tilde{F} + \tilde{F}^T + \epsilon I < 0$ for all $t \geq t_0$, this bound approaches zero as t grows and the system is exponentially stable. Thus, a sufficient condition on stability is

$$\exists \epsilon > 0 \text{ s.t. } \tilde{F}(t) + \tilde{F}^T(t) + \epsilon I < 0, \forall t \geq t_0.$$

(2.4)

Since L is real and symmetric, it can be unitarily diagonalized as $L = QAQ^T$. Consequently, \tilde{F} can be block diagonalized, using transform $Q^T \otimes I$. That is

$$(Q^T \otimes I)\tilde{F}(Q \otimes I) = (Q^T \otimes I)(I \otimes F)(Q \otimes I) - (Q^T \otimes I)(QAQ^T \otimes H)(Q \otimes I)
= I \otimes F - \Lambda \otimes H.$$

The diagonal block elements are $F + \mu_iH$, where μ_i is the ith largest eigenvalue of L. Hence (2.4) can be replaced by

$$\exists \epsilon > 0 \text{ s.t. } F + F^T - \mu_i(H + H^T) + \epsilon I < 0, \forall t \geq t_0,$$

(2.5)

for $1 \leq i \leq N - 1$. Note that since L is symmetric, μ_i are real and non-negative.

Now we can use Weyl’s inequalities to further explore (2.5). Assume that B and C are $n \times n$ Hermitian matrices, and $1 \leq j, k, j + k - n \leq n$, then Weyl’s inequalities state that ([83] Thm. 1.3)

$$\lambda_{j+k-1}(B + C) \leq \lambda_j(B) + \lambda_k(C)$$

(2.6)

$$\lambda_{j+k-n}(B + C) \geq \lambda_j(B) + \lambda_k(C).$$

(2.7)
Utilizing (2.6) with \(j + k = 2 \) and (2.7) with \(j + k - n = 1 \) yields

\[
\lambda_j(B) + \lambda_{n-j+1}(C) \leq \lambda_1(B + C) \leq \lambda_1(B) + \lambda_1(C),
\]
(2.8)

for \(1 \leq j \leq n \). Now, since \(F + F^T \) and \(-\mu_i(H + H^T)\) are Hermitian, we can use (2.8) to bound \(\lambda_1(F + F^T - \mu_iH - \mu_iH^T) + \epsilon \) from both sides:

\[
\lambda_1(F + F^T - \mu_iH - \mu_iH^T) + \epsilon \\
\leq \lambda_1(F + F^T) + \lambda_1(-\mu_iH - \mu_iH^T) + \epsilon \\
= \lambda_1(F + F^T) - \mu_i\lambda_n(H + H^T) + \epsilon,
\]
(2.9)

and

\[
\lambda_1(F + F^T - \mu_iH - \mu_iH^T) + \epsilon \\
\geq \lambda_j(F + F^T) + \lambda_{n-j+1}(-\mu_iH - \mu_iH^T) + \epsilon \\
= \lambda_j(F + F^T) - \mu_i\lambda_j(H + H^T) + \epsilon,
\]
(2.10)

for \(1 \leq j \leq n \).

To obtain a sufficient condition on stability we now force the upper bound in (2.9), to be negative

\[
\lambda_1(F + F^T) - \min_{1 \leq i \leq N-1} \{\mu_i\lambda_n(H + H^T)\} + \epsilon < 0.
\]
(2.11)

for some \(\epsilon > 0 \). Based on the sign of \(\lambda_n(H + H^T) \), condition (2.11) reduces to

\[
\mu_{N-1} > \mu^\dagger \quad \text{if} \quad \lambda_n(H + H^T) > 0 \\
\mu_1 < \mu^\dagger \quad \text{if} \quad \lambda_n(H + H^T) < 0,
\]
(2.12)
where \(\mu^\dagger = (\lambda_1(F + F^T) + \epsilon) / \lambda_n(H + H^T) \). This means that, using the terminology introduced in [84], we can say that the synchronizability set of the network is \(\{L | L \text{ satisfies (12)} \} \).

We can also derive a necessary condition for (2.5) by forcing the lower bound in (2.10) to be negative, or

\[
\max_{i,j} \left\{ \lambda_j(F + F^T) - \mu_i \lambda_j(H + H^T) \right\} + \epsilon \leq 0. \tag{2.13}
\]

Let \(k_+ \) be the index of smallest positive eigenvalue of \(H + H^T \). Then (2.13) reduces to

\[
\mu_{N-1} \geq \mu_{N-1}^\dagger \equiv \max_{j \geq k_+} \frac{\lambda_j(F + F^T) + \epsilon}{\lambda_j(H + H^T)}, \quad \mu_1 \leq \mu_1^\dagger \equiv \max_{j < k_+} \frac{\lambda_j(F + F^T) + \epsilon}{\lambda_j(H + H^T)}. \tag{2.14}
\]

In the case that \(\lambda_j(H + H^T) = 0 \), if \(\lambda_j(F + F^T) > 0 \) then the condition (2.5) is not satisfied, and if \(\lambda_j(F + F^T) < 0 \), the corresponding condition can be eliminated.

We note that, (2.14) is a necessary condition on (2.5), which itself is a sufficient condition on stability. Therefore (2.14) does not reveal anything about the stability of the network. However, since (2.12) and (2.14) sandwich (2.5), condition (2.14) provides information regarding how close (2.5) and (2.12) are.

Having developed the bounds on condition (2.5), namely (2.12) and (2.14), we now proceed to relate them to the degree properties of the network. To do this, we employ following inequalities known for symmetric Laplacian matrices [24]

\[
\mu_{N-1} \leq \frac{N}{N-1} d_{\text{min}} \quad \text{and} \quad \mu_1 \leq \frac{N}{N-1} d_{\text{max}},
\]

where \(d_{\text{min}} \) and \(d_{\text{max}} \) denote the minimum and maximum node degrees, respectively. Using
these, and (2.12), the stability condition can be also expressed as

\[
d_{\text{min}} \geq d_{\text{min}}^\dagger \equiv \frac{N-1}{N} \mu^\dagger_{N-1} \quad \text{if } \lambda_n(H + H^T) > 0
\]
\[
d_{\text{max}} \leq d_{\text{max}}^\dagger \equiv \frac{N-1}{N} \mu^\dagger_1 \quad \text{if } \lambda_n(H + H^T) < 0.
\]

Similarly, necessary conditions for (2.5) become

\[
d_{\text{min}} \geq d_{\text{min}}^\ddagger \equiv \frac{N-1}{N} \mu^\ddagger_{N-1}
\]
\[
d_{\text{max}} \leq d_{\text{max}}^\ddagger \equiv \frac{N-1}{N} \mu^\ddagger_1
\]

From (2.12) one can draw the conclusion that in the network with low algebraic connectivity,
\(\mu_{N-1}\), synchronization is difficult to achieve. This behavior is caused by the fact that the
coupling is not strong enough to push/pull the oscillators to synchronous state. And from
(2.15) we can see the other case of non-synchronization behavior occurs when (some) nodes
have too many connections (condition on \(d_{\text{max}}\)). This phenomenon is known as synchroniza-
tion quenching, where the coupling is so strong that eliminates the self-drive of (some of)
the oscillators and consequently, the network cannot achieve synchrony [85].

Probability of Stability

Erdős-Rényi networks

In the following, we investigate probability of stability of Erdős-Rényi networks [23]. For
large Erdős-Rényi networks with randomness parameter \(p\), we can use (2.12) and (2.14) to
calculate the lower and upper bounds on the probability of (2.5) being satisfied. We recall
that (2.12) provides a lower bound on the probability of stability, whereas (2.14) describes
the closeness of this lower bound and the probability of (2.5).

Since eigenvalues of any large randomly generated symmetric matrix follows the Wigner’s semi-circular distribution [86], we can approximate the distribution of eigenvalues of Laplacian for an Erdős-Rényi network. By definition, $L = \text{diag}(d) - A$, where A is the adjacency matrix of the network, and d is the degree sequence of the nodes. Also in large Erdős-Rényi network, we can approximate $\text{diag}(d)$ by NpI [23]. Hence, $L \approx NpI - A$. Thus the pdf of the eigenvalues of L is approximately [86]

$$p_\mu(x) = \begin{cases}
\frac{1}{\pi \sqrt{Np(1-p)}} \sqrt{1 - X^2} & |X| < 1 \\
0 & \text{elsewhere}
\end{cases}$$

where $X = \frac{x - Np}{2\sqrt{Np(1-p)}}$. The order statistics μ_{N-1} and μ_1 have densities

$$p_{\mu_{N-1}}(x) = (N-1)[1 - p_\mu(x)]^{N-2}p_\mu(x),$$
$$p_{\mu_1}(x) = (N-1)P_\mu^{N-2}(x)p_\mu(x),$$

where

$$P_\mu(x) = \int_{(N-1)p - 2\sqrt{Np(1-p)}}^x p_\mu(y)dy$$
$$= 1 - \frac{1}{\pi} \cos^{-1} X + \frac{1}{\pi} X \sqrt{1 - X^2}.$$

Now, we can evaluate the probability of occurrence of each conditions given in (2.12) and (2.14). The lower bound on the probability of stability attained from Wigner’s approximation for (2.12) is

$$P_{W, LB} = \begin{cases}
1 - [1 - P_\mu(\mu^\dagger)]^{N-1} & \lambda_n(H + H^T) > 0 \\
P_\mu^{N-1}(\mu^\dagger) & \lambda_n(H + H^T) < 0
\end{cases}$$

(2.16)
Similarly, an upper bound on the probability of (2.5) can be derived by applying Wigner’s approximation to (2.14) is

\[P_{W,UB} = \left[P_\mu \left(\mu^1 \right) - P_\mu \left(\mu^N \right) \right]^{N-1}. \]

(2.17)

Since these probabilities have relatively sharp roll-offs as a function of \(N \) (see numerical results), we can use randomness values, \(p_L \) and \(p_U \), which yield \(P_{W,LB}(p_L) = 1/2 \) and \(P_{W,UB}(p_U) = 1/2 \), to study the synchrony trends as network parameters change. From (2.16) and (2.17), we have

\[p_L \approx \frac{1}{N + 4} \left[\frac{\lambda_1(F + F^T) + \epsilon}{\lambda_n(H + H^T)} + 4 \right], \]

\[p_U \approx \frac{1}{N + 4} \left[\max_{j > k} \frac{\lambda_j(F + F^T) + \epsilon}{\lambda_j(H + H^T)} \right]. \]

Thus, the value of randomness, \(p \), required to have stable synchronous state decreases as \(O(1/N) \).

Small-World Networks

Consider a small-world network based on the Newman-Watts model [6] constructed by randomly adding links, with probability \(p \), to a \(k \)-regular ring network. This is equivalent to the superimposition of a ring network and an Erdős-Rényi network on the same node set. Thus, the Laplacian matrix of the small-world network is

\[L_{SW} = L_{Rk} + L_{ER} - L_{overlap}. \]
where L_{Rk}, L_{ER} and $L_{overlap}$ denote the Laplacian matrices of a k-regular ring, an Erdős-Rényi network, and their overlap of edges, respectively. Let us denote the ith largest eigenvalues of these matrices by μ_{SW}^{i}, μ_{Rk}^{i}, μ_{ER}^{i} and $\mu_{overlap}^{i}$, respectively. Weyls’ inequalities yield

$$\mu_{SW}^{1} \leq \mu_{Rk}^{1} + \mu_{ER}^{1} - \mu_{overlap}^{1} \leq \mu_{Rk}^{1} + \mu_{ER}^{1}. \quad (2.18)$$

Define $L_1 = L_{ER} - L_{overlap}$ and $L_2 = L_{Rk} - L_{overlap}$. Since the overlap is always a subnetwork of both the random network as well as the ring network, L_1 and L_2 are Laplacian matrices. Thus, their smallest eigenvalues are zero. Hence, once again we can use the Weyls’ inequalities to get

$$\mu_{SW}^{N-1} \geq \max \{ \mu_{Rk}^{N-1}, \mu_{ER}^{N-1} \}. \quad (2.19)$$

For even N the eigenvalues of a k-regular ring network are

$$\mu_{Rk}^{i} = 2 \left(k - \frac{\sin \frac{k\pi l}{N} \cos \frac{(k+1)\pi l}{N}}{\sin \frac{\pi l}{N}} \right)$$

Thus, the pdfs of the upper bound on μ_{SW}^{1} and the lower bound on μ_{SW}^{N-1} are

$$p_{1,UB}^{SW}(x) = (N - 1)P_{\mu}^{N-2}(x - \mu_{Rk}^{1})p_{\mu}(x - \mu_{Rk}^{1})$$

$$p_{N-1,LB}^{SW}(x) = \left(1 - \left[1 - P_{\mu} \left(\mu_{Rk}^{N-1} \right) \right] \right)^{N-1} \delta \left(x - \mu_{Rk}^{N-1} \right)$$

$$+ (N - 1)[1 - P_{\mu}(x)]^{N-2}p_{\mu}(x)u \left(x - \mu_{Rk}^{N-1} \right),$$
where \(\delta(\cdot) \) and \(u(\cdot) \) are the impulse and step functions. Thus, the lower bound on the probability of stability is given by

\[
P_{SW, LB} = \left(1 - \left[1 - P_\mu (\mu_{Rk}^{N-1}) \right]^{N-1} \right) u\left(\mu^\dagger - \mu_{Rk}^{N-1} \right)
+ \left[1 - P_\mu (\mu_{Rk}^{N-1}) \right]^{N-1} - \left[1 - P_\mu (\mu^\dagger) \right]^{N-1}
\]

(2.20)

if \(\lambda_n(H + H^T) > 0 \), and

\[
P_{SW, LB} = P_\mu^{N-1} \left(\mu^\dagger - \mu_{Rk}^{N-1} \right)
\]

(2.21)

if \(\lambda_n(H + H^T) < 0 \).

Numerical Results

For a numerical example, we consider a network of Rössler oscillators (with parameters \(a_1 = 0.165, a_2 = 0.2, \text{ and } a_3 = 10 \)) coupled through all of their states. This set of parameters results in a coherent chaotic oscillation, since \(a_1 < 0.21 \) [85]. Therefore, the Jacobian of the oscillator can be computed as

\[
F = \begin{bmatrix} 0 & -1 & -1 \\
1 & 0.165 & 0 \\
x_3 & 0 & x_1 - 10 \end{bmatrix}
\]

We also assume

\[
H = \frac{c}{\sqrt{6} + \sqrt{3} + \sqrt{2}} \begin{bmatrix} \sqrt{2} & \sqrt{2} & \sqrt{2} \\
0 & \sqrt{3} & \sqrt{3} \\
0 & 0 & \sqrt{6} \end{bmatrix}
\]
where \(c = \text{trace}(H) \), is the coupling strength.

With this setting we first consider an Erdős-Rényi network and calculate our results on the probability of stability of the network for different values of \(N, p, \) and \(c \). To this end, we have considered \(N \) trajectories starting from initial point \([s_i \, s_j \, 0]^T\) where \(s_j \)'s are selected uniformly from interval \([0.95, 1.05]\) and all the corresponding eigenvalues are calculated over average of 20 cycles of initiated trajectories.

Fig. 2.1 shows the probability of the stability of the network as a function of network randomness, \(p \), for different network size, \(N \), and with coupling strength \(c = 1 \). As it can be seen, probabilities of (2.12) and (2.14) are close to that of (2.5). Moreover, we observe that the approximated probabilities provided by the Wigner’s distribution of eigenvalues of
the network are also reasonably close. As Fig. 2.1 shows for positive definite $H + H^T$ in a large network if the average degree, pN, is above some threshold, $p_LN \approx \lambda_1(F + F^T)/\lambda_n(H + H^T)$, (in this example approximately 50) the network becomes stable. Note that in this particular numerical example, due to positive definiteness of $H + H^T$, only the transition from asynchrony to synchrony is observed.

The behavior of the network in the sense of its stability versus network size for several values of p is shown in Fig. 2.2. Once again we observe that the probability of stability suddenly increases as pN crosses the threshold above.
Figure 2.2: Probability of stability of Erdős-Rényi networks as a function of N.

Figure 2.3: Probability of stability of Erdős-Rényi networks as a function of c. 44
Fig. 2.3 shows that the stability of the network grows as the network size and coupling factor increase. Of course this is due to our choice of coupling dynamics which is positive definite and by increasing coupling strength, it provides stronger negative feedback to stabilize the network.

For small-world networks with Newman-Watts method, we start with a regular ring network with coordination number $k = 20$. In other words, each node is connected to its nearest $2k = 40$ neighbors. Other parameters are kept the same as the Erdős-Rényi case.

Figs. 2.5, 2.4 and 2.6 depict the probability of stability as functions of randomness parameter, p, network size, N, and coupling strength, c, respectively. We observe that the lower bound on the probability of stability derived from (2.19) are close to the simulated results, as well as (2.20). Also, similar to the Erdős-Rényi case, we can observe the sharp transition from asynchrony to synchrony state as p, N or c change. We can also see that as pN, which is directly related to the smallness of the network, passes a certain value (in our example 30) network becomes stable.
Figure 2.4: Probability of stability of small-world networks as a function of N.

Figure 2.5: Probability of stability of small-world networks as a function of p.
Conclusion

In conclusion, considering an alternative master stability condition, we have derived a sufficient condition of stability which is a function of the eigenvalues of network structure and symmetric parts of linearized local and coupling dynamics. Our condition relates the largest eigenvalues of the symmetric parts of coupling and local dynamics to the stability of the networks. For both Erdős-Rényi and Newman-Watts small-world networks we have calculated a lower bound on the probability of stability. We have also show that a threshold value of randomness exists, where the system sharply becomes stable as p increases beyond this threshold. The reason for this phenomenon is that below the certain threshold, all or some
of the nodes cannot achieve sufficient information exchange. As a result, those nodes cannot synchronize themselves with the rest of the network. Our approach and results can be extended to the case of randomly changing network topology, if the eigenvalues of instantaneous networks satisfy our stability criterion stochastically.
CHAPTER 3: PROBABILITY OF STABILITY OF SYNCHRONIZATION IN NETWORK OF MISMATCHED OSCILLATORS

Here, we investigate the synchronization of a network of mismatched oscillators with mismatched couplings. Our formulation also allows the consideration of uncertainties in network link weights, thus generalizing [48] in addition to its main contributions. Since in presence of mismatch there is no unique synchronization state in the network, we use the concept of \(\varepsilon \)-synchronization [47], where the steady states of the nodes in the network fall into an \(\varepsilon \)-neighborhood of a certain trajectory (synchronization manifold). We then use a generalized master stability function to study the behavior of the network around the synchronization state. The proposed generalized master stability function bounds the oscillator states to a neighborhood of average synchronization trajectory as a function of Lyapunov exponents of the dynamical network. These Lyapunov exponents, in turn, are related to eigenvalues of the Laplacian matrix of the network. We then provide a probabilistic treatment of synchronization behavior in terms of mismatch parameters for regular and random network models. We calculate probability of stability of synchronization, and use it to investigate phase transitions of the synchronization in the network as the network and node parameters vary. Finally, we verify our analytical results by a numerical example for a network of van der Pol oscillators [87] with mismatched oscillators and couplings.
Notation and Main Variables

The set of real (column) n-vectors is denoted by \mathbb{R}^n and the set of real $m \times n$ matrices is denoted by $\mathbb{R}^{m \times n}$. We refer to the set of non-negative real numbers by \mathbb{R}_+. Matrices and vectors are denoted by capital and lower-case bold letters, respectively. Identity matrix is shown by I. The Euclidean (L_2) vector norm is represented by $\|\cdot\|$. When applied to a matrix, $\|\cdot\|$ denotes the L_2 induced matrix norm, $\|A\| = \sqrt{\lambda_{\text{max}}(A^T A)}$. Table 3.1 summarizes the main variables used.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>State vector of node i</td>
</tr>
<tr>
<td>γ_i</td>
<td>Parameters vector of node i</td>
</tr>
<tr>
<td>θ_{ji}</td>
<td>Parameter vector of coupling from node j to node i</td>
</tr>
<tr>
<td>$f(x_i, \gamma_i)$</td>
<td>Dynamics function of node i</td>
</tr>
<tr>
<td>$h(x_j, x_i, \theta_{ji})$</td>
<td>Coupling function from node j to node i</td>
</tr>
<tr>
<td>u_i</td>
<td>Input vector for node i</td>
</tr>
<tr>
<td>F_X</td>
<td>Jacobian of vector f with respect to x</td>
</tr>
<tr>
<td>F_γ</td>
<td>Jacobian of vector f with respect to γ</td>
</tr>
<tr>
<td>H_X</td>
<td>Jacobian of coupling vector h with respect to x</td>
</tr>
<tr>
<td>H_y</td>
<td>Jacobian of coupling vector h with respect to y</td>
</tr>
<tr>
<td>H_θ</td>
<td>Jacobian of coupling vector h with respect to θ</td>
</tr>
</tbody>
</table>

System Description

Consider a network of N oscillators, indexed by $\mathcal{N} = \{1 \cdots N\}$. Assume that the dynamics of each isolated oscillator is governed by

\[\dot{x}_i = f(x_i, \gamma_i), \]
where $x_i \in \mathbb{R}^n$ and $\gamma_i \in \mathcal{P} \subseteq \mathbb{R}^p$ are the state and parameter vectors of local dynamics of node i, respectively. \mathcal{P} denotes the set of possible parameter vectors, and $f : \mathbb{R}^{n+p} \to \mathbb{R}^n$ describes the local dynamics of an isolated node.

