
Figure 6.6: Example 3: SOOPDG for Figure 5.5, main method and Execute class

(1 of 3)

Figure 6.7: Example 3: SOOPDG for Figure 5.5, SimpleCalc class (2 of 3)

145



Figure 6.8: Example 3: SOOPDG for Figure 5.5, Calculator Interface and Ad-

vancedCalc Class (3 of 3)

146



7

THE SIMULATION DEPENDENCE GRAPH

This chapter presents the Simulation Dependence Graph (SDG), a natural ex-

tension to the SOOPDG with applications in the modeling and simulation field.

Specifically, we define the SDG and establish the foundation for a line of re-

search investigating the use of the formalism in the representation and analysis

of simulation systems. While this discussion is specific to simulation systems, the

concepts have application in the fields of component based software.

Component based software development is an emerging topic in the software

engineering discipline [Par03, Lau06]. The success of JavaBeans is a prominent

example [Mic05] of its benefits. The concept of component re-use and issues

associated with creating new applications through the composition of existing

components is common to both fields of study. Specifically, notions discussed

here such as syntactic and semantic interoperability transfer directly between the

problem domains. Simulation composability and software component based de-

velopment both require that appropriate components be identified for use, their

functionality be measured against requirements, and the resulting system be sta-

ble [WGH03, Par03].

The SDG views computation at a coarser granularity than the SOOPDG. The

elements of traditional PDGs and the SOOPDG roughly correspond to program

statements and relationships between these statements and allow for analysis at

the program level. In contrast, the elements of the SDG correspond roughly to

147



model features, model components, and the relationships between them. The

SDG allows for analysis at the system level. Program analysis techniques devel-

oped using the PDG may be leveraged to allow static and dynamic analyses of

simulation systems. Here we present basic definitions used in the development

of the SDG, provide an example simulation, and discuss potential uses for this

representation.

7.1 Background Definitions

Informally, a model is a mathematical approximation of a real world system rep-

resenting a finite number of measurable attributes, or features of interest, of the

real world system [WGH03]. The model specifies a set of attributes, coupled

with mathematical functions that update the values of these attributes to repre-

sent sufficiently the state and behavior (state changes) of the real world system

being investigated. A simulation is a process that investigates the behavior of

the model [WGH03] through a series of updates to the attribute values. For

our purposes, the model is implemented through software, and the simulation

is the act of executing the software program(s). We represent the model imple-

mentation using the SDG in the same way that the PDG represents programs

implementing computational algorithms. To represent a simulation, there should

be a correspondence between the mathematical model specification in the model-

ing space and the implementation of the model in the simulation space [WGH03].

A graph representation meets this requirement, in that a rewriting semantics may

be defined that corresponds to the original program semantics [Sel90a].

In this section we develop a set notation that acts as an intermediate repre-

sentation in the transition from a model specification to an SDG representation

148



of the model. This set notation is based largely on that developed by Petty et

al [PW03b] in their discussions about semantic composability of models. We be-

gin by defining individual attributes and their update functions, and continue to

define models and simulations.

We define a feature of a model, denoted as f , as a measurable aspect of a real

world system represented in the model (Definition 37). We define an attribute,

denoted as a, as a range of values (Definition 38) that may be assigned to a

feature. This definition is similar to Petty’s definition [PW03b], except that we

do not restrict attribute values to integers. This definition is also in accordance

with the requirement that simulations contain explicitly defined boundaries and

constraints [WGH03]. We refer to an individual value residing in an attribute

as an attribute value, and denote it as α. We further denote that an attribute

vector, A, is a tuple of attributes (Definition 39), and an attribute value vector,

AV , is a tuple of specific values from each attribute contributing to the vector

(Definition 41). An attribute update function, F(AV ), is a process that receives

a (potentially empty) vector of attribute values as input, and selects a value from

the attribute it is associated with as output (Definition 42). Attribute update

functions provide a mapping from a vector of attribute values to attribute values,

a ⇐ F (AV ).

Definition 37 (Feature) A feature, f , is a representation in a model of a mea-

surable aspect of the real world system being studied.

Definition 38 (Attribute) An attribute, a, is a range of values, that is not

necessarily continuous. We define attributes through the following recursive rules.

1. i is a single value in Z ∪ ⊥.

2. r is a single value in R ∪ ⊥.

149



3. io − if designates a range of values in Z from io to if , inclusive.

4. ro − rf designates a range of values in R from ro to rf , inclusive.

5. a = φ designates an attribute containing no members.

6. a = {α|io ≥ α ≥ if , α, io, if ∈ Z} designates an attribute.

7. a = {α|ro ≥ α ≥ rf , α, ro, rf ∈ R} designates an attribute.

8. if a1 and a2 are attributes, then a = a1 ∪ a2 is an attribute.