The dynamics of coupled oscillators are given as

$$
\dot{x}_i = f(x_i, \gamma_i) + \sum_{i,j \in \mathcal{N}} a_{ij} h(x_j, x_i, \theta_{ij}),
$$

(3.1)

where $\theta_{ij} \in Q \subseteq \mathbb{R}^q$ is the parameter vector of coupling dynamics from node j to node i, Q denotes the set of possible parameter values for couplings. The adjacency matrix of the network is $A = [a_{ij}]$, where $a_{ij} \in \mathbb{R}_+$ is the weight of the link from node j to node i. There is no connection if $a_{ij} = 0$. Note that we allow the more general case of directed and weighted networks. Moreover, $h : \mathbb{R}^{2n+q} \to \mathbb{R}^n$ models the coupling from node j to node i. We assume that $h(x, y, \theta)$ is Hamiltonian. That is, we assume that $H_x = -H_y$, where H_x and H_y denotes the Jacobians of $h(x, y, \theta)$ with respect to x and y, respectively. This is a very general assumption and encompasses the diffusive coupling model predominantly used in the literature [33, 48, 51], where it is assumed that $h(x_1, x_2, [\theta_1 \theta_2]) = \tilde{h}(x_1, \theta_1) - \tilde{h}(x_2, \theta_2)$.

Note that this generalized model also incorporates uncertainties in the adjacency matrix of the network, $A = [a_{ij}] + [\delta a_{ij}]$, considered in [48], by absorbing δa_{ij} into θ_{ij}, i.e., $\theta_{ij}' = [\theta_{ij}' \delta a_{ij}]^T$.
Invariant Synchronization Manifold

Let \(s \) be a weighted average of the trajectories of all oscillators

\[
 s = \sum_{i \in \mathcal{N}} \alpha_i x_i, \tag{3.2}
\]

where \(\sum_{i \in \mathcal{N}} \alpha_i = 1 \). Define the deviation of the trajectory of oscillator \(i \) from \(s \) as

\[
 e_i = x_i - s. \tag{3.3}
\]

Moreover, let \(L = [l_{ij}] \) be the Laplacian matrix of the network [24],

\[
 L = \text{diag}([d_{in}^1 \cdots d_{in}^N]) - A,
\]

where \(d_{in}^i = \sum_{j \in \mathcal{N}} a_{ij} \) is the in-degree of node \(i \).

Lemma 1. \(s = \sum_{i \in \mathcal{N}} \alpha_i x_i \) is an invariant synchronization manifold of the network if \(\alpha = [\alpha_1 \cdots \alpha_N]^T \) is a null vector of \(L^T \).

Proof. Taking derivative of (3.2) yields

\[
 \dot{s} = \sum_{i \in \mathcal{N}} \alpha_i \dot{x}_i
 = \sum_{i \in \mathcal{N}} \alpha_i f(s + e_i, \tilde{\gamma} + \delta \gamma) + \sum_{i,j \in \mathcal{N}} a_{ij} \alpha_i h(s + e_j, s + e_i, \tilde{\theta} + \delta \theta_{ij}), \tag{3.4}
\]

where \(\tilde{\gamma} = \sum_{i \in \mathcal{N}} \alpha_i \gamma_i, \delta \gamma_i = \gamma_i - \tilde{\gamma}, \tilde{\theta} = \frac{1}{d_{in}} \sum_{i,j \in \mathcal{N}} \alpha_i a_{ij} \theta_{ij}, \delta \theta_{ij} = \theta_{ij} - \tilde{\theta}, \) and \(d_{in} = \sum_{i \in \mathcal{N}} \alpha_i d_{in}^i \) is the weighted average in-degree of the network. Linearization of (3.4)
around \((s, \bar{\gamma}, \bar{\theta})\) results in

\[
\dot{s} = \sum_{i \in \mathcal{N}} \alpha_i f(s, \bar{\gamma}) + F_{\gamma} \sum_{i \in \mathcal{N}} \alpha_i \delta \gamma_i + \sum_{i,j \in \mathcal{N}} a_{ij} \alpha_i h(s, s, \bar{\theta}) + H_x \sum_{i,j \in \mathcal{N}} a_{ij} \alpha_i (e_j - e_i) + H_{\theta} \sum_{i,j \in \mathcal{N}} a_{ij} \alpha_i \delta \theta_{ji},
\]

where \(H_x\) and \(H_{\theta}\) are Jacobians of \(h\) with respect to its first and third variable, respectively.

Recalling that \(\sum_{i \in \mathcal{N}} \alpha_i = 1\), we have

\[
\dot{s} = f(s, \bar{\gamma}) + h(s, s, \bar{\theta}) \sum_{i \in \mathcal{N}} d_i^{in} \alpha_i + H_x \sum_{i,j \in \mathcal{N}} a_{ij} \alpha_i (e_j - e_i).
\]

For \(s\) to be an invariant manifold, the last term in the above equation must be zero. This is achieved if \(\alpha_i\) are chosen to satisfy

\[
\sum_{i,j \in \mathcal{N}} a_{ij} \alpha_i (e_j - e_i) = \sum_{i \in \mathcal{N}} \left[\sum_{j \in \mathcal{N}} (a_{ji} \alpha_j - a_{ij} \alpha_i) \right] e_i = 0. \tag{3.5}
\]

Equation (3.5), in turn, will be satisfied if \(\sum_{j \in \mathcal{N}} (a_{ij} \alpha_j - a_{ij} \alpha_i) = 0\) for all \(i \in \mathcal{N}\), which in matrix form can be represented as

\[
A^T \alpha = \text{diag}([d_1^{in}, \ldots, d_N^{in}]) \alpha,
\]

where \(\alpha = [\alpha_1 \ldots \alpha_N]\), or

\[
[A^T - \text{diag}([d_1^{in}, \ldots, d_N^{in}])] \alpha = 0 = L^T \alpha.
\]
That is, α is a null vector of L^T.

Remark 1. We note that, by definition, L has zero row sum. Thus, it is singular. Consequently, L^T always has a null vector, α. This means that any network has at least one invariant manifold.

Remark 2. If the network is connected, the invariant synchronization manifold is unique. This is due to the fact that for connected networks the nullity of L is one. Thus, α and, therefore, s are unique.

Remark 3. In the special case where the network is undirected, L is symmetric. Thus, it also has zero column-sum. Consequently, $\alpha = \frac{1}{N}[1 \cdots 1]$ is its null vector, and the invariant manifold, s, is the simple average of the trajectories.

With α_i chosen such that s is an invariant manifold, we have

$$\dot{s} = f(s, \bar{\gamma}) + \bar{d}_{in} h(s, s, \bar{\theta}), \quad (3.6)$$

$$s(0) = \sum_{i \in \mathcal{N}} \alpha_i x_i(0),$$

where $s(0)$ and $x(0)$ are initial states.

Generalized Master Stability Function

In this section we introduce a master stability function which generalizes those in [47] and [48] by taking into account the parameter mismatch in the links and applies to directed and weighted networks.

As it has been shown in previous section, every connected network has a unique invariant manifold. Hence, we can define ε-synchronization as
Definition 6. A network of oscillators is ε-synchronized if there exists $\varepsilon > 0$ such that

$$\limsup_{t \to \infty} \|e\| \leq \varepsilon,$$

where $e = [e_1 \ldots e_N]^T$.

This definition means that the error from the manifold is contained in a ball of radius ε. We note that our definition is different but closely related to that given in [50].

Substituting (3.1) and (3.2) in (3.3), and using Taylor series, the dynamics of the error with respect to the synchronization manifold, e_i, is given by

$$\dot{e}_i = F X e_i - \sum_{j=1}^{N} l_{ij} H X e_j + F \gamma \delta \gamma_i + \sum_{j=1}^{N} 1_{i \neq j} l_{ij} H \theta \delta \theta_{ij} + (d_{in} - \bar{d}_{in}) h(s, s, \bar{\theta}),$$

where 1_X is the indicator function of X. Stacking (3.7) for all i yields the dynamics of the deviation of node trajectories from s:

$$\dot{e} = (I \otimes F_X - L \otimes H_X) \delta x + (I \otimes F_\gamma) \delta \gamma$$

$$+ (A \otimes H_\theta) \delta \theta + (d_{in} - \bar{d}_{in}) 1_N^T \otimes h(s, s, \bar{\theta}),$$

where

$$\delta \gamma = [\delta \gamma_1^T \ldots \delta \gamma_N^T]^T,$$

$$\delta \theta = [\delta \theta_{11}^T \ldots \delta \theta_{1N}^T \delta \theta_{21}^T \ldots \delta \theta_{2N}^T \ldots \delta \theta_{N1}^T \ldots \delta \theta_{NN}^T]^T,$$

$$d_{in} = [d_{in1} \ldots d_{inN}]^T,$$

$$A = \text{diag}([a_1 \ldots a_N]),$$

55
and a_i is the ith row of A.

Let $L = PJP^{-1}$ be the Jordan decomposition of L, where $P = [p_{ij}]$ is a similarity transform and J is in Jordan form. Then, (3.8) can be rewritten as

$$
\dot{e} = (P \otimes I) (I \otimes F_X - J \otimes H_X) (P^{-1} \otimes I) e + (I \otimes F_\gamma) \delta \gamma \\
+ (A \otimes H_\theta) \delta \theta + (d_{in} - \bar{d}_{in} 1^T_N) \otimes h(s, s, \bar{\theta}).
$$

Using the similarity transform

$$
\eta = (P^{-1} \otimes I) e,
$$

where $\eta = [\eta_1^T \cdots \eta_N^T]^T$, we obtain

$$
\dot{\eta} = (I \otimes F_X - J \otimes H_X) \eta + (P^{-1} \otimes I) (I \otimes F_\gamma) \delta \gamma \\
+ (P^{-1} \otimes I) (A \otimes H_\theta) \delta \theta \\
+ (P^{-1} (d_{in} - \bar{d}_{in} 1^T_N)) \otimes h(s, s, \bar{\theta})
$$

$$
= (I \otimes F_X - J \otimes H_X) \eta + (P^{-1} \otimes F_\gamma) \delta \gamma \\
+ (P^{-1} A \otimes H_\theta) \delta \theta \\
+ (P^{-1} (d_{in} - \bar{d}_{in} 1^T_N)) \otimes h(s, s, \bar{\theta}).
$$

$$
= (I \otimes F_X - J \otimes H_X) \eta + v,
$$

where $v = [v_1 \cdots v_N]$,

$$
v_i = \sum_{j \in \mathcal{N}} q_{ij} \left[F_\gamma \delta \gamma_j + \sum_{k=1, k \neq j}^{N} a_{jk} H_\theta \delta \theta_{jk} + h(s, s, \bar{\theta})(d_{in} - \bar{d}_{in}) \right],
$$

56
and g_{ij} are the elements of $Q = P^{-1}$. It is clear that stability of η and e are equivalent.

To study the stability of (3.9), let us first consider the simpler case where J consists of a single Jordan block, i.e.

$$J = J_N(\mu) = \begin{bmatrix}
\mu & 1 & 0 & \cdots & 0 & 0 \\
0 & \mu & 1 & \cdots & 0 & 0 \\
0 & 0 & \mu & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \mu & 1 \\
0 & 0 & 0 & \cdots & 0 & \mu \\
\end{bmatrix}.$$

Lemma 2. For system

$$\dot{\eta} = (I \otimes F_x - J_N(\mu) \otimes H_x) \eta + v,$$

there exists $\phi > 0$ such that

$$\limsup_{t \to \infty} \|\eta_i\| \leq \sum_{j=i}^N (\frac{\phi}{\lambda})^{N-j+1} \limsup_{t \to \infty} \|F_x - H_x\|^{N-j} \times \limsup_{t \to \infty} \|v_j\|,$$

for all i, if $\lambda > 0$, where $\lambda = \text{MLE}(F_x - \mu H_x)$, and $\text{MLE}(\cdot)$ returns the maximum Lyapunov exponent of the argument.

Proof. The state space equation for the η_i can be written as

$$\dot{\eta}_i = (F_x - \mu H_x) \eta_i + (F_x - H_x) \eta_{i+1} + v_i(t), \quad (3.10)$$
for $i \neq N$, and

$$
\dot{\eta}_N = (F_X - \mu H_X) \eta_N + \nu_N(t).
$$

(3.11)

The solution of (3.10) and (3.11) are

$$
\eta_i(t) = \Phi(t,0)\eta_i(0) + \int_0^t \Phi(t,\tau)v_i(\tau)d\tau + \int_0^t \Phi(t,\tau)(F_X - H_X)\eta_{i+1}(\tau)d\tau,
$$

for $i \neq N$ and

$$
\eta_N(t) = \Phi(t,0)\eta_N(0) + \int_0^t \Phi(t,\tau)v_N(\tau)d\tau,
$$

where $\Phi(t, \tau) = Z(t)Z^{-1}(\tau)$, and Z is the normal fundamental matrix of $F_X - \mu H_X$ [88].

Applying triangle inequality yields

$$
\|\eta_i(t)\| \leq \|\Phi(t,0)\|\|\eta_i(0)\|
$$

$$
+ \int_0^t \|(F_X - H_X)\eta_{i+1}(\tau) + v_i(\tau)\|\|\Phi(t,\tau)\|d\tau,
$$

for $i \in \{1, ..., N - 1\}$, and

$$
\|\eta_N(t)\| \leq \|\Phi(t,0)\|\|\eta_N(0)\|
$$

$$
+ \int_0^t \|v_N(\tau)\|\|\Phi(t,\tau)\|d\tau,
$$
which, as $t \to \infty$, yields

\[
\limsup_{t \to \infty} \| \eta_i \| \leq \| \eta_i(0) \| \limsup_{t \to \infty} \| \Phi(t, 0) \|
+ \limsup_{t \to \infty} \| v_i \| \limsup_{t \to \infty} \int_0^t \| \Phi(t, \tau) \| d\tau
+ \limsup_{t \to \infty} \| F_X - H_X \| \limsup_{t \to \infty} \| \eta_{i+1} \|
\times \limsup_{t \to \infty} \int_0^t \| \Phi(t, \tau) \| d\tau,
\] (3.12)

and

\[
\limsup_{t \to \infty} \| \eta_N \| \leq \| \eta_N(0) \| \limsup_{t \to \infty} \| \Phi(t, 0) \|
+ \limsup_{t \to \infty} \| v_N \| \limsup_{t \to \infty} \int_0^t \| \Phi(t, \tau) \| d\tau.
\] (3.13)

We know that there exists positive real ϕ such that [88]

\[
\| \Phi(t, \tau) \| \leq \phi \exp^{-\lambda(t-\tau)},
\]

where λ is the maximum Lyapunov exponent of $F_X - \mu H_X$. If $\lambda > 0$ this yields

\[
\limsup_{t \to \infty} \| \Phi(t, 0) \| = 0,
\]
\[
\limsup_{t \to \infty} \int_0^t \| \Phi(t, \tau) \| d\tau \leq \frac{\phi}{\lambda}.
\]

Substituting in (3.12) and (3.13) yields,

\[
\limsup_{t \to \infty} \| \eta_i \| \leq \frac{\phi}{\lambda} \limsup_{t \to \infty} \| F_X - H_X \| \| \eta_{i+1} \| + \frac{\phi}{\lambda} \limsup_{t \to \infty} \| v_i \|,
\]
and

\[
\lim_{t \to \infty} \| \eta_N \| \leq \frac{\phi}{\lambda} \lim_{t \to \infty} \| v_N \|.
\]

Solving the recursive inequalities we get

\[
\lim_{t \to \infty} \| \eta_i \| \leq \sum_{j=1}^{N} \left(\frac{\phi}{\lambda} \right)^{N-j+1} \lim_{t \to \infty} \| F_x + H_x \|^{N-j} \times \lim_{t \to \infty} \| v_j \|.
\]

Now, let us assume that \(J \) consists of \(M \) Jordan blocks with eigenvalues \(\mu_m \) and sizes \(n_m, \ m \in \{1, \cdots, M\} \), where \(\sum_{m=1}^{M} n_m = N \). Then \(N_m = \sum_{m=1}^{j} n_m \) will be the index of the last row of the \(m \)th Jordan block. Define \(J(i) \) to be the index of the Jordan block that contains the \(i \)th row of \(J \). In other words, \(J(i) = m \), if \(N_{m-1} < i \leq N_m \).

Theorem 5. A network of oscillators is \(\varepsilon \)-synchronized if \(\lambda_m = MLE(F_x - \mu_mH_x) > 0 \) and

\[
\| P \|^2 \sum_{j=1}^{N-1} \left(\sum_{k=1}^{n_{J(j)}} \left(\frac{\phi_{J(j)}}{\lambda_{J(j)}} \right)^{n_{J(j)}-k+1} \lim_{t \to \infty} \| F_x - H_x \|^{n_{J(j)}-k} \lim_{t \to \infty} \| v_j \| \right)^2 \leq \varepsilon^2,
\]

where \(\phi_m \) satisfies

\[
\forall t, \tau, \quad \| \Phi_m(t, \tau) \| \leq \phi_m e^{-\lambda_m(t-\tau)}.
\]

and \(\Phi_m(t, \tau) \) is the state transition matrix of \(F_x - \mu_mH_x \).
Proof. We have

\[
\limsup_{t \to \infty} \|e\|^2 = \limsup_{t \to \infty} \eta^T (P^T \otimes I)(P \otimes I) \eta \\
\leq \|P^T P\| \limsup_{t \to \infty} \|\eta\|^2 \\
= \|P\|^2 \limsup_{t \to \infty} \|\eta\|^2.
\]

(3.15)

For any Laplacian matrix, we have \(\mu_M = 0 \). If the network is connected, we further have \(n_M = 1 \). Thus,

\[
\eta_N = \sum_{j=1}^{N} \alpha_j e_j = \sum_{j=1}^{N} \alpha_j (x_j - s) = \left(\sum_{j=1}^{N} \alpha_j x_j \right) - s = 0,
\]

which together with (3.15) yields

\[
\limsup_{t \to \infty} \|e\|^2 \leq \|P\|^2 \sum_{i=1}^{N-1} \limsup_{t \to \infty} \|\eta_i\|^2.
\]

(3.16)

Lemma 2 upper bounds the right hand side of (3.16) by the left hand side of (3.14).

Corollary 1. A symmetric network of oscillators is \(\varepsilon \)-synchronized if \(\lambda_j = \text{MLE}(F x - \mu_j H x) > 0 \) and

\[
\sum_{j=1}^{N-1} \left(\frac{\phi_j}{\lambda_j} \right)^2 \limsup_{t \to \infty} \|v_j(t)\|^2 \leq \varepsilon^2,
\]

(3.17)

where \(\phi_j \) satisfies

\[
\forall t, \tau, \quad \|\Phi_j(t, \tau)\| \leq \phi_j e^{-\lambda_j(t-\tau)},
\]

and \(\Phi_j(t, \tau) \) is the state transition matrix of \(F x - \mu_j H x \).

Proof. Since \(L \) is symmetric, it can be diagonalized by unitary matrix \(P = U = [u_{ij}] \), where
Thus, each Jordan block will be of size 1. This means that $M = N$, $n_m = 1$, and $J(i) = i$. Thus, (3.14) reduces to

$$\sum_{j=1}^{N-1} \left(\frac{\phi_j}{\lambda_j} \right)^2 \limsup_{t \to \infty} \|v_j\|^2 \leq \varepsilon^2.$$

\[\square \]

Remark 4. *In proof of Corollary 1, since unitary transformation preserves Euclidean norm, (3.16) holds with equality. Thus, Corollary 1 is relatively less conservative than Theorem 5.*

Probability of Stability

In the remaining of the paper, we make the following assumptions:

Assumption 1. *The network is symmetric.*

This implies that L is diagonalizable by a unitary matrix, $U = [u_{ij}]$.

Assumption 2. *Mismatch parameters, $\delta \gamma_i$ and $\delta \theta_{ij}$, are independent zero mean Gaussian random vectors with covariance matrices, $\Sigma_{\gamma} = E[(\gamma_i - \bar{\gamma})(\gamma_i - \bar{\gamma})^T]$ and $\Sigma_{\theta} = E[(\theta_{ij} - \bar{\theta})(\theta_{ij} - \bar{\theta})^T]$, respectively.*

Under Assumption 2, v_i are linear combination of independent Gaussian random variables. Thus, they are jointly Gaussian. To calculate the probability of (3.17) being satisfied, we need to find the probability density function of $v = [v_1^T \cdots v_N^T]^T$.

Lemma 3. *The covariance matrix of v is $\Sigma_v = [\Sigma_{ij}]$ where*

$$\Sigma_{ij} = F_{\gamma} \Sigma_{\gamma} F_{\gamma}^T \mathbb{1}_{i=j} + \sum_{l=1}^{N} u_{il} u_{jl}^* \sum_{k=1}^{N} a_{ik}^2 H_{\theta} \Sigma_{\theta} H_{\theta}^T.$$
Proof. The covariance of v is

$$
\mathbf{\Sigma}_v = E[(v - \bar{v})(v - \bar{v})^T] = [\Sigma_{ij}],
$$

where $\bar{v} = h(s, s, \theta) \otimes (D^{in} - d_{in}^i I)$ and $D^{in} = \text{diag}([d_1^{in} \cdots d_N^{in}])$. Thus, the ijth block of $\mathbf{\Sigma}_v$ is

$$
\Sigma_{ij} = \sum_{k,l \in \mathcal{N}} u_{ik} u^*_j E \left[\left(F_{\gamma} \delta \gamma_k + \sum_{m \in \mathcal{N}} a_{mk} H_{\theta} \delta \theta_{mk} \right) \left(F_{\gamma} \delta \gamma_l + \sum_{n \in \mathcal{N}} a_{ln} H_{\theta} \delta \theta_{nl} \right)^T \right]
$$

$$
= \sum_{k,l \in \mathcal{N}} u_{ik} u^*_j F_{\gamma} \Sigma_{\gamma} F_{\gamma}^T + \sum_{k,l,m,n \in \mathcal{N}} u_{ik} u^*_j a_{km} a_{ln} H_{\theta} \Sigma_{\theta} H_{\theta}^T \mathbb{1}_{k=l} \mathbb{1}_{m=n}
$$

$$
= F_{\gamma} \Sigma_{\gamma} F_{\gamma}^T \mathbb{1}_{i=j} + \sum_{k,m \in \mathcal{N}} u_{ik} u^*_j |a_{km}|^2 H_{\theta} \Sigma_{\theta} H_{\theta}^T.
$$

We now provide upper bounds on the probability of stable synchronization for unweighted regular, Erdős-Rényi, and Newman-Watts networks.

Theorem 6. Under Assumptions 1 and 2, the probability of stable synchronization of an unweighted K-regular network of oscillators is lower bounded by

$$
P_{LB}^{slab}(\varepsilon) = \left[\prod_{i=2}^{N-1} \left(\frac{\phi_1 \lambda_i}{\lambda_1 \phi_i} \right)^n \right] \times \sum_{j=0}^{\infty} a_j^{(N-1)} P \left(\frac{(N - 1)n}{2} + j, \frac{\lambda_1^2 \varepsilon^2}{\phi_1^2 \sigma^2} \right), \quad (3.18)
$$

63
where $P(\cdot, \cdot)$ is the regularized gamma function,

\[a_j^{(i)} = \sum_{k=0}^{j} a_k^{(i-1)} \frac{n_{j-k}}{(j-k)!} (1 - \frac{\phi_1^2}{\lambda_1^2} \frac{\lambda_2^2}{\phi_2^2})^{j-k}, \]

\[a_k^{(2)} = \frac{n_k}{k!} \left(1 - \frac{\phi_1^2}{\lambda_1^2} \frac{\lambda_2^2}{\phi_2^2} \right)^k, \]

\[n_k = \prod_{l=0}^{k-1} \left(\frac{n}{2} + l \right), \]

and

\[\sigma = \limsup_{t \to \infty} \|F\gamma \Sigma \gamma F^T + KH\theta \Sigma \theta H^T\|^{1/2}. \] (3.19)

Proof. Since the network is unweighted and K-regular, we have $d_i = \sum_{k=1}^{N} a_{ik}^2 = K$. According to Lemma 3 the blocks of the covariance matrix, $\Sigma_{\mathbf{v}}$, are

\[\Sigma_{ij} = F\gamma \Sigma \gamma F^T \mathbb{1}_{i=j} + KH\theta \Sigma \theta H^T \sum_{l=1}^{N} u_{il}u_{jl}^*, \]

\[= (F\gamma \Sigma \gamma F^T + KH\theta \Sigma \theta H^T) \mathbb{1}_{i=j}. \] (3.20)

Hence, \mathbf{v}_i are uncorrelated. The mean value of \mathbf{v}_i can be computed as

\[E[\mathbf{v}_i] = \sum_{j \in \mathcal{N}} q_{ij} \left(F\gamma E[\delta \gamma_j] + \sum_{k=1, k \neq j}^{N} a_{jk} H\theta E[\delta \theta_{jk}] + \mathbf{h}(s, s, \bar{\theta})(K - \bar{d}_{in}) \right) = 0, \]

which follows noting that $\delta \gamma_i$ and $\delta \theta_{ij}$ have zero mean and $\bar{d}_{in} = K$. Since \mathbf{v}_i are jointly Gaussian, uncorrelated, and have zero mean, they are independent.
Now, let us define the whitened Gaussian random vectors

\[z_i = \Sigma_{ii}^{-\frac{1}{2}} v_i. \]

Since Euclidean norm is sub-multiplicative, we have

\[\|v_i\| \leq \|z_i\| \left\| \Sigma_{ii}^{\frac{1}{2}} \right\|. \]

\[\limsup_{t \to \infty} \|v_i\| \leq \limsup_{t \to \infty} \left(\|z_i\| \left\| \Sigma_{ii}^{\frac{1}{2}} \right\| \right). \]

\[\leq \limsup_{t \to \infty} \|z_i\| \limsup_{t \to \infty} \left\| \Sigma_{ii}^{\frac{1}{2}} \right\|. \]

\[= \|z_i\| \limsup_{t \to \infty} \left\| \Sigma_{ii}^{\frac{1}{2}} \right\|. \]

The last equality is due to the fact that with the whitening of \(\|v_i\| \), \(\|z_i\| \) is no longer time variable. In other words, \(\|z_i\| \) is a random variable (not a random process). Since \(\|z_i\|^2 \) is the norm squared of a white Gaussian \(n \)-vector, it has a chi-squared distribution with \(n \) degrees of freedom. Applying the result of Corollary 1,

\[\|e\|^2 = \sum_{i=1}^{N-1} \|\eta_i\|^2 \]

\[\leq \sum_{i=1}^{N-1} \left(\frac{\phi_i}{\lambda_i} \right)^2 \limsup_{t \to \infty} \|v_i\|^2 \]

\[\leq \sum_{i=1}^{N-1} \left(\frac{\phi_i \sigma}{\lambda_i} \right)^2 \|z_i\|^2. \]

where \(\sigma \) is defined in (3.19).
Now we have

$$\Pr \left(\limsup_{t \to \infty} \|e\| < \varepsilon \right) = \Pr \left(\limsup_{t \to \infty} \|e\|^2 < \varepsilon^2 \right)$$

$$\geq \Pr \left(\sum_{i=1}^{N-1} \left(\frac{\phi_i \sigma}{\lambda_i} \right)^2 \|z_i\|^2 \leq \varepsilon^2 \right)$$

$$= \prod_{i=2}^{N-1} \left(\frac{\phi_1 \lambda_i}{\lambda_1 \phi_i} \right)^n \times \sum_{j=0}^{\infty} a_j^{(N-1)} \int_0^{\varepsilon^2} f_j(y) dy,$$

where

$$f_j(y) = \left(\frac{\lambda_1^2}{2\sigma_1^2} \right)^{(N-1)n+j} \frac{y^{(N-1)n+j-1}}{\Gamma \left(\frac{(N-1)n}{2} + j \right)} e^{-\frac{\lambda_1^2 y}{2\sigma_1^2}}.$$

which using the results in [89] yields (6.23).

Theorem 7. Under Assumptions 1 and 2, the limiting probability of stable synchronization of an unweighted Erdős-Rényi (ER) network of oscillators, with parameter p, as $N \to \infty$, is lower bounded by

$$P_{\text{stab}}^{LB}(\varepsilon | \lambda) = \prod_{i=2}^{N-1} \left(\frac{\phi_1 \lambda_i}{\lambda_1 \phi_i} \right)^n \times \sum_{j=0}^{\infty} a_j^{(N-1)} P \left(\frac{(N-1)n}{2} + j, \frac{\lambda_1^2 \varepsilon^2}{\sigma_1^2} \right),$$

(3.21)

where $\sigma = \limsup_{t \to \infty} \|F^\gamma \Sigma^\gamma F^T_\gamma + pNH^\theta \Sigma^\theta H^T_\theta \|^1/2$ and $\lambda = [\lambda_1 \cdots \lambda_{N-1}]$.

Proof. The largest eigenvalue of the Laplacian matrix of any symmetric network is bounded below by the maximum degree of the network. For large ER networks ($N \to \infty$), it is also bounded above by $Np + \sqrt{Np(1-p)}$ (see eq. (2.15)). Thus

$$d_{\text{max}} \leq \mu_{\text{max}} \leq Np + \sqrt{Np(1-p)}.$$
Similarly, the smallest non-zero eigenvalue of ER network can be bounded as

\[d_{\min} \geq \mu_{\min} \geq Np - \sqrt{Np(1 - p)}. \]

According to Lemma 3, the diagonal blocks of covariance matrix of \(\mathbf{v} \) are

\[
\Sigma_{ii} = \mathbf{F}_\gamma \Sigma_\gamma \mathbf{F}_\gamma^T + \mathbf{H}_\theta \Sigma_\theta \mathbf{H}_\theta^T \sum_{l=1}^{N} |u_{il}|^2 d_l
\]

\[= \mathbf{F}_\gamma \Sigma_\gamma \mathbf{F}_\gamma^T + Np \mathbf{H}_\theta \Sigma_\theta \mathbf{H}_\theta^T, \]

as \(N \to \infty \), and the off diagonal entries are

\[
\Sigma_{ij} = \mathbf{H}_\theta \Sigma_\theta \mathbf{H}_\theta^T \sum_{l=1}^{N} u_{il} u^*_{jl} d_l
\]

\[= \mathbf{H}_\theta \Sigma_\theta \mathbf{H}_\theta^T \sum_{l=1}^{N} u_{il} u^*_{jl} (d_l - Np)
\]

\[\leq \sqrt{Np(1 - p) \mathbf{H}_\theta \Sigma_\theta \mathbf{H}_\theta^T}. \]

Therefore,

\[
\lim_{N \to \infty} \frac{\| \Sigma_{ij} \|}{\| \Sigma_{ii} \|} = 0.
\]

Consequently, as \(N \to \infty \), \(\mathbf{v}_i \) become independent. The remaining of the proof is similar to that of Theorem 6 and is omitted in the interest of brevity.

To study the synchronization in small-world networks, we consider the Newman-Watts model [6]. This model constructs a small-world network by starting from a \(K \)-regular ring network substrate, then randomly adds new links with probability \(p \).

Theorem 8. Under assumptions 1 and 2, the limiting probability of stable synchronization
of an unweighted Newman-Watts small-world network of oscillators, with parameters \(p \) and \(K \), as \(N \to \infty \), is lower bounded by

\[
P_{\text{stab}}^{LB}(\varepsilon | \lambda) = \prod_{i=2}^{N-1} \left(\frac{\phi_1 \lambda_i}{\phi_1 \lambda_1} \right)^n \times \sum_{j=0}^{\infty} a_j^{(N-1)} P \left(\frac{(N - 1)n}{2} + j, \frac{\lambda_1^2 \varepsilon^2}{\phi_1^2 \sigma^2} \right),
\]

where

\[
\sigma = \limsup_{t \to \infty} \| F_\gamma \Sigma \gamma F_\gamma^T + (K + Np)H_\theta \Sigma \theta H_\theta^T \|^{1/2}.
\]

Proof. The Laplacian matrix of a Newman-Watts small world network is

\[
L_{NW} = L_{Ring} + L_{ER},
\]

where \(L_{Ring} \) and \(L_{ER} \) are the laplacians of a \(K \)-regular ring and an Erdős-Rényi network with parameter \(p \). Using Weyl’s inequalities we can bound the minimum and maximum eigenvalues of the small-world [24]

\[
\max\{\mu_{\text{min}}^{\text{Ring}}, \mu_{\text{min}}^{\text{ER}}\} \leq \mu_{\text{min}}^{\text{NW}} \leq \mu_{\text{min}}^{\text{Ring}},
\]

\[
\mu_{\text{max}}^{\text{Ring}} + \mu_{\text{max}}^{\text{ER}} \geq \mu_{\text{max}}^{\text{NW}} \geq \mu_{\text{max}}^{\text{Ring}},
\]

where the eigenvalues of a \(K \)-regular ring is [24]

\[
\mu_i^{\text{Ring}} = K - 2 \frac{\sin \frac{iK\pi}{2N} \cos \frac{(K+2)i\pi}{2N}}{\sin \frac{i\pi}{N}},
\]

and subscripts min and max refer to smallest non-zero and maximum eigenvalue of \(L \) in corresponding configurations, respectively. The remaining of the proof is similar to that of Theorem 7 and is omitted in the interest of brevity.
Numerical Example

In this section we verify our analytical results using numerical examples. We consider the van der Pol oscillator [87] which has the following dynamics

\[
f(x_i, \gamma_i) = \begin{bmatrix} x_{i2} \\ -x_{1i} - \gamma_i(x_{i1}^2 - 1)x_{i2} \end{bmatrix}.
\]

We note that since the van der Pol oscillator has a limit cycle, as \(t \to \infty \), \(s \) is a periodic trajectory. Hence, the Jacobians are also periodic. We can, therefore, solve (3.6) analytically using Fourier series [87].

We assume that the nodes are coupled through their first states by

\[
h(x_j, x_i, \theta_{ij}) = \begin{bmatrix} \theta_{ij1}(x_{1j} - x_{1i}) + \theta_{ij2} \\ 0 \end{bmatrix}.
\]

Thus, the Jacobians of \(f(.) \) and \(h(.) \) around \((s, \bar{\gamma}, \bar{\theta})\) are

\[
F_x = \begin{bmatrix} 0 & 1 \\ -1 - 2\bar{\gamma} s_1 s_2 & \bar{\gamma}(1 - s_1^2) \end{bmatrix},
\]

\[
H_x = \begin{bmatrix} \bar{\theta}_1 & 0 \\ 0 & 0 \end{bmatrix},
\]

\[
F_\gamma = \begin{bmatrix} 0 \\ (1 - s_1^2)s_2 \end{bmatrix},
\]

\[
H_\theta = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.
\]
where \(s = [s_1 \ s_2]^T \). Fig. 3.1 depicts the maximum Lyapunov exponent of \(F_X - \mu H_X \) as a function of \(\mu \), where \(\mu \) is the eigenvalue of Laplacian matrix of the network.

![Graph showing Maximum Lyapunov Exponent (MLE) as a function of eigenvalues of Laplacian matrix of the network, \(\mu \).](image)

Figure 3.1: Maximum Lyapunov Exponent (MLE) as a function of eigenvalues of Laplacian matrix of the network, \(\mu \).

Furthermore,

\[
\mathbf{v}_i = \begin{bmatrix}
\sum_{j=1}^{N} u_{ji}^* \sum_{k=1}^{N} a_{jk} \delta \theta_{kj2} \\
(1 - s_1^2) s_2 \sum_{j=1}^{N} u_{ji}^* \delta \gamma_j
\end{bmatrix}.
\]

It is clear that \(\mathbf{v}_i \) are independent of \(\delta \theta_{ij1} \). Also, covariance matrix of \(\mathbf{v}_i \) of a \(K \)-regular ring
network for $\tilde{\gamma} = 1$ can be calculated from (3.20) as

$$\Sigma_{ii} = \begin{bmatrix} K\tilde{\theta}_1^2\sigma_{\theta_2}^2 & 0 \\ 0 & \sigma_{\gamma}^2((1-s_1^2)s_2)^2 \end{bmatrix},$$

and

$$\sup \Sigma_{ii} = \begin{bmatrix} K\tilde{\theta}_1^2\sigma_{\theta_2}^2 & 0 \\ 0 & 9.93\sigma_{\gamma}^2 \end{bmatrix}, \quad (3.23)$$

where $\sup((1 - s_1^2)s_2)^2$ is determined by simulation to be 9.93 and the supremums are calculated over one period of the limit cycle. Hence, $\sigma = \max(\sqrt{K}\tilde{\theta}_1\sigma_{\theta_2}, 3.15\sigma_{\gamma})$.

Now, consider a 6-regular ring network of size $N = 100$, where $\gamma \sim \mathcal{N}(1, 0.01)$ and $\theta \sim \mathcal{N}([1, 0]^T, 0.01\mathbf{I})$. Fig. 3.2 depicts the synchronization manifold, \mathbf{s}, and a sample trajectory, \mathbf{x}_1, converging to \mathbf{s}. Fig. 3.3 presents the analytical lower bound on the probability of stable ε-synchronization in the considered ring network, as a function of σ_{θ_2} and σ_{γ} for $\varepsilon = 0.40$. As it can be seen, the probability of synchronization falls sharply as the variances of mismatches increase. Moreover, we observe that the range of σ_{γ} and σ_{θ_2} for which the network is stable with high probability is rectangular. This is explained by noting that σ is related to the maximum of σ_{γ} and σ_{θ_2}, as it can be seen in (3.23). Another observation from Fig. 3.3 is that even small mismatches leads to instability of the synchronization state even with a relatively large tolerance of $\varepsilon = 0.40$.
Figure 3.2: Synchronization manifold, s, and a sample trajectory, x_1, for a ring network of van der Pol oscillators.

Figure 3.3: $P_{\text{stab}}^{\text{LB}}$ in the ring network as a function of σ_{θ_2} and σ_γ for $\varepsilon = 0.4$.
We now proceed to compare a ring network, an Erdös-Rényi network and a Newman-Watts (small-world) network. For a fair comparison, we choose the network parameters such that all networks have the same number of nodes and the same average node degree. That is, we consider a $N = 100$ node, 10-regular ring, an Erdös-Rényi network with $N = 100$ and randomness parameter $p = 0.1$, and a Newman-Watts network generated from a $N = 100$ node, 6-regular ring and link addition probability $p = 0.4 \times 100/94 = 0.4167$. Fig.s 3.4 through 3.6 present the probability of stability versus network size, N, for these three networks with $\varepsilon = 0.4$. As it can be seen for the Ring network (Fig. 3.4), as N increases, even though the variance of the mismatch input is constant, $\sigma = 3.15\sigma_\gamma$, the ε-synchronization of the network deteriorates. This is because as the degree of the nodes are kept constant and
network size increases, the algebraic connectivity of the network,

\[\mu_{ring}^{N-1} = k - 2 \frac{\sin(k\pi/2N) \cos((k + 2)\pi/2N)}{\sin(\pi/N)}, \]

decreases. For large \(N \), in our example, smaller algebraic connectivity means smaller MLE (See Fig. 3.1), hence the probability of \(\varepsilon \)-synchronization falls sharply.

Fig. 3.5 presents the probability of \(\varepsilon \)-stability of the Erdös-Rényi network. It is interesting to note that since the network is disconnected for smaller network sizes, the network is not synchronized. As network size continues to grow, the network becomes connected and synchronization behavior emerges. This behavior continues until the growth in the network size, increases the variance of the mismatch input, \(\mathbf{v} \), to the extent that the network falls out of \(\varepsilon \)-stability.
Figure 3.5: Probability of stability as a function N, for the Erdös-Rényi network.

Figure 3.6: Probability of stability as a function N, for the Newman-Watts network.
Fig. 3.6 presents the probability of ε-stability for the Newman-Watts network. It is interesting to note the mechanisms at work as N increases: At first, when N is small there are very few added links given a small value of p. Thus, the network has not yet transitioned into a small-world and its algebraic connectivity is still quite close to that of the ring topology. Thus, as the size of the network increases its second smallest eigenvalue decreases. Since the variance of mismatch, v, is constant ($\sigma_b = 3.15\sigma_\gamma$), the probability of stability decreases. As N continues to increase, by adding links in random, sufficient number of long range connections are established and the small-world transition is achieved. Consequently, algebraic connectivity of the network starts to grow rapidly. Hence, λ_i increase and, therefore, $P_{\text{LB}}^{\text{stab}}$ improves. As N continues to increases $\sqrt{K + Np\sigma_\theta^2}$ overtakes $3.15\sigma_\gamma$ in the variance of mismatch and its destructive effect surpasses the improvement caused by transition to small-world. Consequently, we observe that $P_{\text{stab}}^{\text{LB}}$ begins to drop.

Figs. 3.7 through 3.9 depict the probability of ε-stability as a function of ε in the considered Ring, Erdős-Rényi, and Newman-Watts networks for different N and \bar{d}: ($N = 100, \bar{d} = 10$), ($N = 200, \bar{d} = 10$), and ($N = 200, \bar{d} = 20$), respectively. As it can be seen, the analytical lower bound and the simulation result for the ring network are reasonably close. This is due to the homogeneity of its node degrees, i.e. $d_i = K$, which holds true for the other networks as N approaches infinity. The other point directly observed from these figures is that the rise in the probability of the stability is much sharper in the Erdős-Rényi and Newman-Watts networks, this is because the spread of the spectrum, $[\mu_{\text{min}}, \mu_{\text{max}}]$, for these networks are smaller than that of ring topology. This, in fact, causes the Lyapunov exponents of the traverse modes to be closer to each other and hence the networks become easily and rapidly synchronized. Other interesting observation is that the results for the Erdős-Rényi and Newman-Watts networks are similar. The reason can be sought in the effectiveness of communication in both networks to each other. As it has been shown in [4], even though
small-worlds are strongly locally connected (due to ring substrate), they have almost the same average shortest path length of Erdős-Rényi networks. This results in almost the same communication efficiency in small-worlds as Erdős-Rényi network. Hence, the synchronizability of both types of networks are similar.

Figure 3.7: P_{stab} as a function of ε for the ring, NW and Erdős-Rényi networks: $N = 100, \bar{d} = 10$.
Figure 3.8: P_{stab} as a function of ε for the ring, NW and Erdős-Rényi networks: $N = 200, \bar{d} = 10$.

Figure 3.9: P_{stab} as a function of ε for the ring, NW and Erdős-Rényi networks: $N = 200, \bar{d} = 20$.
Conclusion

We had seen that mismatch in either couplings or the local dynamics does not allow perfect synchronization. Rather, the network can only be synchronized to a neighborhood of the synchronization manifold. Considering this relaxed notion of synchronization we have provided a generalized master stability function that takes the mismatches into account. We then used this master stability function to derive lower bounds on the probability of synchronization in regular, Erdös-Rényi, and Newman-Watts networks. We verified our results using numerical examples involving networks of van der Pol oscillators. These examples clearly shows the different phase transition behavior of the different network models.
CHAPTER 4: PINNING CONTROL IN NETWORKS OF DYNAMICAL SYSTEMS

Here, we highlight the effectivity of the pinning control schemes by employing the spectral characteristics of the network. We derive sufficient stability conditions for pinning control of linearly coupled oscillators based on Lyapunov direct method. The introduced stability conditions relate the spectral characteristics of the network to the global stability of synchronization. Based on the derived stability conditions, we introduce an algorithm that achieves global stability of synchronization with a small number of pinning nodes.

Moreover, to the best of our knowledge, all existing studies consider unconstrained controllers in pinning schemes. Since using very large gains in a controller is not practical, we assume that the controller gains are bounded.