Definition 39 (Attribute Vector) An attribute vector, A, is an ordered tuple

of attributes, A = (a1, a2, a3, . . . , ak)

Definition 40 (Attribute Value) An attribute value, α, is an individual mem-

ber of an attribute.

Definition 41 (Attribute Value Vector) An attribute value vector, Av, is an

ordered tuple of attribute values, Av = (α1, α2, α3, . . . , αk), such that αi ∈ ai, for

1 ≤ i ≤ k.

Definition 42 (Attribute Update Functions) An attribute function, Fi(AV ),

takes an attribute value vector and produces an attribute value, α ∈ ai.

We define a model, M , as a set of features with associated attributes and

update functions (Definition 43). The values selected for all model attributes at

any point in the course of a simulation represent the state of the simulation. The

update functions serve to modify the current values selected from each attribute in

the model as it transitions from state to state. Since models are represented in set

format, model composition may be defined in terms of set union (M3 = M1∪M2),

and decomposition can be defined as set subtraction (M1 = M3 −M2).

150



Definition 43 (Model) A model, M, is a set of tuples of features, attributes

and attribute update functions.

M = {(f1, a1, F1), (f2, a2, F2), . . . , (fn, an, Fn)}.

This set notation form of model representation can be used to discuss model

properties in a static format. We define two such model properties, completeness

and ambiguity, useful in defining the notion of a simulation. Completeness refers

to the capability of a model to supply input values for its update functions. A

complete model contains all attributes required as input for all update functions

in the model (Definition 44). Simulation systems are often constructed by com-

posing models as simulation components. For example, an aircraft model may

be composed from a geometric model defining airframe shape, an engine model

defining engine performance across various flight regimes, and an environmental

model describing the atmospheric effects on the aircraft. No single component

may be complete, though the aircraft model may be complete once composed.

The second property of interest to us is the notion of ambiguity. A model is am-

biguous if there is more than one attribute and update function pair providing

values for the same model feature of interest (Definition 45).

Definition 44 (Completeness) A model, M , is complete if all attributes re-

quired to supply values to all update functions reside within the model. That is

∀F (AV ) ∈ M, ∀αi ∈ AV ,∃(fi, ai, F (AV i)) ∈ M

Definition 45 (Ambiguity) A model, M , is ambiguous if it contains more than

one attribute and update function providing values for the same model feature. M

is ambiguous if ∃i, j, such that (fx, ai, Fi(AV )), (fx, aj, Fj(A
′
V )) ∈ M , and i 6= j.

A simulation is a process acting on a model that updates one or more at-

tributes one or more times (Definition 46). We will require that the model be

151



complete, so that all inputs to all update functions reside within the model, and

non-ambiguous, so that deterministic sources exist for inputs to update functions.

In order to perform the simulation process we require some form of sequencing

designating the order in which attributes are updated. Let As denote a special

attribute vector that designates this sequence of attribute updates, then a simu-

lation can be thought of as a function of the model and the sequencing attribute

vector, S = F (M, As).

Definition 46 (Simulation) Given a complete, non-ambiguous model, M , and

a sequencing attribute vector, As, we define a simulation, S = F (M, As) to be a

function operating on M by updating its attributes in accordance with the attribute

update functions and the sequences designated by As. This process may be iterative

and does not require termination criteria.

This set notation form of a model and the simulation process is used to specify

a model in a suitable format to transition to the SDG form.

7.2 Definition of the SDG

The Simulation Dependence Graph (SDG) is composed of a node set and three

edge sets (Definition 47). The node set represents attributes of the real world

entities being simulated, their allowable value ranges, and the functions that up-

date the attribute values during the course of a simulation. Nodes are annotated

as PUSH or PULL nodes, meaning that attribute updates are supplied to other

nodes upon calculation or upon request, respectively. This allows for imperative

and lazy model semantics to be represented. The three edge sets represent data

dependences, entity memberships, and sequencing constraints. The data depen-

152



dence edges explicitly model input-output interactions between attributes; this

information can be used to analyze and optimize system behavior in the same

manner that modern optimizing compilers perform program data-flow analysis.

The entity membership edges explicitly associate attributes belonging to the same

physical entity; this information can be used to distribute entity-dependent be-

haviors and constraint across a set of nodes representing a single simulated object.

The sequencing constraint edges explicitly represent the order in which attribute

values are updated; these edges may be used to demonstrate the efficiency of

one manner of scheduling tasks over another. The sequencing edges may model

uni-processor or parallel processor environments.

Definition 47 (Simulation Dependence Graph) The Simulation Dependence

Graph, G = {N, Ef , Ec, Ee}, where:

1. N is the node set. Each node, n ∈ N , contains an attribute, its update

function, and a tag designating the node as a PUSH or PULL node.