System Description

Consider N identical oscillators with phase space equation

$$\dot{x}_i = Ax_i + Bf(Cx_i),$$ \hspace{1cm} (4.1)

$$x_i(t_0) = x_{i0}.$$

Now suppose that these oscillators are linearly coupled as

$$\dot{x}_i = Ax_i + Bf(Cx_i) + cH\sum_{j=1}^{N} g_{ji}(x_j - x_i) + u_i,$$ \hspace{1cm} (4.2)
where $x_i \in \mathbb{R}^n$ is the state of node i, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{R}^{m \times n}$ are fixed matrices, and $f : \mathbb{R}^m \to \mathbb{R}^n$ is a nonlinear function. $H \in \mathbb{R}^{n \times n}$ is the coupling matrix and $c > 0$ is the coupling coefficient. $G = [g_{ij}] \in \mathbb{R}^{N \times N}$ is the adjacency matrix of the network: $g_{ij} = 0$ indicates that there is no link from node i to node j and $g_{ij} > 0$ indicates a connection from node i to node j with weight g_{ij}. We assume that there are no self-loops, i.e. $g_{ii} = 0$. We also define the Laplacian matrix of the network, $L \triangleq [l_{ij}]$, as [24]

\[
l_{ij} \triangleq \begin{cases}
\sum_{m=1}^{N} g_{mi} & i = j \\
-g_{ij} & i \neq j
\end{cases}.
\]

Throughout the paper, we assume that the network is connected and there are no isolated components. In the case of an undirected (bidirectional) network, L is symmetric and positive semidefinite [24].

Let s be the solution of

\[
\dot{s} = As + Bf(Cs),
\]

\[
s(t_0) = s_0,
\]

where $s_0 \in \Omega$, and Ω is the set of all initial conditions x_0 such that, $x(t) \in \Omega$ for all $t \geq t_0$. We know that s is an invariant manifold of (4.1) [5]. This means that for some choice of initial conditions, $X(x_1(t_0), \ldots, x_N(t_0)) \in \Omega^N$, $S = [s, \ldots, s]^T$ is the synchronous solution of (6.1) [5]. Note that if (4.1) has only fixed points, then s would be the attracting fixed point, and Ω would be the basin of attraction corresponding to that fixed point. The same goes for limit cycles and chaotic attractors.

Now if we choose s as a reference signal, the error of trajectory for node i from the invariant
A manifold can be defined as

\[e_i \triangleq x_i - s. \]
(4.4)

We assume that controller input, \(u_i \), is chosen as linear feedback

\[u_i = K_i e_i. \]
(4.5)

Note that since, the pinning approach is decentralized, we only consider the self-feedback in our control rule, and there is no feedback from other nodes in the network.

Suppose that we use \(l \leq N \) controllers to achieve synchronization throughout the network. Let \(\mathcal{L} \triangleq \{i_1, \cdots, i_l\} \) be the set of pinning points. Then \(\forall i \in \mathcal{L} \) we have controller \(K_i \neq 0 \) and, \(\forall i \notin \mathcal{L} \) we have \(K_i = 0 \).

Assumption: There exists a positive semidefinite matrix \(M \) such that

\[e_i^{\dagger} [f(x_i) - f(s)] \leq e_i^{\dagger} Me_i, \quad \forall x_i, s \in \Omega \]
(4.6)

where \(\dagger \) denotes the Hermitian transpose. Note that this condition is not very restrictive: If all elements of the Jacobian of \(f(\cdot) \) are bounded, there always exists a positive semidefinite matrix \(M \) such that assumption (4.6) holds [19]. This condition is closely related to QUAD condition as discussed in [90]. Unlike QUAD condition, here \(M \) is not necessarily diagonal.
Analysis

The dynamics of the error terms, \(e_i \), can be found as follows. Starting from (5.4) and substituting (6.1) and (5.3) we have

\[
\dot{e}_i = \dot{x}_i - \dot{s} = A e_i + B [f(Cx_i) - f(Cs)] + u_i + \sum_{j=1}^{N} g_{ji} c H(x_j - x_i)
\]

\[
= A e_i + B [f(Cx_i) - f(Cs)] + u_i - \sum_{j=1}^{N} l_{ji} c H x_j,
\]

with the substitution of \(u_i \) from (5.5) we get

\[
\dot{e}_i = A e_i + B [f(Cx_i) - f(Cs)] + K_i e_i - \sum_{j=1}^{N} l_{ji} c H x_j.
\]

Since \(\sum_j l_{ji} = 0 \), we can add \(\sum_j l_{ji} H s = 0 \), to the right hand side without violating the equality

\[
\dot{e}_i = A e_i + B [f(Cx_i) - f(Cs)] + K_i e_i - \sum_{j=1}^{N} l_{ji} c H x_j - \sum_{j=1}^{N} l_{ji} c H x_j
\]

\[
= A e_i + B [f(Cx_i) - f(Cs)] + K_i e_i - \sum_{j} l_{ji} c H e_j.
\]

Theorem: If assumption (4.6) holds, synchronization in the network of identical oscillators is asymptotically stable if \(K_i \) satisfy the following set of linear matrix inequalities (LMI)

\[
A - \lambda_i c H + B^T C^T M C B + \sum_{j \in L} |q_{ij}|^2 K_j < 0,
\]

(4.8)
for all $i \in \mathcal{N} = \{1, \cdots, N\}$, where λ_i is the ith eigenvalue of the Laplacian matrix L, and $Q = [q_{ij}]$ is a unitary matrix associated with Schur decomposition of L. That is $L = Q^\dagger A Q$ and λ_i are the diagonal entries of A. Moreover, A is diagonal if L has N distinct eigenvalues. Otherwise it is upper triangular.

Proof. Consider the Lyapunov function

$$v \triangleq \frac{1}{2} e^\dagger e = \frac{1}{2} \sum_i e_i^\dagger e_i.$$

where $e = [e_1^T \cdots e_N^T]^T$. Thus, we can write (5.7) as

$$\dot{e} = (I_N \otimes A)e + (I \otimes B) \begin{bmatrix} f(Cx_1) - f(Cs) \\ \vdots \\ f(Cx_N) - f(Cs) \end{bmatrix} - c(L \otimes H)e + \text{diag}([K_1, \cdots, K_N])e. \quad (4.9)$$

The derivative of the Lyapunov function can be calculated as

$$\dot{v} = e^\dagger \dot{e} = \sum_{i \in \mathcal{N}} e_i^\dagger \dot{e}_i. \quad (4.10)$$

Substituting (4.9) in (4.10) the derivative of Lyapunov function is

$$\dot{v} = e^\dagger (I \otimes A - cL \otimes H + \text{diag}([K_1, \cdots, K_N]))e$$

$$+ e^\dagger (I \otimes B) \begin{bmatrix} f(Cx_1) - f(Cs) \\ \vdots \\ f(Cx_N) - f(Cs) \end{bmatrix}$$

defining $\eta \triangleq (Q \otimes I)e$, or $\eta_i = \sum_{j \in \mathcal{N}} q_{ij} e_j$, and using the Kronecker product properties, we
have $v = 1/2 \eta^\dagger \eta$, and

$$
\dot{v} = \eta^\dagger \left\{ \begin{array}{c}
I \otimes A - cA \otimes H + \text{diag} \left(\left[\sum_{j \in \mathcal{L}} q_{ij}^2 K_j \right] \right) \end{array} \right\} \eta + \eta^\dagger (Q \otimes I) (I \otimes B) \begin{bmatrix}
\sum_{i \in \mathcal{N}} (f(Cx_i) - f(Cs)) \\
\vdots \\
\sum_{i \in \mathcal{N}} (f(Cx_N) - f(Cs))
\end{bmatrix}
\leq \eta^\dagger \left\{ \begin{array}{c}
I \otimes A - cA \otimes H + \text{diag} \left(\left[\sum_{j \in \mathcal{L}} q_{ij}^2 K_j \right] \right) \end{array} \right\} \eta + \eta^\dagger (I \otimes (B^TMC^T)CB) \eta
= \eta^\dagger \left\{ \begin{array}{c}
I \otimes A - cA \otimes H + \text{diag} \left(\left[\sum_{j \in \mathcal{L}} q_{ij}^2 K_j \right] \right) + I \otimes (B^TMC^T) \end{array} \right\} \eta
= \sum_{i \in \mathcal{N}} \eta_i^\dagger \left(A - \lambda_i cH + \sum_{j \in \mathcal{L}} q_{ij}^2 K_j + B^TMC^T \right) \eta_i
$$

Thus, having

$$
A - \lambda_i cH + \sum_{j \in \mathcal{L}} q_{ij}^2 K_j + B^TMC^T \prec 0
$$

for all $i \in \mathcal{N}$ guarantees that $\dot{v} < 0$, which mean that the synchronization is stable.

Corollary: If assumption (4.6) holds, the set of controllers $u_i = K_i e_i = -c k_i H e_i$ for $i \in \mathcal{L}$ globally asymptotically stabilizes the synchronization in the network, if k_i satisfy

$$
A - c(\lambda_i + \sum_{j \in \mathcal{L}} |q_{ij}|^2 k_j) H + B^TMC^T \prec 0,
\tag{4.11}
$$

for all $i \in \mathcal{N}$.

This corollary is more effective when H is positive definite. Hereafter, we limit ourselves to the case of positive definite H, as assumed in [17] [19] [49].

Remark 1: It is clear from (4.11) that the dynamics of the oscillators can be stabilized
around the synchronization manifold by utilizing one controller with a very large control
gain, as long as there exists a Schur decomposition such that \(\mathbf{Q} \) has at least one nonzero
column.

While the synchronization can be stabilized with a single controller, it is also clear from
(4.11) requires a large controller gain. However, in most real world applications having a
controller with a large gain is not desirable. To address this issue we seek to stabilize the
network with small number of controllers, \(|\mathcal{L}| \), under the constraint

\[||\mathbf{K}_i|| < p \quad \forall i \in \mathcal{L}. \] (4.12)

Following the corollary, we form the following function

\[\Psi(\mu) = \text{Re}\{\lambda_{\text{max}}(\mathbf{A} + \mathbf{B}^T \mathbf{C}^T \mathbf{MCB} - \mu c \mathbf{H})\}, \] (4.13)

where \(\text{Re}\{\cdot\} \) returns the real part of the argument. Since the coupling matrix is assumed
to be positive definite, \(\Psi(\mu) \) is a strictly decreasing function of \(\mu \). Thus, there exist \(\mu^* \) such
that \(\mu > \mu^* \) satisfies \(\Psi(\mu) < 0 \); or

\[\mu^* = \text{minimize } \mu \]

subject to \(\Psi(\mu) \leq 0. \)

In other words, if the network has a larger algebraic connectivity [31] than \(\mu^* \), it will achieve
stability. Thus, if LMI’s in (4.8) or (4.11) are not all satisfied, it will be due to the smaller
eigenvalues.

Remark 2: It has been shown that for unweighted-undirected networks, if \(\lambda_i \) and \(d_i \) are
sorted in descending order, \(\lambda_i \) majorize \(d_i \) \([31]\), i.e.

\[
\sum_{j=1}^{r} \lambda_j \geq \sum_{j=1}^{r} d_j \quad 1 \leq r \leq N,
\]

Also we know that \(\text{trace}(L) = \sum_{i=1}^{N} d_i = \sum_{i=1}^{N} \lambda_i \). Therefore,

\[
\sum_{j=1}^{r} \lambda_{N-j} \leq \sum_{j=1}^{r} d_{N-j} \quad 1 \leq r \leq N.
\]

Hence, lower degrees are more closely linked to the smaller eigenvalues compared to higher degrees. This suggests that lower degree nodes are more susceptible to instability than the higher degree nodes. Thus, pinning the lower degrees is more effective than pinning other nodes. This also has been shown in \([19]\).

Pinning Algorithm

It is clear from (4.11) that larger controller gains help stability. Therefore, when a node is assigned to be a pinning point, one would like to maximize its feedback gain, as allowed by the constraint. Thus, we set

\[
k_i = \frac{p}{c||H||} a_i,
\]

where \(a_i = 1 \) indicates that \(i \) is a pinning point \((i \in L) \) and \(a_i = 0 \) means \(i \notin L \). Hence, the stability conditions can be written as

\[
\mu^* - \lambda_i \leq \frac{p}{c||H||} \sum_{j \in L} |q_{ij}|^2 \quad (4.14)
\]

for all \(i \in N \).
Thus, the problem of finding minimum number of pinning controllers is reduced to

\[
\begin{align*}
\text{minimize} & \quad \sum_{i \in \mathcal{N}} a_i \\
\text{subject to} & \quad \mu^* - \lambda_i \leq \frac{p}{\|H\|} \sum_{j=1}^{N} a_j |q_{ij}|^2 \quad \forall i \in \mathcal{N}_0.
\end{align*}
\]

(4.15)

Here \mathcal{N}_0 contains all $i \in \mathcal{N}$ for which the condition in (4.14) is not satisfied.

This is a standard binary linear program, which is known to be NP-hard in general. In
the following we propose a suboptimal heuristic algorithm to assign pinning points. Our
algorithm is based on the observation that the constraints with smaller eigenvalues requires
more effective gain, $\sum_{j=1}^{N} |q_{ij}|^2 k_i$, to be satisfied. Thus, we start with condition with the
smallest eigenvalue and proceed to satisfy the conditions until we reach the condition with
largest eigenvalue that is not yet satisfied. The following outlines the algorithm:

1. Sort $\lambda_i \quad \forall i \in \mathcal{N}_0$ such that $0 = \lambda_{i_0} < \lambda_{i_1} \leq \cdots \leq \lambda_{i_{N_0-1}}$.

2. Set $v := 0$, and $\mathcal{L} := \emptyset$.

3. If $\mathcal{N}_v = \emptyset$

 • Done

 else go to 4.

4. Add j^* to \mathcal{L} where $j^* = \arg \max_{j \notin \mathcal{L}} |q_{iv,j}|^2$.

5. If (4.14) is satisfied for i_v

 • $v := v + 1$.

 • Set \mathcal{N}_v to include i for which (4.14) is not satisfied.

 • Go to 3.
else, go to 4.

This algorithm provides the suboptimal solution in polynomial time.

Numerical Example

In this section we study a numerical example using the well-known Lorenz chaotic attractor [19]. Consider the state space equation of Lorenz attractor

\[
\begin{align*}
\dot{x}_1 &= -35x_1 + 35x_2 \\
\dot{x}_2 &= -7x_1 + 28x_2 - x_1x_3 \\
\dot{x}_3 &= x_1x_2 - 3x_3.
\end{align*}
\] (4.16)

We can write these equations in the form (6.1) with \(B = C = I_3 \), \(f([x_1 \ x_2 \ x_3]^T) = [0 - x_1x_3 \ x_1x_2]^T \), and

\[
A = \begin{bmatrix}
-35 & 35 & 0 \\
-7 & 28 & 0 \\
0 & 0 & -3
\end{bmatrix}.
\]

Now, we find \(M \) in (4.6) as

\[
e_i^T[f(x_i) - f(s)] = e_{i3}(s_{i1}e_{i2} + x_{i2}e_{i1}) - e_{i2}(s_{i1}e_{i3} + x_{i3}e_{i1}) \\
= -x_{i3}e_{i1}e_{i2} + x_{i2}e_{i1}e_{i3},
\] (4.17)

Since \(x_i \in \Omega \) is bounded, absolute value of its \(m \)th component \(|x_{i,m}| \) can be bounded by \(M_m \).

In this example, we can find these bounds numerically to be \(|x_{i,1}| \leq M_1 = 23 \), \(|x_{i,2}| \leq M_2 = 89 \).
32. \(|x_{i,3}| \leq M_3 = 61\). Using the Cauchy-Schwartz inequality, \(2e_ie_j \leq e_i^2 + e_j^2\), we have

\[
e_i^T[f(x_i) - f(s)] \leq \frac{1}{2}(e_{i1}^2 + e_{i2}^2)|x_{i3}| + \frac{1}{2}(e_{i1}^2 + e_{i3}^2)|x_{i2}|
\leq \frac{M_3}{2}e_{i1}^2 + \frac{M_3 + M_2}{2}e_{i2}^2 + \frac{M_2}{2}e_{i3}^2.
\]

Thus,

\[
M = \frac{1}{2} \begin{bmatrix}
M_3 & 0 & 0 \\
0 & M_2 + M_3 & 0 \\
0 & 0 & M_2
\end{bmatrix} = \begin{bmatrix}
30.5 & 0 & 0 \\
0 & 46.5 & 0 \\
0 & 0 & 16.0
\end{bmatrix}
\]

satisfies (4.6).

We assume the coupling matrix

\[
H = \frac{1}{2} \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

We have chosen \(H\) such that \(||H|| = 1\) so that the coupling strength is only determined by coupling coefficient \(c\).

Threshold value of (4.13), scaled by coupling coefficient, is found to be \(\mu^*c = 68.17\).

For the simulation purposes, here we adopt the Newman’s method to construct a scale-free network [25]. This method, in contrast to the well known random rewiring approach of Watts and Strogatz [4], only adds links randomly between vertices of a regular network with a small probability, \(\rho\). The regular network considered here is a ring network with coordination number \(m\).
Figure 4.1: Percentage of required pinning points ($\delta = l/N$) versus coupling strength, c, for different values of controller gain constraint, p, in a scale-free network ($N = 300$, $m = 10$ and $\rho = 0.005$), using our proposed method. The ratio of required number of controllers to the network size, $\delta = l/N$, versus coupling strength, c, for different constraint values, p, is given in Fig. 4.1. It is clear that the performance of the proposed scheme strongly depends on the value of constraint on controllers’ gain. More importantly, it can be seen that our approach can stabilize the network for even very small coupling strengths. In contrast, other schemes such as [19] and [69], cannot
stabilize the synchronization for small coupling coefficients. Also in Fig. 4.1, we see a step-like descending of required ratio of controllers as coupling strength increases. The reason for this behavior is that when c increases, the unstable modes become stable one by one and they no longer contribute to the constraint in (4.15). Due to high clustering coefficient in scale-free networks, eigenvalues appear as bundles close to each other (Fig. 4.2). Consequently, when c crosses each bundle, δ decreases quickly. Then, it remains flat until it reaches another bundle of eigenvalues.

Figure 4.2: Histogram of eigenvalues of Laplacian matrix of a scale-free network ($N = 300$, $m = 10$ and $\rho = 0.005$), for one realization.
Figure 4.3: Percentage of required pinning points ($\delta = l/N$) versus coupling strength, c, proposed method for different values of controller gains, p, in a scale-free network ($N = 300$, $m = 10$ and $\rho = 0.005$).

Fig. 4.3 shows the percentage of required pinning controllers for stabilization of synchronization versus constraint p with low degree assignment approach of [19] and our proposed scheme, with different coupling strengths. The simulations are performed for both methods under the same constraint on the controller gains. As it can be seen, our method guarantees stability with a smaller number of pinning controllers than the lower-degree assignment proposed in [19]. It is worth noting that when the coupling matrix is positive definite, it has been shown in [19] that lower degree assignment requires fewer nodes to be pinned in comparison to random and higher degree assignments studied in [69].

It is clear that as the constraint on the controller gains is loosened, our scheme uses fewer controllers to stabilize the synchronization throughout the network. In the extreme, if the
constraint is sufficiently relaxed, our approach coincides with that of [17] where the stabilization is accomplished using a single pinning controller.

Another issue of the interest is the total power consumed by the controllers. Fig. 4.4 shows the normalized total required power, lp^2, as a function of the constraint, p, for different coupling strengths, c. We can see that using multiple controllers results in lower total required power compared to single controller pinning method. The overlapped part of the plots corresponding to the proposed method is due to requiring the pinning of all the nodes to achieve stabilization in lower gains. Also, it is clear that our algorithm outperforms the approach in [19] in the sense of required total power to stabilize the network.

Figure 4.4: Total required power consumed by controllers in a scale-free network for different coupling strengths.
Conclusion

We introduced a pinning algorithm based on spectrum of the network, and assuming constrained controller gains. The proposed algorithm identifies the spectral modes where the network is susceptible to instability. With a numerical example we have shown how the required ratio of pinning changes in terms of structure of scale-free networks. We have also shown that our scheme outperforms the existing controller-assignments such as random, higher-degree or lower-degree assignments, in the sense of using fewer controllers under the same conditions. We have argued that if the constraint on the controller gains is relaxed sufficiently, our algorithm can pin the network by a single controller. Also we demonstrated that our method is more efficient than the existing methods in terms of total power.
CHAPTER 5: PINNING CONTROL IN FAST SWITCHING NETWORKS

Motivated by increasing interest in stabilization of switching networks, here, we employ the pinning control approach to stabilize a switching network of oscillators. We find the smallest ratio of pinned nodes required to guarantee stability of synchronization. We then relate the maximum allowable feedback gain to minimum pinning ratio.

Notations and System Description

Notation

The set of real n-vectors is denoted by \mathbb{R}^n and the set of real $m \times n$ matrices is denoted by $\mathbb{R}^{m \times n}$. Matrices and vectors are denoted by capital and lower-case bold letters, respectively. Identity matrix of size m is denoted by \mathbf{I}_m and all one matrix of size $m \times n$ by $\mathbf{1}_{m \times n}$.

Table I summarizes the variables used frequently in the paper.
Table 5.1: Frequently used variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>State vector of node i</td>
</tr>
<tr>
<td>u_i</td>
<td>Input vector of node i</td>
</tr>
<tr>
<td>s</td>
<td>Reference signal</td>
</tr>
<tr>
<td>e_i</td>
<td>Error of trajectory from reference signal for node i</td>
</tr>
<tr>
<td>F</td>
<td>Jacobian matrix of local dynamics</td>
</tr>
<tr>
<td>H</td>
<td>Coupling matrix between two nodes in the dynamic network</td>
</tr>
<tr>
<td>c</td>
<td>Coupling strength in dynamics network</td>
</tr>
<tr>
<td>N</td>
<td>Network size</td>
</tr>
<tr>
<td>$A = [a_{ij}]$</td>
<td>Adjacency matrix of the network</td>
</tr>
<tr>
<td>$L = [l_{ij}]$</td>
<td>Laplacian matrix of the network</td>
</tr>
</tbody>
</table>

System Description

Consider N diffusively coupled identical oscillators

$$
\dot{x}_i = f(x_i) + c \sum_{j=1}^{N} a_{ij}(t)H(x_j - x_i) + u_i, \quad (5.1)
$$

$$
x_i(t_0) = x_{i0},
$$

where $x_i \in \mathbb{R}^n$ is the state of node i, $f : \mathbb{R}^n \to \mathbb{R}^n$ is a nonlinear function describing the dynamics of the oscillators, H is the coupling matrix, and $c > 0$ is the coupling strength.
$A = [a_{ij}(t)]$ is the binary adjacency matrix of the network: $a_{ij}(t) = 0$ indicates that there is no coupling from node i to node j and $a_{ij}(t) = 1$ indicates a connection from node i to node j. We assume that the network is undirected, i.e. A is symmetric. Moreover, we assume that there are no self-loops, i.e. $a_{ii}(t) = 0$ for all t. Furthermore, we assume that with period T_s, $a_{ij}(t)$ takes a new binary value, independent of its previous values and of other links. In other words, the graph is constant over time intervals of length T_s, and when a switching occurs, the new graph is an Erdős-Rényi graph, independent of all past graphs, with edge probability p. Moreover, it is assumed that $a_{ij}(t)$ takes the value 1 with probability p and 0 with probability of $1 - p$. The Laplacian matrix of the network, $L(t) \triangleq [l_{ij}(t)]$, is defined as

$$l_{ij}(t) \triangleq \begin{cases} \sum_{m=1}^{N} a_{mi}(t) & i = j \\ -a_{ij}(t) & i \neq j \end{cases}. \quad (5.2)$$

Let s be the solution of

$$\dot{s} = f(s), \quad (5.3)$$
$$s(t_0) = s_0,$$

where $s_0 \in \Omega$, and Ω is the set of all initial states x_0 such that, $x(t) \in \Omega$ for all $t \geq t_0$. In [5] it is shown that s is an invariant manifold of (6.1). This means that for some choice of initial conditions, $(x_{1,0}, \cdots, x_{N,0}) \in \Omega^N$, (s, \cdots, s) is the synchronous solution of (6.1) [5]. Note that if (5.3) only has fixed points, then s will be an attracting fixed point, and Ω will be the basin of attraction corresponding to that fixed point. The same goes for limit cycles and chaotic attractors.

Now, if we choose s as a reference signal, the error of trajectory of node i from the invariant
manifold can be defined as

$$e_i \triangleq x_i - s.$$ \hspace{1cm} (5.4)

We assume that the control input, u_i, is chosen as linear feedback

$$u_i = -\zeta_i k H e_i,$$ \hspace{1cm} (5.5)

where k is the feedback gain and ζ_i is a binary variable, where $\zeta_i = 1$ indicates that node i is pinned. Note that since the pinning approach is decentralized, we only consider the self-feedback in our control rule, and there is no feedback from other nodes in the network.

Analysis

The dynamics of the error terms, e_i, can be found as follows. Starting from (5.4) and substituting (6.1) and (5.3) we have

$$\dot{e}_i = \dot{x}_i - \dot{s}$$

$$= F e_i + u_i + \sum_{j=1}^{N} a_{ji} c H (x_j - x_i)$$

$$= F e_i + u_i - \sum_{j=1}^{N} l_{ji} c H x_j.$$ \hspace{1cm} (5.6)

With the substitution of u_i from (5.5) we get

$$\dot{e}_i = F e_i - k \zeta_i H e_i - \sum_{j=1}^{N} l_{ji} c H x_j.$$ \hspace{1cm} (5.7)
Since $\sum_j l_{ji} = 0$, we can add $\sum_j l_{ji}Hs = 0$, to the right hand side without violating the equality

$$
\dot{e}_i = Fe_i - k\zeta_i He_i + \sum_{j=1}^N l_{ji}cHs - \sum_{j=1}^N l_{ji}cHx_j \\
= Fe_i - k\zeta_i He_i - \sum_j l_{ji}cHe_j.
$$

(5.6)

Now, stacking e_i yields

$$
\dot{e} = \left(I_N \otimes F - \left[k \text{diag}(\zeta_1, \ldots, \zeta_N) + cL(t) \right] \otimes H \right) e,
$$

(5.7)

where $e = [e_1^T \ e_2^T \cdots e_N^T]^T$. If we define matrix $M(t) = [m_{ij}(t)]$ by

$$
m_{ij}(t) = \begin{cases}
 l_{ij}(t) & i \neq j \& 1 \leq i, j \leq N \\
 l_{ii}(t) + \zeta_i k/c & i = j \& 1 \leq i \leq N \\
 0 & i = N + 1 \\
 -\zeta_i k/c & j = N + 1 \& 1 \leq i \leq N
\end{cases},
$$

(5.8)

then (5.7) can be written as

$$
\dot{y} = (I_{N+1} \otimes F - cM(t) \otimes H)y,
$$

(5.9)

where $y = [e^T \ s^T]^T$.

To study the stability of the system (5.9) with the fast switching condition [43, 52, 57], we will use the following theorem:
Theorem 1 [52]: Consider the dynamical system

\[\dot{e} = (I \otimes F(t) + \bar{L} \otimes H)e, \quad e(t_0) = e_0, \quad \forall t \geq t_0 \quad (5.10) \]

where

\[\bar{L} = \mathbb{E}[L(t)], \]

and \(\mathbb{E}[:] \) is the expected value operator. Assuming that

1. \(F(t) \) is bounded and continuous in \(\mathbb{R}_+ \), and
2. switching of \(L(t) \) is ergodic, and
3. system (5.10) is uniformly asymptotically stable,

then there exists \(T_d > 0 \) such that for all \(0 < T_s \leq T_d \), the stochastic system

\[\dot{z} = (I \otimes F(t) + L(t/T_s) \otimes H)z, \quad z(t_0) = z_0, \quad \forall t \geq t_0 \]

is uniformly asymptotically stable almost surely.

Based on this theorem, there exists a dwelling time \(T_d \) such that if \(T_s < T_d \), then the stability of the system (5.9) can be investigated by considering the expected value of \(M(t) \), denoted by \(\bar{M} \), and we can carry out the stability analysis by using master stability function as in [5].

To use the results in Theorem 1, first we calculate the expected value of the Laplacian matrix.
of the system in (5.9)

\[
\bar{M} = p \begin{bmatrix}
(N - 1) + \frac{k}{c_p} \zeta_1 & -1 & \cdots & -1 & -\frac{k}{c_p} \zeta_1 \\
-1 & (N - 1) + \frac{k}{c_p} \zeta_2 & \cdots & -1 & -\frac{k}{c_p} \zeta_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-1 & -1 & \cdots & (N - 1) + \frac{k}{c_p} \zeta_N & -\frac{k}{c_p} \zeta_N \\
0 & 0 & \cdots & 0 & 0
\end{bmatrix}.
\] (5.11)

Now we proceed to calculate the eigenvalues of \(\bar{M} \) to determine the stability of the network by the available results from static networks. The following Lemma provides the eigenvalues of \(\bar{M} \).

Lemma 4. Eigenvalues of matrix \(\bar{M} \) are

\[
\lambda_{N+1} = 0
\]

\[
\lambda_N = \frac{1}{2} \left(pN + k \frac{k}{c} - \sqrt{(pN + k \frac{k}{c})^2 - \frac{4pmk}{c}} \right)
\]

\[
\lambda_{N-1} = \cdots = \lambda_{m+1} = pN
\]

\[
\lambda_m = \frac{1}{2} \left(pN + k \frac{k}{c} + \sqrt{(pN + k \frac{k}{c})^2 - \frac{4pmk}{c}} \right)
\]

\[
\lambda_{m-1} = \cdots = \lambda_1 = k \frac{k}{c} + pN,
\]

where \(m \) is the number of pinning nodes.
Proof. We can write \bar{M} as

$$\bar{M} = p \begin{bmatrix} k' I_m + K_m & -I_{m \times N - m} & 1/p 1_{m \times 1} \\ -I_{m \times N - m}^T & m I_{N - m} + K_{N - m} & 0 \\ 0 & \cdots & 0 \end{bmatrix},$$

where $k' = k/cp + N - m$ and

$$K_n = \begin{bmatrix} (n - 1) & -1 & \cdots & -1 \\ -1 & (n - 1) & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & (n - 1) \end{bmatrix}_{n \times n},$$

is the Laplacian of a complete network of size n. The characteristic polynomial of matrix K_n is [24]

$$\phi_{K_n}(\lambda) = \lambda(\lambda - n)^{n-1}.$$

(5.12)

Now we calculate the characteristic polynomial of $\bar{M}' = \bar{M}/p$:

$$\phi_{\bar{M}'}(\lambda) = |\lambda I_{N + 1} - \bar{M}/p|$$

$$= \lambda \times \begin{vmatrix} (\lambda - k') I_m - K_m & 1_{m \times N - m} \\ 1_{m \times N - m}^T & (\lambda - m) I_{N - m} - K_{N - m} \end{vmatrix}$$
Using Schur formula for block matrices, we have

\[
\phi_{\mathbf{M}'}(\lambda) = \lambda \times |(\lambda - k')\mathbf{I}_m - \mathbf{K}_m| \times |(\lambda - m)\mathbf{I}_{N-m} - \mathbf{K}_{N-m} - (\mathbf{I}_m - \mathbf{K}_m)I_{m\times N-m}|^{-1}1_{m\times m}
\]

\[
= \lambda \times \phi_{\mathbf{K}_m}(\lambda - k') \times |(\lambda - m)\mathbf{I}_{N-m} - \mathbf{K}_{N-m} - m \frac{m}{\lambda - k'}1_{N\times N}|^{-1}1_{N\times N-m}
\]

where the last equality is due to

\[
\frac{1}{m} \times 1_{m\times m} = \frac{n}{\lambda}1_{m\times m}.
\]

Since \((\lambda - pm)\mathbf{I}_{N-m} - \mathbf{K}_{N-m}\) is invertible we have

\[
\phi_{\mathbf{M}'}(\lambda) = \lambda \times \phi_{\mathbf{K}_m}(\lambda - k') \times |(\lambda - m)\mathbf{I}_{N-m} - \mathbf{K}_{N-m} - m \frac{m}{\lambda - k'}1_{N\times N}|^{-1}1_{N\times N-m}.
\]

Since \(1_{m\times m} = 1_{m\times 1}1_{1\times m}\), using Sylvester’s determinant theorem the second term can be written as

\[
1 - \frac{N - m}{\lambda - m}1_{1\times N-m}[(\lambda - m)\mathbf{I}_{N-m} - \mathbf{K}_{N-m}]^{-1}1_{N-m\times 1} = \left(1 - \frac{m}{\lambda - k'}\right)\frac{N - m}{\lambda - m} \phi_{\mathbf{K}_{N-m}}(\lambda - m).
\]

Substituting the characteristic polynomial of Laplacian of a complete network of size \(m\) in (5.12), the characteristic polynomial for \(\mathbf{M}\) can be obtained as

\[
\phi_{\mathbf{M}'}(\lambda) = \lambda(\lambda - \frac{k}{c} - pN)^{m-1}(\lambda - pN)^{N-m-1}\left(\lambda^2 - \frac{k}{c} + pN\lambda + \frac{mk}{c}\right).
\]

Now if we apply the results of Lemma 1 to the type 1 and 2 MSF, we reach the following
Theorem 2: Network is stabilizable by \(m \) pinning controllers with gain \(k \) if

1. the network has type 2 MSF, and

\[
\alpha_1 \leq c\lambda_N = \frac{1}{2} \left(cpN + k - \sqrt{(cpN + k)^2 - 4cpmk} \right),
\]

2. the network has type 3 MSF, and the controller gain and the number of pinning controllers satisfy

\[
\alpha_1 \leq c\lambda_N = \frac{1}{2} \left(cpN + k - \sqrt{(cpN + k)^2 - 4cpmk} \right)
\]

and,

\[
c\lambda_1 = k + cpN \leq \alpha_2.
\]

Proof: Follows directly from Lemma 1 and the MSF being negative.

Let us define pinning ratio as \(\rho = m/N \) and average coupling strength as \(\bar{c} = cp \).

Remark 5. Based on Theorem 2, regardless of whether the MSF is of type 1 or 2, we must have \(c\lambda_N \geq \alpha_1 \) which using Lemma 1 yields

\[
m \geq \frac{\alpha_1(\bar{c}N + k) - \alpha_1^2}{\bar{c}k}.
\]

In other words, given \(k \), the smallest number pinning controllers that can stabilize the network
is
\[m_{\min} = \left\lceil \frac{\alpha_1(cN + k) - \alpha_1^2}{\bar{c}k} \right\rceil, \]

and the smallest ratio of pinning nodes is
\[\rho_{\min} = \frac{1}{N} \left\lceil \frac{\alpha_1(cN + k) - \alpha_1^2}{\bar{c}k} \right\rceil. \]

Remark 6. If for systems with type 2 MSF, the control gain, \(k \), can be chosen to be sufficiently large, the smallest number of pinning controllers and the smallest ratio of controllers can only be improved to
\[m^\ast_{\min} = \left\lceil \frac{\alpha_1}{\bar{c}} \right\rceil, \]

and
\[\rho^\ast_{\min} = \frac{1}{N} \left\lceil \frac{\alpha_1}{\bar{c}} \right\rceil. \]

Remark 7. For systems with type 3 MSF, the second condition is \(\lambda_1 \leq \alpha_2/c \) which using Lemma 1 yields
\[k \leq \alpha_2 - \bar{c}N = k_{\max}. \]

Thus, the smallest number of pinning controllers and the smallest ratio of controllers can be improved to
\[m^\ast_{\min} = \left\lceil \frac{\alpha_1\alpha_2 - \alpha_1^2}{\bar{c}\alpha_2 - \bar{c}^2N} \right\rceil. \]
and the smallest ratio of pinning nodes is

$$\rho_{\text{min}}^* = \frac{1}{N} \left[\frac{\alpha_1 \alpha_2 - \alpha_1^2}{\bar{c} \alpha_2 - \bar{c}^2 N} \right].$$

It is interesting to note that \(\rho_{\text{min}}^* \) is lower bounded by the dynamical parameters of the system, namely \(\alpha_1 \) and \(\alpha_2 \)

$$\rho_{\text{min}}^* \geq \frac{1}{N} \left[\frac{4N(\alpha_1 \alpha_2 - \alpha_2^2)}{\alpha_2^2} \right] \approx \frac{4\alpha_1}{\alpha_2}.$$

which can be achieved if \(\bar{c} = \alpha_2/2N \) and \(k = \alpha_2/2 \).

Corollary 2. A system with type 3 MSF can be stabilized by pinning technique if and only if

$$\frac{\alpha_2 - |\alpha_2 - 2\alpha_1|}{2N} \leq \bar{c} \leq \frac{\alpha_2 + |\alpha_2 - 2\alpha_1|}{2N}.$$

Proof: Follows directly from the combination of the two inequalities of Theorem 2 part 2.

Numerical Example

In this section we study a numerical example using the well-known Rössler chaotic attractor [43]. Consider the state space equation of Rössler attractor

\[
\begin{align*}
\dot{x}_1 &= x_1 - x_2 \\
\dot{x}_2 &= x_1 + \theta x_2 \\
\dot{x}_3 &= \beta + x_3(x_1 - \gamma).
\end{align*}
\] (5.13)

where \(\theta = 0.2, \beta = 0.2, \) and \(\gamma = 7. \)
We assume the coupling matrix

\[
H = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}.
\]

With the choice of oscillator parameters in (5.13), the system has a type 3 MSF and we have \(\alpha_1 = 0.2 \) and \(\alpha_2 = 4.8 \).

Figure 5.1: Pinning ratio \(\rho \) and controller gain \(k \) as a function \(p \) for different network sizes.
Fig. 5.1 shows the ratio of the pinning nodes and maximum controller gain k required to reach the stable convergence to the reference signal, s, versus p, for several network sizes, N. Here we have assumed that the coupling strength is $c = 0.01$. The switching parameter p controls the average degree of the nodes, pN. As it is illustrated, network can be stabilized if $20 < pN < 460$ which is a direct result of corollary 1. Also, we observe that as p increases the pinning ratio drops until it reaches a minimum of $\rho_{\text{min}}^{\star} \approx 0.16$ (dashed line) at $p^\star = \alpha_2/(2cN) = 240/N$. It is very interesting that the minimum pinning ratio is almost independent of the network size. As p exceeds p^\star, the pinning ratio increases until reaches 1. After that network becomes unstable since average coupling, \bar{c} reaches α_2. Hence the magnitude of controller gain becomes too small to stabilize the network, $k \leq \alpha_2 - cpN$. This constraint on controller gain is the reason for increase in pinning ratio in larger networks as p grows, since as smaller controller gain is available for controllers, it should be compensated by the increase in the number of employed controllers, hence m increases.

Fig. 5.2 illustrates the the ratio of the pinning nodes and controller gain k required to reach the stability of synchronization versus network size N, for different values of p. As it can be observed, for $20 < pN < 460$ network can be stabilized and outside this interval, the evolution of the network to s is improbable. Also as N grows the same linear decline in the maximum employable controller gain is observed which is predicted by the Theorem 2.

Conclusion

We have analyzed the effectiveness of pinning control under the assumption of fast switching. Bounds on average coupling strength where this strategy can be utilized to achieve stable synchronization are given. We have also calculated the minimum ratio of pinning nodes to achieve the stability based on the type of the master stability function describing the network.
Figure 5.2: Pinning ratio ρ and controller gain k as a function N for some values of p.

We have demonstrated that if a system has type 3 master stability function then the controller gain is bounded. We have also shown that if the constraint on the gain controller is satisfied, in case of type 3 master stability function, the ratio of pinning controllers is almost inversely related to controller gain.
CHAPTER 6: STABILIZING A RANDOM DYNAMICAL NETWORK WITH RANDOM FEEDBACK NETWORK

Although there have been many efforts in the study of the distributed control [73, 75], the impact of topological characteristics of the network on its stability is largely under-studied.

Here, we aim to address some aspects of this problem for large networks. Since considering large networks with non-identical dynamics renders the analysis intractable, here we consider all plants, couplings and controllers to be identical. Moreover, to gain insight into the behavior of large networks without being limited to one particular topology, we take our results further by assuming random networks. To do this we utilize the results in [91], derived for an arbitrary dynamics network, and adapt it to the case where all nodes and coupling dynamics are identical. Then, assuming a random network model, for both dynamics and communications networks, we analyze the probability that the stability condition is satisfied. We then use these results to study asymptotic behavior of large random networks.

Notations and System Description

Notations

The set of real n-vectors is denoted by \mathbb{R}^n and the set of real $m \times n$ matrices is denoted by $\mathbb{R}^{m \times n}$. Matrices and vectors are denoted by capital and lower-case bold letters, respectively. The Euclidean (L_2) vector norm is represented by $\| \cdot \|$. When applied to a matrix $\| \cdot \|$ denotes the L_2 induced matrix norm, $\| A \| = \lambda_{\max}(A^T A)$. Also, we denote a graph corresponding to a network with \mathcal{G}, and vector d denotes the corresponding degree sequence of the graph.
Table 6.1: Frequently used variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>State vector of node i</td>
</tr>
<tr>
<td>u_i</td>
<td>Input vector of node i</td>
</tr>
<tr>
<td>A</td>
<td>Plant dynamics matrix</td>
</tr>
<tr>
<td>H</td>
<td>Coupling matrix between two nodes in the dynamic network</td>
</tr>
<tr>
<td>B</td>
<td>Plant input matrix</td>
</tr>
<tr>
<td>K</td>
<td>Local feedback gain</td>
</tr>
<tr>
<td>L</td>
<td>Inter-plant feedback gain</td>
</tr>
<tr>
<td>c</td>
<td>Coupling strength in dynamics network</td>
</tr>
<tr>
<td>N</td>
<td>Plant network size</td>
</tr>
<tr>
<td>G_D</td>
<td>Dynamics network graph</td>
</tr>
<tr>
<td>G</td>
<td>Adjacency matrix of G_D</td>
</tr>
<tr>
<td>d_D</td>
<td>Degree sequence of G_D</td>
</tr>
<tr>
<td>G_C</td>
<td>Communications (control) network graph</td>
</tr>
<tr>
<td>F</td>
<td>Adjacency matrix of G_C</td>
</tr>
<tr>
<td>d_C</td>
<td>Degree sequence of G_C</td>
</tr>
<tr>
<td>p</td>
<td>Randomness parameter of dynamics network</td>
</tr>
<tr>
<td>q</td>
<td>Conditional randomness parameter of communications network</td>
</tr>
</tbody>
</table>

Table I summarizes the variables used frequently in the rest of this chapter.

System Description

We consider a dynamics network, consisting of N identical linear time-invariant plants described by

$$ \dot{x}_i(t) = Ax_i(t) + Bu_i(t) + c \sum_{j=1}^{N} g_{ji}Hx_j(t), \quad (6.1) $$

$$ x_i(0) = x_{i0} $$
where \(x_i \in \mathbb{R}^n \) is the state of the \(i \)th node, \(u_i \in \mathbb{R}^m \) is the input signal of \(i \)th node, and \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \) and \(H \in \mathbb{R}^{n \times n} \) are the node dynamics, input, and coupling matrices, respectively. \(c \) is the coupling strength and \(G = [g_{ij}] \in \mathbb{R}^{N \times N} \) is the binary adjacency matrix associated with the dynamics network (graph) \(G_D \) with no self loops, i.e. \(g_{ii} = 0 \).