2. Ef is the set of flow dependence edges. Each edge, ef ∈ Ef , identifies an

ordered pair of nodes, (ni, nj), such that nj is flow dependent on ni.

3. Ec is the set of sequencing edges where each edge, (ni, nj), describes the

order in which attribute updates are performed in a pairwise fashion.

4. Ee is the set of undirected entity edges containing edges of the form (ni, nj),

indicating that nodes ni and nj belong to the same entity.

The node set, N , and flow edge set, Ef , are derived directly from the set

notation form of the model. The sequencing edges, Ec, and entity edge set, Ee,

are typically specified by the model designer.

153



7.3 Ants on a Log: A Simulation Example

We will use a simple model of ants walking back and forth along a log as an

example of a simulation and corresponding SDG. The model is discussed below

and defined in Figure 7.1, while the corresponding SDG is shown in Figure 7.2.

The Ants on a Log (AL) simulation has the following components:

1. Entities representing ants are walking back and forth on a level log.

2. Ants cannot pass each other; the log is effectively 1-D.

3. Ants turn to avoid falling off the log or colliding with other ants.

This simple model contains the key elements of all simulations: an environ-

ment (the log), agents (the ants), agents acting with the environment (ants - log

interactions), and agents affected by other agents (ant-ant interactions).

This simple model can easily be made remarkably complex. For example, the

model may include expanding or shrinking logs, passing zones, variable speed

ants, territorial ants, and teams of ants acting in concert.

7.4 The SDG and Model Analysis

Model composability is important because low-level models are integrated to com-

pose higher system-level simulations, and composition must be stable when parts

are replaced [WGH03]. While composition in the computational sense implies

the combination of simple functions to create complex behaviors, the Modeling

and Simulation community uses the term to imply the ability to combine existing

models into new application domains [KN00]. The term interoperability is also

154



Figure 7.1: Definition of the Ants on a Log Simulation

used to describe this concept of composability. The notion that overall system

behavior can be described or maintained purely through examination of model

components is not valid, as models may produce surprising system level behaviors

through emergent interactions of the component models [Par03]. It is also not

possible, in the general case, to predict what effects replacement of model com-

ponents will have on the overall model. Textual (syntactic) differences between

models can be identified, but it is in general undecidable to determine semantic

differences [Hor90].

The composability problem of replacing one model with an equivalent al-

ternative has been addressed in various ways. The problem is typically broken

into two components: syntactic and semantic composability [PW03a]. Syntactic

composability can be approximated through examination of model structure, and

function inputs and outputs. While this addresses the syntactic composability

155



Figure 7.2: SDG for the Ants on a Log Simulation

of models, it does not assure that software representations of the models are

composable.

Determination of semantic composability is not Turing computable in the

general sense. Semantic composability may be difficult because different users

may have different contexts [WGH03]. One proposed method attempts to de-

termine if two model components are semantically equivalent through the use of

meta-data added to the model. For example, editor tags are one way to sup-

ply meta-data information for an underlying model [Hor90]. This assumes the

new model was created by editing an old one, and does not generalize to two

models created in completely different processes. Another technique proposed

for semantic composability is to provide an internally consistent library of poten-

tial component models that may be combined in various ways to meet specific

156



needs [KN00]. A third method is to estimate model behaviors through a form of

profiling by examining actual run time behaviors or behavior predictions of two

models [PW03a].

The SDG supports syntactic composability of models directly, and provides

a new mechanism to address semantic composability. Both of these techniques

require further development through future research efforts. Syntactic compos-

ability is addressed through duplication of graph structures across some interface.

For example, a subcomponent may be removed from the overall model, leaving

a “hole” in the graph, with dangling edges. Any replacing subcomponent must

fill the “hole” such that the resulting model has no dangling edges. Semantic

composability may be investigated using traditional PDG analysis techniques.

We propose using the notion of a program slice as a measure of semantic com-

posability.

A program slice identifies, for a given program point, all nodes in a graph

affecting the computation at that point, or affected by the computation at that

point [HRB90]. The notion of using program slices as a measure of semantic

difference for traditional PDGs is discussed by Horwitz [Hor90]. For an SDG,

we may build a slice for each node in the model to identify all nodes affecting,

and affected by, a given node. Thus, two models (components) may be compared

by comparing the slices generated for each node in each model (component).

This provides a measurable comparison of the computations each model relies

on, and the computations affected by each model. Ranges of values for each

attribute may also be compared to allow comparison of the domain and ranges

for alternate update functions, thus providing an indirect estimate of the range

of model behaviors. A sample program slice is provided for the Ants on a Log

Model in Figure 7.3.