We assume that the isolated nodes are asymptotically stabilizable with local state feedback \(u_i = Kx_i \). That is, there exist \(K \), and positive definite matrices \(P, Q \in \mathbb{R}^{n \times n} \) that satisfy the Lyapunov equation

\[
(A + BK)^T P + P (A + BK) = -Q.
\] (6.2)

Furthermore, we assume that the communications network provides the control input vector for node \(i \)

\[
u_i = Kx_i + c \sum_{j=1}^{N} f_{ji} L x_j,
\] (6.3)

where \(K \) is the local feedback gain, \(L \) is feedback gain from other subsystems, and \(F = [f_{ij}] \) is the binary adjacency matrix corresponding to the communications network, \(G_C \). Again, we assume that there are no self loops, i.e. \(f_{ii} = 0 \).

Network Stability Condition

In this section, we provide a stability condition for a networked system using Lyapunov direct method for directed networks.

The network is asymptotically stable if there exists a Lyapunov function, \(V(\cdot) \), of the network state vectors, which has negative derivative with respect to time.
Following (6.2), we know that $V_{\text{node}}(x_i) = x_i^T P x_i$ is a Lyapunov function for the isolated nodes. Therefore, one reasonable choice of the Lyapunov function candidate for the whole network is

$$V(x_1, \ldots, x_N) = \sum_{i=1}^{N} V_{\text{node}}(x_i) = \sum_{i=1}^{N} x_i^T P x_i.$$ \hfill (6.4)

\textbf{Theorem 9.} Network (6.1) with controller (6.3) is asymptotically stable if

$$c^2 \sum_{j=1}^{N} \frac{||P(f_{ji} BL + g_{ji} H)||^2}{\delta_{ji}} + \sum_{j=1}^{N} g_{ij} \delta_{ij} < \lambda_{\text{min}}(Q)$$ \hfill (6.5)

for all i, where δ_{ij} are arbitrary positive reals.

\textit{Proof.} Follows directly from Theorem 1 in [91]. \hfill \Box

Inspecting (6.5), we observe that if we include feedbacks from subsystems which are not connected in the dynamics network ($f_{ji} = 1$ and $g_{ji} = 0$), we add unnecessary positive terms to the left side of the stability conditions, which makes the conditions harder to satisfy. Therefore, the communications network should be a subset of the dynamics network, \textit{i.e.} $\mathcal{G}_C \subseteq \mathcal{G}_D$ or $f_{ij} = 0$ if $g_{ij} = 0$.

To gain the largest convergence rate for each node, we choose Q to be the identity matrix of consistent size [59]. From (6.5), it is clear that the norm of the closed loop gain from other nodes, $||P(BL + H)||$, should be chosen to be as small as possible. Ideally, if L exists such that $||P(BL + H)|| = 0$ (known as matching condition [73]), the stability conditions in (6.5) are satisfied with $\delta_{ij} < 1/N$ and $f_{ij} = g_{ij}$ or $\mathcal{G}_C = \mathcal{G}_D$. However, It is desirable to use a \mathcal{G}_C that is smaller than \mathcal{G}_D, if possible. Furthermore, in general, the matching condition may
not be satisfied. In this case one would want to choose L that minimizes the norm or

$$L^* = \arg \min_L ||P(BL + H)||.$$ (6.6)

The norm of the closed loop gain will then be $||P(BL^* + H)||$. We note that the optimization problem in (6.6) reduces to a standard semidefinite program (SDP), which can be readily solved (see [91] and Ch.4 in [92]).

Theorem 10. Let $\delta_{ij} = \delta_o$ if $f_{ij} = 0$ and $\delta_{ij} = \delta_c$ if $f_{ij} = 1$, then the network in (6.1) with controller (6.3) is stable if

$$\frac{\alpha_i}{\delta_o} + \frac{\beta_i}{\delta_o} + \frac{\gamma_i}{\delta_c} + \frac{\zeta_i}{\delta_c} < 1,$$ (6.7)

where

$$\alpha_i = c^2 \rho_1 \left(\sum_{j=1}^N g_{ji} - \sum_{j=1}^N g_{ji} f_{ji} \right) = c^2 \rho_1 \left(d_{D,i}^{in} - d_{C,i}^{in} \right),$$

$$\beta_i = \sum_{j=1}^N g_{ij} - \sum_{j=1}^N g_{ij} f_{ij} = d_{D,i}^{out} - d_{C,i}^{out},$$

$$\gamma_i = c^2 \rho_2 \sum_{j=1}^N g_{ji} f_{ji} = c^2 \rho_2 d_{C,i}^{in},$$

$$\zeta_i = \sum_{j=1}^N g_{ij} f_{ij} = d_{C,i}^{out},$$

and $d_{D,i}^{in}$ and $d_{C,i}^{in}$ are the in-degrees of node i in G_D and G_C, respectively. Similarly, $d_{D,i}^{out}$ and $d_{C,i}^{out}$ are the out-degrees of node i in G_D and G_C, respectively. And $\rho_1 = ||PH||^2$ and $\rho_2 = ||P(H + BL^*)||^2$.

Proof. We can write

$$\delta_{ij} = (1 - f_{ij}) \delta_o + f_{ij} \delta_c$$ (6.8)
and
\[
\frac{1}{\delta_{ij}} = \frac{1 - f_{ij}}{\delta_o} + \frac{f_{ij}}{\delta_c}. \tag{6.9}
\]
Also, considering the fact that \(G_C \subseteq G_D \), the stability conditions in (6.5) can be expressed as
\[
c^2 \rho_1 \sum_{j=1}^{N} \frac{g_{ji}}{\delta_{ji}} + c^2 (\rho_2 - \rho_1) \sum_{j=1}^{N} \frac{g_{ji} f_{ij}}{\delta_{ji}} + \sum_{j=1}^{N} \delta_{ij} g_{ij} < 1. \tag{6.10}
\]
Hence, substituting (6.8) and (6.9) in (6.10), yields (6.7).

Corollary 3. If we choose \(\delta_o = c \sqrt{\rho_1} \) and \(\delta_c = c \sqrt{\rho_2} \), the network (6.1) with controller (6.3) is stable if
\[
d_{D,i} \geq d_{C,i} \geq \eta \sqrt{\rho_1} d_{D,i} - \eta \frac{c}{c}, \tag{6.11}
\]
where \(d_{D,i} = d_{D,i}^{in} + d_{D,i}^{out}; \ d_{C,i} = d_{C,i}^{in} + d_{C,i}^{out} \), and
\[
\eta = \frac{1}{\sqrt{\rho_1} - \sqrt{\rho_2}}. \tag{6.12}
\]

Proof. Substituting the values of \(\delta_o \) and \(\delta_c \) in (6.7),
\[
\sqrt{\rho_1} (d_{D,i}^{in} + d_{D,i}^{out}) - (\sqrt{\rho_1} - \sqrt{\rho_2}) (d_{C,i}^{in} + d_{C,i}^{out}) < \frac{1}{c}.
\]

Corollary 4. If the matching condition, \(||P(H + BL^*)|| = 0 \), is satisfied, (6.11) reduces to
\[
d_{D,i} \geq d_{C,i} > d_{D,i} - \frac{1}{c \sqrt{\rho_1}}. \tag{6.13}
\]
Stability of a Dynamics Network with Random Communications Network

The constraints on $d_{C,i}$ derived above guarantee the stability of the network. However, except for the trivial cases (e.g. if the two bounds in (6.11) force $d_{C,i} = d_{D,i}$), given the network G_D it is not easy to find a small G_C such that these conditions are satisfied. In fact, finding the smallest G_C reduces to a linear integer program, which in general is NP-hard.

In the following, to get further insight into the problem, we assume that the communications network, G_C, is a random sub-graph of the dynamics network, G_D. In other words, we assume that with probability q, there is a connection from node i to node j if in the dynamics network there is such a link. That is,

$$f_{ij} = \begin{cases}
1 & \text{with probability } q \text{ if } g_{ij} = 1 \\
0 & \text{otherwise}
\end{cases} \quad (6.14)$$

Note that, here, we make no assumption about the topology of the dynamics Network.

With a random sub-graph as the communications network, the question of interest is: \textit{Given G_D and q, what is the probability that the network is stable?}

\textit{Degree distribution of random subgraph G_C}

Since the in-degree and out-degree of each node are summations of independent Bernoulli random variables with success probability q, their distributions are binomial. That is

$$d_{C,i}^{\text{in}} \sim \mathcal{B}(d_{D,i}^{\text{in}}, q), \quad d_{C,i}^{\text{out}} \sim \mathcal{B}(d_{D,i}^{\text{out}}, q).$$
Since $d_{C,i}^{in}$ and $d_{C,i}^{out}$ are independent random variables and have the same success probability, their sum also has a binomial distribution. That is

$$d_{C,i} \sim \mathcal{B}(d_{D,i}, q).$$

(6.15)

If pN is large enough, we can approximate the distribution of $d_{C,i}$ with a Gaussian distribution with mean $\mu_i = qd_{D,i}$.

(6.16)

Lemma 5. Covariance of $d_{C,i}$ in (6.15) is

$$\sigma_{ij}^2 = \begin{cases}
q(1 - q)d_{D,i} & i = j \\
q(1 - q)(g_{ij} + g_{ji}) & i \neq j
\end{cases}.$$

(6.17)

Proof. We know that

$$d_{C,i} = \sum_{k=1}^{N} (f_{ik}g_{ik} + f_{ki})g_{ki}.$$

(6.18)

118
From definition of covariance, we have

$$
\sigma_{ij}^2 = \mathbb{E}[d_{C,i}d_{C,j}] - q^2d_{D,i}d_{D,j}
$$

$$
= \sum_{k,l} (f_{ik}g_{lk} + f_{ki}g_{kl})(f_{jl}g_{lj} + f_{lj}g_{lj}) - q^2d_{D,i}d_{D,j}
$$

$$
= \sum_{k,l} g_{ik}g_{jl}(q(1 - q)1_{i=j}1_{k=l} + q^2)
$$

$$
+ \sum_{k,l} g_{ik}g_{lj}(q(1 - q)1_{i=l}1_{j=k} + q^2)
$$

$$
+ \sum_{k,l} g_{ki}g_{jl}(q(1 - q)1_{i=l}1_{j=k} + q^2)
$$

$$
+ \sum_{k,l} g_{ik}g_{jl}(q(1 - q)1_{i=j}1_{k=l} + q^2) - q^2d_{D,i}d_{D,j}
$$

where \(1_x\) is the indicator function of \(x\). Thus,

$$
\sigma_{ij}^2 = q(1 - q)1_{i=j}d_{D,i}^\text{out} + q^2d_{D,i}^\text{in}d_{D,j}^\text{in} + \sum_{k,l} (g_{ik}g_{lj} + g_{ki}g_{jl})(q(1 - q)1_{j=k}1_{i=l} + q^2)
$$

$$
+ q(1 - q)1_{i=j}d_{D,i}^\text{in} + q^2d_{D,i}^\text{in}d_{D,j}^\text{in} - q^2d_{D,i}d_{D,j}
$$

or

$$
\sigma_{ij}^2 = q(1 - q)1_{i=j}d_{D,i} + q^2d_{D,i}^\text{out}d_{D,j}^\text{out} + q^2d_{D,i}^\text{out}d_{D,j}^\text{in} + q^2d_{D,i}^\text{in}d_{D,j}^\text{out} + q^2d_{D,i}^\text{in}d_{D,j}^\text{in} - q^2d_{D,i}d_{D,j}
$$

$$
= q(1 - q)(g_{ij} + g_{ji}) + q(1 - q)1_{i=j}d_{D,i}.
$$

Thus, if \(i \neq j\)

$$
\sigma_{ij}^2 = q(1 - q)(g_{ij} + g_{ji}),
$$
and if $i = j$

$$\sigma_{ii}^2 = q(1 - q)d_{D,i}.$$

It is clear from (6.17) that if $d_{D,i} \gg 2 \geq g_{ij} + g_{ji}$, $d_{C,i}$ can be approximated to be independent, and hence, jointly Gaussian. That is

$$d_{C} \sim \mathcal{N}(qd_{D}, q(1 - q)\text{diag}(d_{D})), \quad (6.19)$$

where $d_{C} = \begin{bmatrix} d_{C,1} & \cdots & d_{C,N} \end{bmatrix}^T$ and $d_{D} = \begin{bmatrix} d_{D,1} & \cdots & d_{D,N} \end{bmatrix}^T$.

Probability of Stability

The probability that the stability condition associated with node i is satisfied can be approximated as

$$P(d_{C,i} \geq \phi_i) \approx Q\left(\frac{\phi_i - \mu_i}{\sigma_{ii}}\right), \quad (6.20)$$

where

$$\phi_i = \eta \sqrt{\rho_i} d_{D,i} - \frac{\eta}{c}, \quad (6.21)$$

and

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{+\infty} e^{-\frac{y^2}{2}} dy. \quad (6.22)$$

Since the degrees are almost independent, the probability of stability with random commu-
communications network can be approximated as

\[P_{\text{stab}} \approx \Pi_{i=1}^{N} Q \left(\frac{\phi_i - \mu_i}{\sigma_i} \right) \]

\[= \Pi_{i=1}^{N} Q \left(\frac{\eta \sqrt{\rho_1 - q}}{\sqrt{q(1-q)}} \sqrt{d_{D,i}} - \frac{\eta}{\sqrt{q(1-q)}} \frac{1}{c \sqrt{d_{D,i}}} \right) \]

\[= \Pi_{i=1}^{N} Q \left(\frac{\eta \sqrt{\rho_1 d_{D,i}} - \frac{\eta}{c} - q d_{D,i}}{\sqrt{q(1-q)d_{D,i}}} \right). \]

(6.23)

Erdős-Rényi Dynamics Network

So far we have assumed that the dynamics network is arbitrary and the communications network is random. Now, let us assume that the dynamics network is also a directed Erdős-Rényi random network [23] with randomness parameter \(p \). Then, for large \(N \), we can assume that \(d_{D,i} \approx 2pN \) [23]. Thus, (6.23) becomes

\[P_{\text{stab}} \approx Q^{N} \left(\frac{2\eta \sqrt{\rho_1}pN - \frac{\eta}{c} - 2pqN}{\sqrt{2pq(1-q)N}} \right). \]

(6.24)

If in (6.11), we use the approximations \(d_{D,i} \approx 2pN \) and \(d_{C,i} \approx q d_{D,i} = 2pqN \), which are valid for large \(N \), the stability condition for a random network with a random communications network reduces to

\[q > \eta \sqrt{\rho_1} - \frac{\eta}{2cpN}. \]

(6.25)

We can now use this result to study asymptotic network stability trends.

We can see that as the network size, \(N \), increases and \(c \) is kept constant, the last term on the right hand side of (6.25) decreases. Since \(\eta \sqrt{\rho_1} > 1 \), a random network tends to become unstable if the ratio of number of links in the communications network to that
of the dynamics network, \(q \), is kept fixed. To sustain the stability of the network as the network size grows under the aforementioned condition, either the coupling strength, \(c \), or the randomness parameter of the dynamics network, \(p \), must decrease, at least as \(1/N \). This means that a larger dynamics network must either be more weakly \((c = \mathcal{O}(1/N)) \), or more sparsely \((p = \mathcal{O}(1/N)) \), connected, if it is to be stable. Either way, to keep the overall network stable with a fixed \(q \), the overall effect of all other nodes on a particular node, must not be allowed to increase. In the case of fixed network size, to have a stable network as \(p \) increases, coupling strength must decrease at least as \(1/p \). This is intuitively justifiable since the mean and variance of dynamics at each node have linear and quadratic relations with both coupling strength and randomness parameter, respectively.

For reasonably large \(pN \), due to multiplication of large number of terms in (6.24), the probability of stability has a sharp roll-off as a function of \(q \). To quantify where these sharp transitions take place, we can look at

\[
q_c = p_{\text{stab}}^{-1} \left(\frac{1}{2} \right).
\]

From (6.24), we can calculate \(q_c \) as

\[
q_c = \frac{2\eta(2c\sqrt{p_1pN} - 1) + cz^2}{2c(2pN + z^2)} - \frac{z}{2(2pN + z^2)} \sqrt{z^2 + 4\eta \left(2\sqrt{p_1pN} - \frac{1}{c} \right) - \frac{2\eta^2(2c\sqrt{p_1pN} - 1)^2}{c^2pN}}
\]

(6.26)

where \(z = Q^{-1} \left(2^{-\frac{1}{2}} \right) \).
Numerical Results

In this section, we verify the validity of our results with a numerical example. Here, we consider a dynamics network with

\[
A = \begin{bmatrix} 0 & 1 \\ 5 \frac{1}{2} & 0 \end{bmatrix},
\]

and

\[
B = \begin{bmatrix} 0 \\ \frac{1}{4} \end{bmatrix}.
\]

These nodes are assumed to be coupled by

\[
H = \begin{bmatrix} 0 & \frac{1}{4} \\ 1 & 0 \end{bmatrix}.
\]

By setting the desired poles of isolated nodes at \(-1, -2\), and using the method proposed in [91], we can calculate the local feedback gain as

\[
K = -\begin{bmatrix} 18 & 12 \end{bmatrix}.
\]

The solution of problem (6.6) is

\[
L^* = -\begin{bmatrix} 4 & 0 \end{bmatrix}.
\]
and the solution of the Lyapunov equation is

$$P = \begin{bmatrix}
1 & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{bmatrix}.$$

Consequently, we have $\rho_1 = 0.841$ and $\rho_2 = 0.1$.

Figure 6.1: Probability of stability versus randomness parameter q, in the ring configuration of different coordination numbers, k, for dynamics network and $N = 100$, and coupling strength of $c = 0.05$.

Fig. 6.1 shows the probability of the stability as a function of conditional randomness parameter of the communications network, q. Here the dynamics network is assumed to
have a ring configuration with coordination number k, i.e., every vertex is connected to 2^k of its closest vertices in the ring. As it can be seen the approximations are reasonable. More interestingly, they are closer to simulations for larger coordination numbers. The reason for this phenomenon is that the average number of links in the communications network is $2kq$, and for higher k the Gaussian approximation for the node degrees is more accurate. Also, Fig. 6.1 shows that as number of links in the dynamics network increases, so does the average number of links in the communications network required to stabilize the overall network. This is also predicted by (6.23).

Figure 6.2: Probability of stability as a function of randomness parameter q of the communications network for different network size, N and coupling strength, c.

125
Figure 6.3: Probability of stability versus network size, N, in Erdös-Rényi network for different values of c and q.

The probability of stability for large Erdös-Rényi dynamics network with randomness parameter of $p = 0.25$ is shown in Fig. 6.2. As it can be observed, the approximations in (6.23) and (6.24) are reasonable in comparison to the simulation results.

Fig. 6.3 depicts the probability of stability as a function of network size N for different values of q and c. We see that for weaker couplings and higher randomness values for the communications network, the overall network tends to be stabilized for larger network sizes.
This behavior can be predicted from (6.25), which can be rewritten as

\[N < \frac{\eta}{2cp(\eta\sqrt{\rho_1} - q)}. \]

(6.27)

Thus, weaker couplings or richer connected communications network makes the network more stable.

Fig. 6.4 shows the probability of stability as a function of coupling strength, \(c \), in an Erdös-Rényi dynamics network for different randomness values of communications network, \(q \). As
it can be seen, a larger q results in stabilization of the stronger connected networks.

Conclusion

We have presented a network stability condition for an arbitrary dynamics network with identical plants, controllers and couplings. Using this condition, we have derived approximate probability of stability, assuming that the communications network is a random sub-network of the dynamics network. We have further studied our network stability condition and probability of stability for the case where the dynamics network is an Erdős-Rényi network. Using these result, we have studied the asymptotic trends in stability of the network, when network parameters take extreme values. A numerical example shows that our analytical results have reasonable accuracy.
In this chapter, a set of stability conditions for linear time-varying networked control systems with arbitrary topologies using a piecewise quadratic switching stabilization approach with multiple quadratic Lyapunov functions is provided. This set of stability conditions is used to provide a novel iterative low-complexity algorithm that must be updated and optimized in discrete time for the design of a sparse observer-controller network, for a given plant network with an arbitrary topology. The distributed observers is employed by utilizing the output of other subsystems to improve the stability of each observer. To avoid unbounded growth of controller and observer gains, the bounds on the norms of the gains are imposed.

Introduction

Networked control systems (NCS) have been the subject of much interest due to the fact that they have a wide range of applications, including electric power networks, transportation networks, factory automation, tele-operations and sensor and actuator networks, and the fact that they pose interesting unsolved problems in control theory. A centralized architecture is traditionally employed to control spatially distributed systems in which the components were connected via dedicated hard-wired links carrying the information from the sensors to a central location, where control signals were computed and sent to the actuators. However, the centralized architecture is not scalable. Moreover, it does not meet many new requirements such as modularity, resiliency, integrated diagnostics, and efficient maintenance. Distributed
or decentralized networked control systems meet these requirements through reduction in the required communications and distribution of the computational power across the system. Consequently, these approaches can be scalable. More recently, the distributed and decentralized architectures have been made feasible due to relative maturity in communication and computing technologies, enabling their convergence with control.

In general, a NCS consists of a number of subsystems, each comprised of a plant and a controller, coupled together in some network topology. The interaction of plants with one another forms the plant network. Measurements and control signals are communicated using the control network, a.k.a. information, communications, or feedback network (Fig. 7.1). This generalization covers the full range of architectures from decentralized, when the control network has no links, to centralized, when the control network is complete (i.e. all information is available to all controllers). For each architecture both the dynamics of each subsystem and the topology of plant network, play important roles in the stability of the entire interconnected system.

A key aspect in designing a particular NCS is the amount of information exchange. Typically, the all-to-all information exchange required for a centralized architecture is not feasible due to cost and complexity of the required communication. On the other end of the spectrum, ideally, one would have a decentralized controller [94] [95] [96]. It can be shown that even if each subsystem is asymptotically stable in isolation, the entire interconnected system may be unstable. Therefore, a decentralized architecture is usually inadequate to satisfy the performance requirements or even to stabilize the plant network. Thus, often the best solution is a distributed architecture, where some information is exchanged with neighbors [97]- [101].
Figure 7.1: A Networked Control System (NCS)

The networked control literature can be classified into two main groups. The first group as illustrated in [102]- [76] studies different factors, including bandwidth, packet dropout and disorder, data quantization, time-varying sampling intervals, and time delays, all of which are imposed by imperfections and limitations of communication channels and can degrade the system performance or even destabilize the system. The second group, which this paper also falls into, considers the topological network effects, and investigates how the topology of the plant network affects the entire interconnected system stability and other performance metrics.

The problem of imposing \textit{a priori} constraints on the controller has been arisen in previous articles on decentralized and distributed control of a general linear time-invariant (LTI) system. These constraints often are called the information constraints, and specify what information is available to which controller and manifests itself as sparsity or delay constraints. In [110]- [113], the authors have shown the convexification problem of finding optimal controller in order to minimize a norm of the closed loop map under a structural condition,
namely *quadratic invariance*, which is an algebraic condition relating the plant and the constraint set. The works in [114, 115] have shown similar results, conditioned on the plant network being a partially ordered set (poset) which is based on poset information structure (acyclic information flow) among subsystems. This constraint is closely related to quadratic invariance, however, it can lead to more computationally efficient solutions and is applicable to a more general class of problems.

While these results are elegant and important, they impose restrictions on the topology of the plant network of LTI systems. The key question in the design of control network for NCSs with arbitrary plant network topologies is one of *topological information requirements* and can be framed as the question: *Which subsystems should be given the input and output information of a particular subsystem, in order for the local controllers to be able to satisfy a global control objective?* This is a critical question in the design of massively distributed control systems, such as the Smart Grid [116]-[119].

In this paper, we extend our LTI NCS results [120] by considering a linear time-varying (LTV) NCS with an arbitrary topology and provide a methodology to design an iterative sparse observer and controller network which updates in discrete time. As in our previous work [120] here we also assume that the communication links do not have any bandwidth limitation, data loss or induced network delays.

We first use multiple quadratic Lyapunov functions to develop a set of stability conditions that guarantee global asymptotic stability using the piecewise quadratic switching stabilization method [121]-[124]. We then use these stability conditions to design an iterative sparse observer-controller network for a given plant network with an arbitrary topology. We take a broader look at the topological information requirements by taking into account the distributed state estimation problem, which is generally neglected in existing work.
Notation and Problem Definition

Notation

The set of real (column) \(n\)-vectors is denoted by \(\mathbb{R}^n\) and the set of real \(m \times n\) matrices is denoted by \(\mathbb{R}^{m \times n}\). We use \(\mathbb{R}_+\) and \(\mathbb{Z}_+\) to denote the sets of non-negative real and non-negative integers respectively. Matrices and vectors are denoted by capital and lower-case bold letters, respectively. Generalized matrix inequality, \(\prec\), is defined by the positive definite cone between symmetric matrices. The Euclidean \((l_2)\) vector norm and the induced \(l_2\) matrix norm are represented by \(\|\cdot\|\) and the Frobenius matrix norm is denoted by \(\|\cdot\|_F\). By \(\lambda_{\text{min}}(\cdot)\), \(\lambda_{\text{max}}(\cdot)\) and \(\sigma_{\text{max}}(\cdot)\) we denote the smallest and largest eigenvalue and the largest singular value of the argument, respectively. The Schur (Hadamard) product is represented by \(\circ\) and the \(m \times n\) unit matrix consisting of all ones is denoted by \(\mathbf{1}^{m \times n}\). We let \(\mathcal{N} = \{1, \ldots, N\}\) and \(\mathcal{N}_i = \mathcal{N} - \{i\}\). The indicator function of \(x\) is represented by \(\mathbf{1}_x\) and column-stacking operator is denoted by \(\text{vec}(\cdot)\).

In the following subsection, we address the problem statement by employing the same methodology similar to that of [120].

Problem Definition

Consider a network of \(N\) coupled LTV subsystems, each consisting of a plant and a controller. The state of the \(i\)th plant, \(\mathbf{x}_i(t) \in \mathbb{R}^{n_i}\), is governed by

\[
\dot{x}_i(t) = A_i(t)x_i(t) + B_i(t)u_i(t) + \sum_{j \in \mathcal{N}_i} H_{ij}(t)x_j(t) \\
y_i(t) = C_i(t)x_i(t),
\]

(7.1)
where \(u_i(t) \in \mathbb{R}^{m_i} \) and \(y_i(t) \in \mathbb{R}^{r_i} \) are input and output of the \(i \)th subsystem, and \(A_i(t), B_i(t), C_i(t) \) and \(H_{ij}(t) \) are known matrices. We assume that subsystem (7.1) is both completely controllable and completely observable for all \(i \). We consider an arbitrary directed network without self-loops. That is, \(H_{ii}(t) \equiv 0 \), and \(H_{ij}(t) \) and \(H_{ji}(t) \) are not necessarily equal. We look for a distributed stabilizing observer-based controller of the form

\[
\dot{x}_i(t) = A_i(t)x_i(t) + B_i(t)u_i(t) + \sum_{j \in N_i} H_{ij}(t)x_j(t) + M_i(t)(C_i(t)x_i(t) - y_i(t)) \\
+ \sum_{j \in N_i} O_{ij}(t)(C_j(t)x_j(t) - y_j(t)),
\]

\[
u_i(t) = K_i(t)x_i(t) + \sum_{j \in N_i} L_{ij}(t)x_j(t),
\]

(7.2)

where \(\dot{x}_i(t) \) is the estimate of \(x_i(t) \), \(K_i(t) \) and \(L_{ij}(t) \) are local and coupling controller gains, and \(M_i(t) \) and \(O_{ij}(t) \) are local and coupling observer gains, respectively. Note that to estimate \(x_i(t) \), we not only use output of subsystem \(i \), but also outputs of (potentially) all other subsystems. This is dual to the concept of distributed control. Our objective is to find distributed observer-based control law (7.2), using feedback from (potentially) all other subsystems to stabilize the plant network with a sparse control network. That is, we aim to find \(K_i(t), M_i(t), L_{ij}(t) \) and \(O_{ij}(t) \), such that the entire interconnected system is globally asymptotically stable and that the number of links in the control network (number of non-zero coupling gains \(L_{ij}(t) \) and \(O_{ij}(t) \)) is minimized. We also impose constraints

\[
\|K_i(t)\| \leq \kappa_i, \quad (7.3a)
\]

\[
\|M_i(t)\| \leq \mu_i, \quad (7.3b)
\]

\[
\|L_{ij}(t)\| \leq \iota_{ij}, \quad (7.3c)
\]

\[
\|O_{ij}(t)\| \leq \omega_{ij}, \quad (7.3d)
\]
to avoid undesirably large gains.

Defining \(x(t) = \text{vec}(x_i(t)) \), \(u(t) = \text{vec}(u_i(t)) \), \(y(t) = \text{vec}(y_i(t)) \), (7.1) reduces to

\[
\dot{x}(t) = A(t)x(t) + B(t)u(t) + H(t)x(t),
\]

\[
y(t) = C(t)x(t),
\] (7.4)

where \(A(t) = \text{diag}(A_i(t)) \), \(B(t) = \text{diag}(B_i(t)) \), \(C(t) = \text{diag}(C_i(t)) \) and \(H(t) = [H_{ij}(t)] \).

Moreover, (7.2) yields

\[
\dot{x}(t) = A(t)x(t) + B(t)u(t) + H(t)x(t) + M(t)(C(t)x(t) - y(t)) + O(t)(C(t)x(t) - y(t)),
\]

\[
u(t) = K(t)x(t) + L(t)x(t),
\] (7.5)

where \(K(t) = \text{diag}(K_i(t)) \), \(M(t) = \text{diag}(M_i(t)) \), \(L(t) = [L_{ij}(t)] \), with \(L_{ii}(t) \equiv 0 \) and \(O(t) = [O_{ij}(t)] \), with \(O_{ii}(t) \equiv 0 \).

Defining error \(e(t) \triangleq \dot{x}(t) - x(t) \) reduces (7.4) and (7.5) to

\[
\dot{x}(t) = [A(t) + H(t) + B(t)(K(t) + L(t))]x(t) + B(t)(K(t) + L(t))e(t),
\] (7.6)

\[
\dot{e}(t) = [A(t) + H(t) + (M(t) + O(t))C(t)]e(t).
\] (7.7)

This is an LTV networked linear cascade dynamical system with the equilibrium point \((x, e) \equiv (0, 0) \).

Assumption 3. Matrices \(A(t), B(t), C(t) \) and \(H(t) \) are continuously differentiable and have
bounded derivatives:

\[
\|\dot{A}(t)\| \leq a, \quad \|\dot{B}(t)\| \leq b, \quad \|\dot{C}(t)\| \leq c, \quad \|\dot{H}(t)\| \leq h. \tag{7.8}
\]

Under Assumption 3, for all \(t, t' \in \mathbb{R}_+\) we have [125]

\[
\begin{align*}
\|A(t) - A(t')\| &\leq a|t - t'|, \quad \|B(t) - B(t')\| \leq b|t - t'|, \\
\|C(t) - C(t')\| &\leq c|t - t'|, \quad \|H(t) - H(t')\| \leq h|t - t'|. \tag{7.9}
\end{align*}
\]

Piecewise Quadratic Switching Stabilization

As the nature of problem is time-varying, and analytical design approaches are intractable (due to the generality of the network topology), one needs to take a numerical design approach. Thus, the design must be updated and optimized at discrete times. Consider the discrete series \(0 = t_0 < t_1 < \cdots < t_k < \cdots\). If a sample-and-hold control approach over intervals \([t_k, t_{k+1})\) is used, system (7.6) and (7.7) will become

\[
\begin{align*}
\dot{x}(t) &= [A(t) + H(t) + B(t)(K_k + L_k)]x(t) + B(t)(K_k + L_k)e(t), \tag{7.10} \\
\dot{e}(t) &= [A(t) + H(t) + (M_k + O_k)C(t)]e(t), \tag{7.11}
\end{align*}
\]

for \(t \in [t_k, t_{k+1})\).

Assumption 4. For every \(k \in \mathbb{Z}_+\), there exists constant \(T_{\min} > 0\) such that

\[
T_k \triangleq t_{k+1} - t_k \geq T_{\min}. \tag{7.12}
\]
Later, in Corollary 5 we will find a lower bound for T_{min}.

Theorem 1. The equilibrium point, $x \equiv 0$, of the system

$$\dot{x}(t) = [A(t) + H(t) + B(t)(K_k + L_k)]x(t),$$

is globally asymptotically stable, if for every $k \in \mathbb{Z}_+$ and $t \in [t_k, t_{k+1})$, there exist K_k, L_k, $P_k, \beta_i > 0$, and $\epsilon_i > 0$ such that

$$2\beta \circ P_k + [A(t) + H(t) + B(t)(K_k + L_k)]^T P_k$$

$$+ P_k [A(t) + H(t) + B(t)(K_k + L_k)] \preceq 0$$

(7.14a)

$$P_k - \epsilon \succeq 0$$

(7.14b)

$$P_{k-1} - P_k \succeq 0$$

(7.14c)

are satisfied for all $k \geq 1$ and (7.14a), (7.14b) are satisfied for $k = 0$, where $P_k = \text{diag}(P_{k,i})$, $\beta = \text{diag}(\beta_i 1_{n_i \times n_i})$, and $\epsilon = \text{diag}(\epsilon_i I_{n_i})$.

Proof. Consider multiple quadratic Lyapunov functions [124] $V_k(x(t)) = x^T(t)P_kx(t), \ t \in [t_k, t_{k+1})$, and let $V(x(t)) = V_k(x(t))$ when $t \in [t_k, t_{k+1})$. Since $P_k \succ 0$, to show that $x(t) \to 0$, it suffices to show that $V(x(t)) \to 0$. Condition (7.14a) yields
\[\dot{V}_k(x(t)) = x^T(t) \left[A(t) + H(t) + B(t)(K_k + L_k) \right]^T P_k x(t) \\
+ x^T(t) P_k \left[A(t) + H(t) + B(t)(K_k + L_k) \right] x(t) \leq -2x^T(t) \beta \odot P_k x(t) \\
= -2 \sum_{i \in N} \beta_i x_i^T(t) P_{k,i} x_i(t) \leq -2\beta \sum_{i \in N} x_i^T(t) P_{k,i} x_i(t) = -2\beta V_k(x(t)), \] (7.15)

for \(t \in [t_k, t_{k+1}) \), where \(\beta = \min_i \beta_i \). This means that \(\dot{V}(x(t)) = \dot{V}_k(x(t)) \) is negative definite over \(t \in [t_k, t_{k+1}) \). Moreover, since \(x(t) \) is continuous, condition (7.14c) implies that \(V(x(t)) \) is decreasing over all \(t \). Thus, since \(V(x(t)) \) is positive definite, if we show that its samples, \(V(x(t_k)) = V_k(x(t_k)) \), converge to zero we have \(V(x(t)) \to 0 \) as well. Since the sequence \(V_k(x(t_k)) \) is monotonically decreasing and positive definite, it converges to some value \(v \geq 0 \).

To show that \(v = 0 \), first we note that due to the comparison lemma [125], (7.15) yields

\[V_k(x(t)) \leq V_k(x(t_k)) e^{-2\beta(t-t_k)}, \quad t \in [t_k, t_{k+1}). \] (7.16)
Now, we can write

\[0 = v - v \]

\[= \lim_{k \to \infty} V_{k+1}(x(t_{k+1})) - \lim_{k \to \infty} V_k(x(t_k)) \]

\[= \lim_{k \to \infty} [V_{k+1}(x(t_{k+1})) - V_k(x(t_{k+1}))] + \lim_{k \to \infty} [V_k(x(t_{k+1})) - V_k(x(t_k))] \]

\[= \lim_{k \to \infty} [x^T(t_{k+1}) (P_{k+1} - P_k) x(t_{k+1})] + \lim_{k \to \infty} [V_k(x(t_k)) \left(e^{-2\beta(t_{k+1} - t_k)} - 1 \right)] \]

\[\leq \lim_{k \to \infty} [V_k(x(t_k)) \left(e^{-2\beta(t_{k+1} - t_k)} - 1 \right)] \]

\[\leq -(1 - e^{-2\beta T_{\min}}) \lim_{k \to \infty} V_k(x(t_k)) \]

\[\leq -(1 - e^{-2\beta T_{\min}}) \lim_{k \to \infty} [\lambda_{\min}(P_k) \|x(t_k)\|^2] \]

\[\leq - \epsilon (1 - e^{-2\beta T_{\min}}) \lim_{k \to \infty} \|x(t_k)\|^2 \]

\[\leq 0, \quad (7.17) \]

where \(\epsilon = \min_i \epsilon_i > 0 \). This implies that

\[\epsilon (1 - e^{-2\beta T_{\min}}) \lim_{k \to \infty} \|x(t_k)\|^2 = 0. \quad (7.18) \]

which requires that \(\lim_{k \to \infty} x(t_k) \to 0 \), and \(\lim_{k \to \infty} V_k(x(t_k)) \to 0 \). In other words, the system (7.13) is globally asymptotically stable.

\[\square \]

Theorem 2. The equilibrium point of the system in (7.6) and (7.7), \((x, e) \equiv (0, 0)\), is globally asymptotically stable, if for every \(k \in \mathbb{Z}_+ \) and \(t \in [t_k, t_{k+1}) \), there exist \(K_k, L_k, P_k \),
\(M_k, O_k, \hat{P}_k, \beta_i > 0, \text{ and } \epsilon_i > 0\) such that

\[
2\beta \circ P_k + [A(t) + H(t) + B(t)(K_k + L_k)]^T P_k + P_k [A(t) + H(t) + B(t)(K_k + L_k)] \preceq 0 \tag{7.19a}
\]

\[
2\beta \circ \hat{P}_k + [A(t) + H(t) + (M_k + O_k)C(t)]^T \hat{P}_k + \hat{P}_k [A(t) + H(t) + (M_k + O_k)C(t)] \preceq 0 \tag{7.19b}
\]

\[
P_k - \epsilon \succeq 0 \tag{7.19c}
\]

\[
\dot{P}_k - \epsilon \succeq 0 \tag{7.19d}
\]

\[
P_{k-1} - P_k \succeq 0 \tag{7.19e}
\]

\[
\dot{P}_{k-1} - \dot{P}_k \succeq 0 \tag{7.19f}
\]

are satisfied for all \(k \geq 1\) and (7.19a) to (7.19d) are satisfied for \(k = 0\), where \(P_k = \text{diag}(P_{k,i})\), \(\hat{P}_k = \text{diag}(\hat{P}_{k,i})\), \(\beta = \text{diag}(\beta_i 1_{n_i \times n_i})\), and \(\epsilon = \text{diag}(\epsilon_i I_{n_i})\).

Proof. By Theorem 1, conditions (7.19a), (7.19c) and (7.19e) imply that the unforced system (7.10) is globally asymptotically stable and, consequently, (7.10) is input-to-state stable. Similarly, (7.19b), (7.19d) and (7.19f) guarantee global asymptotical stability of (7.11). Hence the equilibrium point of cascaded dynamical system (7.10) and (7.11), \((x, e) \equiv (0, 0)\), is globally asymptotically stable [125].

We note that conditions (7.19a) and (7.19b) are the requirement that the energy in the system is decreasing in every interval while conditions (7.19c) and (7.19d) guarantee positive definiteness of multiple quadratic Lyapunov functions. Conditions (7.19e) and (7.19f) are necessary to guarantee multiple quadratic Lyapunov functions form a non-increasing sequence when entering the next interval.
Theorem 2 provides a set of stability conditions based on which the controllers and observers can be designed. However, these conditions are not convex. This is important since a solution must be found iteratively at each t_k. The following theorem provides a set of convex, albeit more conservative, stability conditions. It also incorporates bounds (7.3).

Theorem 3. System (7.1) with controller (7.2) is globally asymptotically stable, and bounds (7.3) are satisfied, if the following convex constraints have a feasible point, such that

\[
F_k + F_k^T + \gamma I_n \preceq 0 \quad (7.20a)
\]

\[
\hat{F}_k + \hat{F}_k^T + \gamma I_n \preceq 0 \quad (7.20b)
\]

\[
\epsilon^{-1} \succeq Z_k \succ 0 \quad (7.20c)
\]

\[
\hat{P}_k - \epsilon \succeq 0 \quad (7.20d)
\]

\[
Z_k - Z_{k-1} \succeq 0 \quad (7.20e)
\]

\[
\hat{P}_{k-1} - \hat{P}_k \succeq 0 \quad (7.20f)
\]

\[
\kappa_i \lambda_{\min}(Z_{k,i}) - \sigma_{\max}(W_{k,i}) \geq 0 \quad (7.20g)
\]

\[
\iota_{ij} \lambda_{\min}(Z_{k,j}) - \sigma_{\max}(Y_{k,ij}) \geq 0 \quad (7.20h)
\]

\[
\mu_i \lambda_{\min}(\hat{P}_{k,i}) - \sigma_{\max}(\hat{W}_{k,i}) \geq 0 \quad (7.20i)
\]

\[
\omega_{ij} \lambda_{\min}(\hat{P}_{k,i}) - \sigma_{\max}(\hat{Y}_{k,ij}) \geq 0 \quad (7.20j)
\]

are satisfied for all $i, j \in \mathcal{N}$, $\gamma > 0$, $k \geq 1$ and (7.20a)-(7.20d) and (7.20g)-(7.20j) are satisfied for $k = 0$, where

\[
F_k = (A_k + H_k)Z_k + B_k(W_k + Y_k) + \beta \circ Z_k,
\]

\[
\hat{F}_k = \hat{P}_k(A_k + H_k) + (\hat{W}_k + \hat{Y}_k)C_k + \beta \circ \hat{P}_k,
\]

\[
Z_k = \text{diag}(Z_{k,i}), \quad \hat{P}_k = \text{diag}(\hat{P}_{k,i}), \quad W_k = \text{diag}(W_{k,i}), \quad \hat{W}_k = \text{diag}(\hat{W}_{k,i}), \quad Y_k = [Y_{k,ij}] \quad \text{and}
\]
\[\dot{Y}_k = [\dot{Y}_{k,ij}] \text{ with } Y_{k,ii} = \dot{Y}_{k,ii} \equiv 0. \]

Furthermore, if \(Z^*_{k,i}, \dot{P}^*_{k,i}, W^*_{k,i}, \dot{W}^*_{k,i}, Y^*_{k,ij}, \dot{Y}^*_{k,ij} \) is a solution of (7.20), the controller and observer gains are

\[
\begin{align*}
K^*_{k,i} &= W^*_{k,i} Z^*_{k,ij}^{-1}, & L^*_{k,ij} &= Y^*_{k,ij} Z^*_{k,ij}^{-1} ,
M^*_{k,i} &= \dot{P}^*_{k,i}^{-1} \dot{W}^*_{k,i}, & O^*_{k,ij} &= \dot{P}^*_{k,i}^{-1} \dot{Y}^*_{k,ij},
\end{align*}
\]

for all \(t \in [t_k, t_{k+1}) \) and the next switching time is \(t_{k+1} = t_k + T_k \) where

\[
T_k = \frac{1}{2} \min \left\{ \frac{-\lambda_{\max}(F_K + F_K^T)}{(a + h)\|Z_k\| + b\|W_k + Y_k\|}, \frac{-\lambda_{\max}(\dot{F}_K + \dot{F}_K^T)}{(a + h)\|P_k\| + c\|\dot{W}_k + \dot{Y}_k\|} \right\}. \tag{7.22}
\]

Proof. We will show that the conditions of Theorem 2, namely (7.19a)-(7.19f), are satisfied if (7.20a)-(7.20f) hold. Defining new variables \(Z_k \triangleq P_k^{-1}, W_k \triangleq K_k P_k^{-1}, \) and \(Y_k \triangleq L_k P_k^{-1} , \) reveals that (7.19a), (7.19c) and (7.19e) are equivalent to

\[
\begin{align*}
2\beta \circ Z_k + [(A(t) + H(t))Z_k + B(t)(W_k + Y_k)]^T
+ [(A(t) + H(t))Z_k + B(t)(W_k + Y_k)] \preceq 0, & \quad (7.23a) \\
\epsilon^{-1} \succeq Z_k \succ 0, & \quad (7.23b) \\
Z_k - Z_{k-1} \succeq 0, & \quad (7.23c)
\end{align*}
\]

Clearly, (7.23b) and (7.23c) are (7.20c) and (7.20e). To show that (7.23a) yields (7.20a), we first note that

\[
\begin{align*}
(A(t) + H(t))Z_k = (A_k + H_k)Z_k + (\Delta A(t) + \Delta H(t))Z_k \\
\preceq (A_k + H_k)Z_k + \|\Delta A(t) + \Delta H(t)\| Z_k \| I_n \\
\preceq (A_k + H_k)Z_k + T_k(a + h)\|Z_k\| I_n, & \quad (7.24)
\end{align*}
\]
where $\Delta A(t) = A(t) - A_k$ and $\Delta H(t) = H(t) - H_k$, and the last inequality is due to Assumption 3. Similarly, we can show that

$$B(t)(W_k + Y_k) \preceq B_k(W_k + Y_k) + T_k b\|W_k + Y_k\|I_n. \tag{7.25}$$

Thus, the left hand side of (7.23a) can be upper bounded by

$$F_k + F_k^T + 2T_k[(a + h)\|Z_k\| + b\|W_k + Y_k\|]I_n. \tag{7.26}$$

In other words, if (7.26) is negative semidefinite, (7.19a) holds. Upper bound (7.26) is negative semidefinite, if there exist $\gamma > 0$ such that

$$F_k + F_k^T + \gamma I_n \preceq 0, \tag{7.27}$$

which is (7.20a) and

$$T_k \leq \frac{1}{2} \frac{-\lambda_{\text{max}}(F_k + F_k^T)}{(a + h)\|Z_k\| + b\|W_k + Y_k\|}, \tag{7.28}$$

which is guaranteed by (7.22). A similar argument, omitted for brevity, shows that (7.19b), (7.19d) and (7.19f) are satisfied if (7.20b), (7.20d), (7.20f) and (7.22) hold.