157



Figure 7.3: SDG Slice for the l1 Node in the Ants on a Log PDG

While the SDG is still in its developmental stages, it leverages established

PDG techniques to represent simulation systems in a manner allowing static and

dynamic analysis of the systems. The analogy to program slicing is just one such

instance of how techniques and insights developed for the PDG hold promise for

formal reasoning about complex simulation systems.

158



8

SOOPDG EXTENSIONS AND FUTURE WORK

This thesis has presented a definition of the SOOPDG and described program

analysis techniques that may be performed using this representation. Advantages

over other Java and OO dependence based representations have also been pre-

sented. We plan to continue this research to more fully develop the SOOPDG

as a formal model of computation in an OO environment and also as a tool to

enhance program performance. The specific areas of interest for future work

include inclusion of multi-threaded applications, development of a formal deno-

tational semantics, and adaptation of the SOOPDG to run time optimization

schemes.

8.1 Multi-threading and Unstructured Control

In this thesis, we limit the Java-like language J to a single thread. Actual Java

applications are typically multi-threaded, which implies that incorporating multi-

threaded behavior into the definition of J and the SOOPDG is a useful extension.

The literature contains examples of static dependence-based analytical techniques

developed for multi-threaded Java programs. These techniques typically gener-

ate program slices involving elements from multiple execution threads. Nanda,

Krinke, and Hammer and Snelting [Nan01, Kri03, HS04] present slicing tech-

niques for multi-threaded Java programs through direct extensions of System

159



Dependence Graphs and interprocedural slicing methods presented by Horwitz

et al. [HRB90]. Zhao [Zha98] presents a slicing method capable of slicing multi-

threaded Java programs by adapting Horwitz et al [HRB90] methods to the

JSDG-Z representation. The current literature supports static representations

of multi-threaded Java programs, with no presentations of rewriting semantics.

Extending the SOOPDG representation and rewriting semantics to support

multi-threaded executions will allow the advantages demonstrated for the SOOPDG

to be applied to a fuller range of applications. The SOOPDG intrinsically sup-

ports parallel operations of a single execution thread, as discussed in Chapter

5. The operations are deterministic as the sequences specified by dependence

edges are respected [Sel89]. Though deterministic forms of multi-threaded pro-

grams can be created through explicit synchronization features such as notify

and wait [Zha98], multi-threaded programs are not guaranteed to be determin-

istic. This presents a difficulty in establishing a rewriting semantics that cor-

rectly represents program execution and potential input-output behavior in a

non-deterministic environment. This challenge may potentially be overcome by

adapting techniques to represent explicitly parallel programs using existing PDG

forms [SHW93, LMP99]. If a mechanism is not developed to represent the non-

deterministic aspects of parallel processing, there is still utility in adapting the

SOOPDG to deterministic, thread safe applications.

There is also value in extending the model to allow forms typically used in real

world programs that introduce unstructured control flow. The widespread use

of the “try-catch-throw” mechanism of exception handling is suficient motivation

for the extension. Neither the J language nor the SOOPDG presented in this the-

sis currently supports “try-catch-throw.” The J language is currently restricted

to allowing at most one “return” statement in a method, and does not support

160



“break” statements. Real world Java methods often contain multiple “return”

statements accommodating different control flow paths within the method. Simi-

larly, programmers often use “break” statements to provide convenient exits from

compound statements. These are commonly used elements and their inclusion in

the model would increase the robustness and utility of the SOOPDG.

8.2 Formal SOOPDG Semantics

Parsons [Par92] developed a complete denotational semantics for the PDG to

allow formal reasoning of program properties. The PDG form developed by

Cartwright, Felleison and Parsons upheld the SFU property through use of the

valve node [CF89, Par92]. The compositional nature of the valve node, as opposed

to the φ-node used in the SSA PDG form, was instrumental in developing the

semantics presented by Parsons. Since the SOOPDG has its basis in the SFU

form it is amenable to an extension of the semantics to include the OO features.

Extending Parsons’ semantics to the SOOPDG allows formal reasoning regarding

program transformations and maintenance of program meaning.

8.3 Dynamic Performance Improvement

We propose investigating the use of the SOOPDG to enhance performance dy-

namically. Current literature provides examples of research efforts focused on

improving the performance of Java (and OO languages) by identifying paral-

lelization and compilation opportunities in the run time environment. In this

discussion we will differentiate between compilation to byte-code occurring prior

161



to program execution and so-called Just In Time (JIT) compilation occurring

during execution by using the term “compilation” for the former and “JIT” for

the latter. Successful application of automated parallelization and JIT techniques

require that the same fundamental question be answered: “Does the performance

benefit obtained outweigh the overhead cost of performing the technique?” The

need to address this issue for automatic and dynamic parallelization techniques

has been discussed for some time [Tre79, Den94, LH96, ZC91] and continues to

be investigated [OH02]. The need to address this issue for JIT techniques is

displayed in current literature as well [VE00, Wha01, SYN03, BV05]. Arnold et

al [AFG05] provide an taxonomy of numerous techniques proposed to perform

run-time optimizations.