For (7.3a) we note that we can upper bound the norm of K_i as

$$\|K_{k,i}\| = \|W_{k,i}Z_{k,i}^{-1}\| \leq \|W_{k,i}\|\|Z_{k,i}^{-1}\|$$

$$= \sigma_{\text{max}}(W_{k,i})\lambda_{\text{max}}(Z_{k,i}^{-1})$$

$$= \frac{\sigma_{\text{max}}(W_{k,i})}{\lambda_{\text{min}}(Z_{k,i})}. \tag{7.29}$$
Thus, forcing (7.3a) will be forced if

\[\|K_{k,i}\| \leq \frac{\sigma_{\max}(W_{k,i})}{\lambda_{\min}(Z_{k,i})} \leq \kappa_i, \]

(7.30)

or equivalently \(\kappa_i \lambda_{\min}(Z_{k,i}) - \sigma_{\max}(W_{k,i}) \geq 0 \), which is (7.20g). Similarly, (7.3b)-(7.3d) are forced if (7.20h)-(7.20j) hold.

Finally, we note that the original variables can then be found from \(P_k = Z_k^{-1}, K_k = W_k Z_k^{-1} \) and \(L_k = Y_k Z_k^{-1} \).

Corollary 5. If the conditions of Theorem 3 hold, a lower bound for \(T_{\min} \) in Assumption 2 is

\[T_{\min} = \min_k T_k \geq \frac{1}{2} \min \left\{ \frac{\epsilon \gamma}{a + h + b (\kappa + \iota)}, \frac{1}{\|P_0\|} \frac{\gamma}{a + h + c (\mu + \omega)} \right\} \]

(7.31)

where \(\epsilon = \min \epsilon_i > 0, \gamma > 0 \) are the margins in inequalities (7.20a) and (7.20b) and

\(\kappa = \sum_{i \in N} \sqrt{\min\{m_i, n_i\}} \kappa_i, \iota = \sum_{i,j \in N} \sqrt{\min\{m_i, n_j\} \iota_{ij}}, \mu = \sum_{i \in N} \sqrt{\min\{n_i, r_i\} \mu_i} \) and

\(\omega = \sum_{i,j \in N} \sqrt{\min\{n_i, r_j\} \omega_{ij}}. \)
Proof. Equation (7.20a) gives us $\lambda_{\text{max}}(F_k + F_k^T) \leq -\gamma$. From (7.28), we have

\[
T_k = -\frac{1}{2} \frac{\lambda_{\text{max}}(F_k + F_k^T)}{(a + h)\|Z_k\| + b\|W_k + Y_k\|}
\]

\[
= -\frac{1}{2} \frac{\lambda_{\text{max}}(F_k + F_k^T)}{(a + h)\|Z_k\| + b\|K_kZ_k + L_kZ_k\|}
\]

\[
\geq \frac{1}{2\|Z_k\| a + h + b\|K_k + L_k\|}
\]

\[
= \frac{1}{2a + h + b\|K_k + L_k\|_F}
\]

\[
\geq \frac{1}{2 a + h + b (\|K_k\|_F + \|L_k\|_F)}
\]

\[
\geq \frac{1}{2 a + h + b (\kappa + \iota)}.
\]

(7.32)

The last four inequalities are satisfied because for any $D \in \mathbb{R}^{m \times n}$, the Frobenius and Euclidean norms satisfy $\|D\| \leq \|D\|_F \leq \sqrt{\min\{m, n\}}\|D\|.$

Similarly, we have

\[
T_k = -\frac{1}{2} \frac{\lambda_{\text{max}}(\hat{F}_k + \hat{F}_k^T)}{(a + h)\|\hat{P}_k\| + c\|W_k + Y_k\|}
\]

\[
= -\frac{1}{2} \frac{\lambda_{\text{max}}(\hat{F}_k + \hat{F}_k^T)}{(a + h)\|\hat{P}_k\| + c\|\hat{P}_kM_k + \hat{P}_kO_k\|}
\]

\[
\geq \frac{1}{2\|\hat{P}_k\| a + h + c\|M_k + O_k\|}
\]

\[
\geq \frac{1}{2\|\hat{P}_0\| a + h + c\|M_k + O_k\|_F}
\]

\[
\geq \frac{1}{2\|\hat{P}_0\| a + h + c (\mu + \omega)}.
\]

(7.33)

\[\square\]
Sparse Control Network Design

To design a sparse control network, we seek a set of $L_{k,ij}$ and $O_{k,ij}$ that guarantee stability, with a small number of links. Note that if link ij is used it can carry both $L_{k,ij}\hat{x}_j(t)$ and $O_{k,ij}y_j(t)$. Thus, the use of a link from node i to node j at time k can be encoded in binary variables $\alpha_{k,ij} \in \{0, 1\}$. Then we can write $L_{k,ij} = \alpha_{k,ij}L^*_{k,ij}$ and $O_{k,ij} = \alpha_{k,ij}O^*_{k,ij}$, where $L^*_{k,ij}$ and $O^*_{k,ij}$ are the optimal link gains, when the link is used. In aggregate, these can be written as $L_k = \alpha_k \circ L^*_k$ and $O_k = \hat{\alpha}_k \circ O^*_k$, where $\alpha_k = [\alpha_{k,ij}1^m_{x} \times n_y]$ and $\hat{\alpha}_k = [\alpha_{k,ij}1^n_{x} \times r_j]$ with $\alpha_{k,ii} \equiv 0$.

Now, with the stability conditions provided in (7.20) in hand, our objective is to design a control network with minimum number of links that satisfies stability conditions (7.20). Minimizing the number of communication links is equivalent to minimizing the number of $\alpha_{k,ij} = 1$, or in other words, minimizing the sum of $\alpha_{k,ij}$ subject to constraints in (7.20). Our problem can therefore be formulated as the following convex mixed-binary program:

\[
\begin{align*}
\text{minimize} & \quad \sum_{i,j \in \mathcal{N}} \alpha_{k,ij} \\
\text{subject to} & \quad \text{(7.20)} \\
& \quad \alpha_{k,ij} \in \{0, 1\}
\end{align*}
\]

where $Y_k = \alpha_k \circ X_k$ and $\hat{Y}_k = \hat{\alpha}_k \circ \hat{X}_k$.

The complexity of solving problem (7.34) is important, since it has to be solved in each iteration. In general a mixed-binary program is NP-hard. In the worst case, one has to solve $O(2^{N^2})$ convex problems, carrying an exhaustive search on the binary variables. While a variety of exact methods for convex mixed-binary programs are available [126], their com-
putational complexity is prohibitive for large networks, specially since the calculation is
to be repeated periodically. Here, we propose a simple suboptimal relaxation-thresholding
approach which should be carried out in each iteration:

1. Set $k \leftarrow 0$ and $t_0 \leftarrow 0$.

2. Find a feasible point for (7.34) excluding (7.20e) and (7.20f) to find the initial conditions
 Z_0 and \hat{P}_0.

3. Initialize $\alpha_{k,ij} \leftarrow 1$ for all $i, j \in \mathcal{N}, i \neq j$.

4. Find a feasible point for (7.34) to yield $Z_{k,i}, W_{k,i}, X_{k,ij}, \hat{P}_{k,i}, \hat{W}_{k,i}$ and $\hat{X}_{k,ij}$. If a feasible
 solution is found, $\alpha_{k,ij}^{\dagger} \leftarrow \alpha_{k,ij}$. Otherwise go to step 7, unless the problem is infeasible
 at the first iteration, in which case there is no solution and the design procedure is
 terminated.

5. Solve (7.34) with (7.34c) relaxed to $\alpha_{k,ij} \in [0, 1]$ to obtain solution $\alpha_{k,ij}^{(r)}$ satisfying
 (7.20a) and (7.20b) and $Z_{k,i}, W_{k,i}, X_{k,ij}, \hat{P}_{k,i}, \hat{W}_{k,i}, \hat{X}_{k,ij}$ are those found in step 4.

6. If all $\alpha_{k,ij}^{(r)} = 0$, set $\alpha_{k,ij}^{\dagger} \leftarrow 0$ and go to step 7. Otherwise, set $\alpha_{k,ij}$ corresponding to
 the smallest non-zero $\alpha_{k,ij}^{(r)}$ to zero and return to step 4.

7. Return $\alpha_{k,ij}^{\dagger}$.

8. Calculate the next switching time T_k from (7.22).

Note that with the above design procedure, in the worst case, one has to solve $\mathcal{O}(N^2)$ convex
problems in each iteration, since it can be solved by using a linear search in a sorted set
$\{\alpha_{k,ij}^{(r)}\}$.

To further simplify the procedure we can substitute steps 6 and 7 above with
6. Solve

\[
\begin{align*}
\text{maximize} & \quad \tau_k = \alpha_{k,ml}^{(r)} \\
\text{subject to} & \quad \alpha_{k,ij} = 1, \quad \alpha_{k,ij} = \frac{1}{\alpha_{k,ij} \geq \tau_k}, (7.20a) \text{ and } (7.20b).
\end{align*}
\] (7.35)

7. Return \(\alpha_{k,ij}^{*} = 1, \quad \alpha_{k,ij}^{(r)} > \tau_{k}^{*} \), where \(\tau_{k}^{*} \) is the solution of (7.35).

We note that the maximum number of convex problems that should be solved in (7.35) in each iteration is only \(O(\log N) \), since it can be solved by a binary search on \(\tau_k \) in a sorted set \(\{\alpha_{k,ij}^{(r)}\} \). Of course, this reduction in complexity is at the price of a more conservative solution.

Numerical Example

Consider the system shown in Fig. 7.2, where three inverted pendulums are mounted on coupled carts. Linearizing equations of motions yield [127]

\[
\begin{align*}
\mathbf{A}_i(t) &= \begin{bmatrix}
0 & 1 & 0 & 0 \\
\frac{M_i + m_i}{M_i} g & 0 & \frac{k_i(t)}{M_i} & \frac{c_i + b_i(t)}{M_i} \\
0 & 0 & 0 & 1 \\
-\frac{m_i}{M_i} g & 0 & -\frac{k_i(t)}{M_i} & -\frac{c_i - b_i(t)}{M_i}
\end{bmatrix}, \\
\mathbf{H}_{ij}(t) &= \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & -\frac{k_{ij}(t)}{M_i} & -\frac{b_{ij}(t)}{M_i} \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{k_{ij}(t)}{M_i} & \frac{b_{ij}(t)}{M_i}
\end{bmatrix},
\end{align*}
\]

\[
\mathbf{B}_i(t) = \begin{bmatrix}
0 & -\frac{1}{M_i} & 0 & \frac{1}{M_i}
\end{bmatrix}^T, \quad \mathbf{C}_i(t) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix},
\] (7.36)

for \((i, j) = (1, 2), (2, 1), (2, 3), (3, 2)\), where \(k_i(t) = \sum_{j \in N_i} k_{ij}(t)\) and \(b_i(t) = \sum_{j \in N_i} b_{ij}(t)\). Here \(c_i, b_{ij}(t) = b_{ji}(t)\), and \(k_{ij}(t) = k_{ji}(t)\) are friction, damper and spring coefficients, respectively, and we have assumed the moment of inertia of the pendulums to be zero.
Since the subsystems are controllable and observable, we can use the optimization problem (7.34) to design distributed observers and controllers that stabilize the entire network with small number of links in the control network. As design criteria, we assume bounds on the norm of local gains are $\kappa_1 = \kappa_2 = 280$, $\kappa_3 = 480$ and $\mu_i = 40$ and bounds on the norms of coupling gains are $\iota_{ij} = 20$ and $\omega_{ij} = 10$ and the numerical system parameters are $M_1 = 5$, $M_2 = 3$, $M_3 = 7$, $m = 1$, $g = 10$, $l = 1$, $k_{ij}(t) = 1 + 0.5 \cos(t)$, $b_{ij}(t) = 1 + 0.5 \sin(t)$, $c_1 = 4$, $c_2 = 2$ and $c_3 = 1$. All subsystem matrices are continuously differentiable uniformly bounded with $a = 0.48$, $h = 0.34$ and $b = c = 0$. Hence, Assumption 1 is satisfied. We set $\gamma = 0.2$, $\beta_i = 0.01$ and $\epsilon_i = 0.05$ for all i.

The simulation results are presented in Fig. 7.3(a) to Fig. 7.4(d) for $t = [0, 10\pi]$ seconds where to solve (7.34), we used our proposed simple suboptimal relaxation-thresholding approach with linear search. To show that how this performs well (near optimal), we compare the number of required links with the optimal exhaustive search on binary variables. Fig. 7.3(a) to 7.3(d) depict $\|P_{k,i}\|$ and $\|\hat{P}_{k,i}\|$ as a function of t_k. We can see that, as expected they converge as $t_k \to \infty$. The convergence of $\|P_{k,i}\|$ happens after only one time slot, while $\|\hat{P}_{k,i}\|$ takes 5 time slots to converge. Fig. 7.3(e) and Fig. 7.3(f), depict $\|K_{k,i}\|$ and $\|M_{k,i}\|$, which are the local controller and observer gains, respectively. Similarly, Fig. 7.4(a), and Fig. 7.4(b) depict $\|L_{k,ij}\|$ and $\|O_{k,ij}\|$, which are the coupling controller and observer gains,
respectively. We observe that whenever a link is not necessary, (i.e., $\alpha_{k,ij} = 0$), the link gain is set to zero. Otherwise, it is assigned the optimal values $L_{k,ij}^*$ and $O_{k,ij}^*$. We can see that all local and coupling gains are limited as enforced in (7.3).

In Fig. 7.4(c), we plot number of required links in communications network versus t_k for the two cases: (i) proposed simple suboptimal relaxation-thresholding approach and (ii) optimal exhaustive search on binary variables. The suboptimal approach performs very well and as we expected, the optimal search gives better result at the price of more complexity. Fig. 7.4(d) presents the updating times, T_k versus t_k. We see that the fewer number of links indicates the shorter updating time T_k and whenever there is a change in the number of required links, there also is a step change in the updating time T_k.

Concluding Remarks

We have provided an iterative design approach for distributed observer-based controllers that stabilize a given linear time-varying networked control system with an arbitrary directed topology. To measure states of each subsystem, we use the outputs of other subsystems to improve stability of observer dynamics; this approach is the dual of the distributed controller network. Our design approach is based on a set of stability conditions obtained using the piecewise quadratic switching stabilization method with multiple quadratic Lyapunov functions, which must be updated and optimized in discrete time and provides a sparse observer-controller network that guarantees global asymptotic stability. Due to the assumptions made here to maintain tractability, the design has some degree of conservatism. Thus, although the results provide us with significant insight into the problem of designing a sparse observer-controller network, a gap still remains. Further quantification or reduction of this gap will be quite valuable.
We added a free variable to the stability inequalities to avoid spending the entire margin in the stability criteria during the search for a sparse observer-controller network. Optimal distribution of this margin among the inequalities to make the network robust without significantly growing the size of the observer-controller network is, however, unknown. Therefore, further investigation of the tradeoff between the stability margin and the sparsity of the observer-controller network will be interesting.

We believe that the results presented in this chapter provide a foundation for further progress toward understanding these interesting and important problems.
Figure 7.3: (a,b) Norm of $P_{k,i}$ versus time, (c,d) Norm of $\hat{P}_{k,i}$ versus time, (e,f) Norm of local controller gains $K_{k,i}$ and $M_{k,i}$ versus time.
Figure 7.4: (a, b) Norm of coupling controller and observer gains $L_{k,ij}$ and $O_{k,ij}$ versus time. Note that the rest of links, i.e., $L_{k,21} = L_{k,32} = L_{k,13} = L_{k,31} = 0$ and $O_{k,21} = O_{k,32} = O_{k,13} = O_{k,31} = 0$ for all t_k. (c) Number of required links versus time for the two cases: (i) proposed simple suboptimal relaxation-thresholding approach and (ii) optimal exhaustive search approach, (d) Updating times, T_k.
The contribution of this dissertation comes in three major categories. First, the stability of synchronization in complex network of dynamical systems has been analyzed. Using Lyapunov direct method, sufficient conditions on the stability of the synchronization state for wide range of identical dynamical systems have been derived. With these conditions which came in the form of master stability condition, the impact of topological effect of the network, i.e., the connections, have been separated from the characteristic behavior of the isolated dynamics of the node, i.e., local dynamics. This enabled the separate study of the connection network and individual dynamics. This analysis unlike most of literatures that have used negativeness of Lyapunov exponents as stability criteria as only necessary condition for stability, produced sufficient global stability. With the very simple and quite effective framework provided by this approach, a thorough analytical treatment of stability in in networks of practical interests, namely, random networks and small-worlds, has been given. The previous works were only based on extensive simulations. In a nutshell, chapter 2 addressed the following series of questions: I) What are the conditions under which the network is guaranteed to have stable synchronous state? II) What are the conditions that connection network should have to be synchronizable? III) In large complex networks of practical interests, i.e., random networks and small worlds, what would be the required statistical characteristics of the substrate network to achieve the stable synchronization state?

Next in this category, in chapter 3, the study addressed the following questions: I) What would be the sufficient conditions under which the network 's error from nominal synchronization state would be bounded and stable? II) What would be the upper bound of that error from the nominal synchronization state? By removing the condition of absolute similarity of the individual nodes, the bounded stability of the error from nominal synchronization trajectory
in presence of mismatches has been analyzed. That is, it has been assumed that although the nodes are similar but they are not identical. The extensive analytical treatment for random networks and small-worlds has been conducted and novel results have been derived.

The next progress made by this study has been to address the problems in decentralized control under more realistic condition on the controller gains. Questions such as I) Feasibility: What is the minimum number of decentralized controllers to stabilize a network? II) Achievability: which nodes should have controllers to achieve that minimum number of controllers to have a stable synchronous state? These questions have been addressed in chapter 4. Although the problem of feasibility happened to be NP-Hard with respect to networks size, a heuristic algorithm has been devised which under most circumstances approach the optimum solution and has a complexity of network size order.

Chapter 5 has addressed the following questions in fast switching networks: I) what is the conditions of stability for the network under the fast switching networks? II) what is the minimum number of controllers to pin a network of fast switching oscillators? The answer to the first question was proven to be simple: the conditions of stability is the same as previous part of the study if applied to the time/ensemble average of the switching network. The second question has been addressed with a tractable solution and the framework set proved to be useful in the study of the communication networks with fast moving nodes.

Third front of contributions addressed the following questions in distributed control of the networks in linear systems: I) what is the minimal order of communications network to achieve stability in heterogeneous network of linear time varying systems with partially observable nodes? II) how these results scale for the large networks? These questions have been addressed in chapter 6 and 7, respectively. By posing the problem as a convex problem, a tractable solution have found for the distributed control networks. The scalability problem
due to complexity of the general question has been addressed to linear time-invariant systems as the network size grows unboundedly. The latter results gave insight to structural effect of the networks and set a lower bound on the performance of the cyber network-design.
LIST OF REFERENCES

170
IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,

[125] W. Haddad and V. Chellaboina, Nonlinear dynamical systems and control: a

[126] I. Grossmann, “Review of nonlinear mixed-integer and disjunctive programming tech-