Current techniques impose a division between compile-time and run-time en-

vironments [FO98, AFG05]. This makes both compilation and execution less

efficient, as information currently accessible in only one environment is often re-

quired in the other for optimal decision making [FO98]. Decisions made during

compilation must make conservative assumptions to compensate for the lack of

information regarding the run time environment. Decisions made during pro-

gram execution suffer from a lack of information regarding program structure

and dependences normally uncovered during compilation. Existing dynamic op-

timization techniques rely on profiling of past execution history to estimate fu-

ture optimization decisions, or instrumentation of the program to assess current

optimization opportunities [AFG05, Wha01, SYN03, BV05]. A well known ex-

ample of this is the Java HotSpot technology, which tracks program execution

and performs JIT compilation of program sections when the executing program

repeatedly executes that section above some threshold [PVC01]. Future research

will adapt these techniques to the SOOPDG representation, and the efficacy of

this will be verified empirically.

162



We also propose to investigate the utility of incorporating information re-

garding program structure and dependences into an intermediate form using the

SOOPDG as a basis. The basic notion is to delay parallelization and JIT deci-

sions to run time while carrying forward information pertinent to the optimization

using a PDG-like representation. This will reduce the barrier between the compi-

lation and run time environments. Deferred compilation and JIT schemes exist,

but they are not predictive in nature and depend instead on run-time profiling

[AFG05, VE00]. Similarly, dynamic parallelization schemes defer decisions to the

run-time environment and then operate on profiling [VE99]. The representation

is decorated with program dependence information and execution cost estima-

tions to allow optimization decisions to be made in a predictive fashion prior

to execution of the program segments in question, rather than operating ineffi-

ciently during a profiling phase. While this has been suggested in the past [FO98],

there do not appear to be implemented examples. This scheme requires that an

Information Preserving (IP) intermediate representation be developed to carry

information discovered during compilation forward to the run time environment.

We anticipate utilizing the SOOPDG as a basis and will refer to the information

preserving form as the IPPDG. The IPPDG must be developed in conjunction

with a run time compiler/interpreter that dynamically performs parallelization

and/or JIT operations based on information embedded in the IPPDG, current

data values, and characteristics of the current run time environment.

8.4 Extending the Simulation Dependence Graph

The SDG presented in this thesis requires further development and verification.

Future work will include development of a more precise definition of rewriting

163



semantics and precise definition of system properties such as composability. The

utility of the model will be verified through application to test simulation systems,

both as a predictor of system performance and as a profiling tool intrinsic to the

system run-time infrastructure. In addition, adapting the SDG concepts to more

general software composability issues appears to be a fruitful line of research.

164



9

CONCLUSIONS

This thesis has developed and presented a new program dependence graph that

represents OO languages, specifically a subset of the Java language. This repre-

sentation, the SOOPDG, and its associated rewriting operations are capable of

representing static program configurations, as well as computations performed by

the program. An algorithm was presented to create an SOOPDG directly from

program statements. This algorithm was shown to be of comparable complexity

to algorithms developed for similar representations. We have also discussed the

ability of the SOOPDG to represent computation through its rewriting semantics.

The SOOPDG was shown to be amenable to standard analyses such as constant

propagation, program slicing, and determination of class inheritance.

We have demonstrated that the SOOPDG has several advantages over existing

representations. Specifically,

1. The SOOPDG represents OO constructs while introducing a relatively few

number of new node types and no new edge types from those used in tra-

ditional PDGs. This results in cleaner semantics than other OO represen-

tation systems.

2. The size of the SOOPDG compares favorably with other representations,

primarily due to the representation of method input/output, and also due

to the use of higher order semantics.

165



3. The cost of building the SOOPDG is comparable to the cost of other rep-

resentations, and has advantages when compared to those representations

having larger sizes.

4. The SOOPDG supports dynamic binding directly through the SFU prop-

erty and the use of higher order semantics. Called methods flow to the call

site as “values.” This simplifies reasoning regarding calling contexts and

reduces graph size over that presented by Walkinshaw et al [WRW03].

5. The SOOPDG inherently supports parallel operations. This is in contrast

to alternate models such as JSDG-Z and JSDG-W.

6. The SOOPDG supports the SFU property, which has advantages in seman-

tic clarity and compiler operations over the SSA property used by other

representations.

We have presented the Single Flow to Use (SFU) property that requires that,

for each variable used in a program statement, exactly one value for the variable is

made available to the statement at its execution. This is a new program property

that is enforced during program execution, as opposed to the static representa-

tion. We have demonstrated how the SFU property is enforced through the use

of strategically placed valve nodes, specified criteria for valve node placement,

and demonstrated that the techniques presented by Parsons [Par92] meet those

criteria.

We have also presented the SDG, a promising extension of the SOOPDG into

the realm of modeling and simulation. We have discussed the ability of the SDG

to represent simulation systems statically and proposed using a form of graph

slicing to investigate model composability issues. We have also demonstrated the

SDGs ability to represent simulation processes through graph semantics. The

166



SDG requires further development but appears to be a promising representation

form for simulation systems.

In addition to forming the basis for the development of the SDG, the SOOPDG

provides opportunities for future fruitful research in several areas. The SOOPDG

may be used as a basis for run-time optimization schemes that take advantage

of the information uncovered during the compilation phase. This information

may be used to detect parallelization opportunities without relying on existing

methods that require profiling obtained from previous program runs. The same

techniques may be used to support dynamic compilation decisions, such as that

used in the Java HotSpot technology.

167



LIST OF REFERENCES

[AFG05] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Pe-
ter F. Sweeney. “A Survey of Adaptive Optimization in Virtual Ma-
chines.” Proceedings of the IEEE, 92(2):449, 466, February 2005.

[AH03] M. Allen and S. Horwitz. “Slicing Java programs that throw and catch
exceptions.” Proceedings of the ACM SIGPLAN 2003 Workshop on
Partial Evaluation and Semantics Based Program Manipulation, June
2003.

[ALS07] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools. AddisonWestley, Read-
ing, Massachusetts, 2.0 edition, 2007.

[Ana99] C. Scott Ananian. “The Static Single Information Form.”. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, MA, Sep-
tember 1999.

[AWZ88] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. “Detect-
ing equality of Variables in programs.” Proceedings of the 15th ACM
Symposium on Principles of Programming Languages, pp. 1,11, Janu-
ary 1988.

[BCH98] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Tay-
lor Simpson. “Practical Improvements to the Construction and De-
struction of Static single Assignment Form.” Software - Practice and
Experience, pp. 859, 881, July 1998.

[BM92] Robert A. Ballance and Arthur B. Maccabe. “Program dependence
graphs for the rest of us.” Technical Report 91-10, 1992.

[BMO90] Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstein. “The
program dependence web: a representation supporting control-, data-
, and demand-driven interpretation of imperative languages.” Pro-
ceedings of the SIGPLAN ’90 Conference on Programming Language
Design and Implementation, pp. 257, 271, June 1990.

168



[BV05] Miihai Burcea and Michael Voss. “Managing Compilation Overheads
in a Runtime Specializer for OpenMP.” In Proceedings of the IASTED
International Conference on Parallel and Distributed Computing and
Systems, 2005.

[CF89] Robert Cartwright and Mathis Felleison. “The semantics of program
dependence.” Proceedings of the SIGPLAN 1989 Conference on Pro-
gramming Language Design and Implementation, pp. 13, 27, 1989.

[CFR89] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark M. Wegman, and
F. Kenneth Zadeck. “An efficient method of computing static single
assignment form.” Proceedings of the 16th Annual ACM Symposium
on the Principles of Programming Languages, pp. 22, 35, January 1989.

[CFR91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark M. Wegman,
and F. Kenneth Zadeck. “Efficiently computing static single assign-
ment form and the control dependence graph.” ACM Transactions
on Programming Language and Systems (TOPLAS), 13(4):451, 490,
October 1991.

[CX01] Zhenqiang Chen and Baowen Xu. “Slicing Object-Oriented Java Pro-
grams.” In SIGPLAN Notices, volume 36, pp. 33,40, New York, NY,
2001. ACM Press.

[CY96] Jien-Tsai Chan and Wuu Yang. “A Program Slicing System for
Object-Oriented Programs.” In Proceedings of the 1996 International
Computer Symposium, pp. 422,429, December 1996.

[Den94] Jack B. Dennis. “Machines and models for parallel computing.” In-
ternational Journal of Parallel Programming, 22(1):47, 77, 1994.

[FO98] Nickolas J. G. Falkner and Michael J. Oudshoorn. “Smarter Compi-
lation: a step towards automated distribution.” In The Fifth IDEA
Workshop, February 1998.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Pro-
gram Dependence Graph and its Use in Optimization.” ACM Trans-
actions on Programming Languages and Systems, 9(3):319, 349, July
1987.

[FYD06] Stephen Fink, Eran Yahav, Nurit Dor, and G. Ramalingam. “Effective
typestate verification in the presence of aliasing.” ISSTA ’06, July
2006.

169



[GCH00] Manish Gupta, Jong-Deok Choi, and Michael Hind. “Optimizing Java
Programs in the Presence of Exceptions.” Lecture Notes in Computer
Science, 1850:422–446, 2000.

[GDD97] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. “Call
graph construction in object-oriented languages.” In ACM Confer-
ence on ObjectOriented Programming Systems, Languages, and Appli-
cations (OOPSLA), October 1997.

[Hav93] Paul Havlak. “Construction of Thinned Gated Single-Assignment
Form.” Proceedings of the Sixth International Workshop on Program-
ming Languages and Compilers for Parallel Computing, pp. 477 – 499,
August 1993.

[Hor90] Susan Horwitz. “Identifying the Semantic and Textual differences
Between Two Versions of a Program.” In Proceedings of the ACM
SIGPLAN 1990 Conference on Programming Language Design and
Implementation, pp. 234,245, 1990.

[HR92] Susan Horwitz and Thomas Reps. “The use of program dependence
graphs in software engineering.” Proceedings of the 14th International
Conference on Software Engineering, May 1992.

[HRB90] Susan Horwitz, Thomas Reps, and David Binkley. “Interprocedural
slicing using dependence graphs.” ACM Transactions on Program-
ming Languages and Systems, 12:26, 60, January 1990.

[HS04] Christian Hammer and Gregor Snelting. “An improved slicer for
Java.” In Proceedings of the ACM-SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, pp. 17–22, 2004.

[HU75] Matthew S. Hecht and Jeffrey D. Ullman. “A Simple Algorithm for
Global Data Flow Analysis Problems.” SIAM Journal of Computing,
4(4):519 – 532, December 1975.

[Hug89] John Hughes. “Why Functional Programming Matters.” The Com-
puter Journal, 32(2):98,107, 1989.

[JPP94] Richard Johnson, David Pearson, and Keshav Pingali. “The Pro-
gram Structure Tree: Computing Control Regions in Linear Time.”
In SIGPLAN Conference on Programming Language Design and Im-
plementation, pp. 171, 185, 1994.

170



[KKP81] D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. “De-
pendence graphs and compiler optimizations.” Proceedings of the
Eighth ACM Symposium on the Principles of Programming Languages,
1981.

[KN00] Stephen Kaputis and Henry C. Ng. “Composable Simulations.” In
Proceedings of the 2000 Winter Simulation Conference, pp. 1577, 1584,
December 2000.

[Kri89] E. V. Krishnamurthy. Parallel Processing Principles and Practice.
AddisonWesley, Reading, Massachusetts, 1989.

[Kri03] Jens Krinke. “Context-Sensitive Slicing of Concurrent Programs.”,
2003.

[Lau06] Kung-Kiu Lau. “Software Component Models.” In ACM Proceedings
of the 28th International conference on Software Engineering, 2006.

[LCH04] Jin Lin, Tong Chen, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching
Ju, Tin-Fook Ngai, and Sun Chan. “A Compiler Framework for Spec-
ulative Optimizations.” ACM Transactions on Architecture and Code
Optimization, 1(3):247, 271, 2004.

[LH96] Hans-Wolfgang Loidl and Kervin Hammond. “Making a packet: cost-
effective communication for a parallel graph reducer.” Implementation
of Functional Languages, 1996.

[LH98] D. Liang and M. Harrold. “Slicing Object Using System Dependence
Graph.”, 1998.

[LMP99] Jaejin Lee, Samual P. Midkiff, and David A. Padua. “Concurrent
Static Single Assignment Form and Constant Propagation for Explic-
itly Parallel Programs.” Proceedings of the Seventh ACM SIGPLAN
Symposium on the Principles and Practice of Parallel Programming,
1999.

[Mic05] Sun Microsystems. Enterprise Java Beans Specification, Version 3.0.
2005.

[MMK94] B. A. Malloy, J. D. Mcgregor, A. Krishnaswamy, and M. Medlkonda.
“An extensible program representation for object-oriented software.”
ACM SIGPLAN Notices, 29(12):38–47, 1994.

[Mog91] Eugenio Moggi. “Notions of Computation and Monads.” Information
and Computation, 93(1):55–92, 1991.

171



[Nan01] Mangala Gowri Nanda. Slicing Concurrent Java Programs: Issues
and Solutions. PhD thesis, India Institute of Technology, 2001.

[OH02] Michael Oudshoorn and Lin Huang. “Evolving toward an Optimal
Scheduling Solution Through Adaptivity.” Journal of Parallel and
distributed Computing, 62(7):1203, 1222, July 2002.

[OO84] K. Ottenstein and L. Ottenstein. “The Program Dependence Graph
in a Software Development Environment.” In Proceedings of the ACM
SIGSOFT SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pp. 177, 184, 1984.

[Par92] Rebecca Parsons. Semantic Program Dependence Graphs. PhD thesis,
Rice University, June 1992.

[Par03] Rebecca Parsons. “Components and the World of Chaos.” IEE Soft-
ware, pp. 83, 85, May/June 2003.

[PP96] Paul M. Peterson and David A. Padua. “Static and dynamic evalua-
tion of data dependence analysis techniques.” IEEE Transactions on
Parallel and Distributed Systems, 7(11):1121,1132, November 1996.

[PVC01] M. Paleczny, C. Vick, and C. Click. “The Java hotspot server com-
piler.” In in Proc. Usenix Java Virtual Machine Research and Tech-
nology Symp. (JVM01), pp. 1–12, 2001.

[PW03a] Mikel D. Petty and Eric W. Weisal. “A Composibility Lexicon.” In
Proceedings of the Spring 2003 Software Interoperability Workshop,
pp. 181, 187, April 2003.

[PW03b] Mikel D. Petty and Eric W. Weisal. “A Formal Approach to Com-
posibility.” In Proceedings of the 2003 Interservice/Industry Training,
Simulation and Education Conference, pp. 1763, 1772, December 2003.

[Rei78] John H. Reif. “Symbolic Program analysis in Almost Linear Time.”
Conference Record of the Fifth ACM Symposium on the Principles of
Programming Languages, 1978.

[Rey98] John C. Reynolds. Theories of Programming Languages. Cambridge
University Press, New York, New York, 1998.

[RKG04] Atanas Rountev, Scott Kagan, and Michael Gibas. “Static and dy-
namic analysis of call chains in java.” In ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 1, 11, July 2004.

172



[RSE04] Rodric M. Rabbah, Hariharan Sandanagobalane, Mongkol Ekpa-
nyapong, and Weng-Fai Wong. “Compiler Orchestrated Prefetching
via Speculation and Predication.” In Proceedings of the Eleventh
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’04), pp. 189, 198, Octo-
ber 2004.

[RWF03] Jeffery von Ronne, Ning Wang, and Michael Franz. “Interpreting
Programs in Static Single Assignment Form.” Technical Report TR
03-19, University of California, Irvine, Irvine, CA, April 2003.

[Sel89] Rebecca Parsons Selke. “A rewriting semantics for program depen-
dence graphs.” Proceedings of the 16th ACM Symposium on Principles
of Programming Languages, pp. 12, 24, August 1989.

[Sel90a] Rebecca Parsons Selke. “Program dependence graphs: a formal treat-
ment.” Technical Report TR90-130, Rice University, Houston, TX,
August 1990.

[Sel90b] Rebecca Parsons Selke. “Transforming program dependence graphs.”
Technical Report TR90-131, Rice University, Houston, TX, August
1990.

[SG95] Vugranam Sreedhar and Guang R. Gao. “A Linear time algorithm for
placing phi-nodes.” Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages, pp. 62–73, 1995.

[SHW93] Harini Srinivasan, James Hook, and Michael Wolfe. “Static Single
Assignment for Explicitly Parallel Programs.” Conference record of
the 20th Annual Symposium on Principles of Programming Languages,
pp. 260–272, 1993.

[SYN03] T. Suganuma, T. Yasue, and T. Nakatani. “A region-based compila-
tion technique for a Java just-in-time compiler.” ACM SIGPLANNo-
tices, 38(5):312, 323, May 2003.

[TGH92] Kevin B. Theobold, Guang R. Gao, and Laurie J. Hendron. “On the
Limits of Program Paralellism and its Smoothness.” Technical Report
ACAPS Technical Memo 40, McGill University School of Computer
Science, 1992.

[Tip95] F. Tip. “A survey of program slicing techniques.” Journal of pro-
gramming languages, 3:121–189, 1995.

173



[Tre79] Philip C. Treleaven. “Exploiting Program concurrency in computing
systems.” Computer, pp. 42, 49, January 1979.

[VE99] Michael Voss and Rudolf Eigenmann. “Dynamically Adaptive Parallel
Programs.” In ISHPC, pp. 109–120, 1999.

[VE00] Michael Voss and Rudolf Eigenmann. “ADAPT: Automated De-
Coupled Adaptive Program Transformation.” In International Con-
ference on Parallel Processing, pp. 163–, 2000.

[VE01] Michael J. Voss and Rudolf Eigemann. “High-level adaptive program
optimization with ADAPT.” ACM SIGPLAN Notices, 36(7):93–102,
2001.

[WGH03] Gwendolyn Walton, Brian Goldiez, Ron Hofer, and David Kaup.
“Mathematical Foundations for Modeling and Simulation.” Proceed-
ings of the SPIE, 5091:310, 320, 2003.

[Wha01] J. Whaley. “Partial method compilation using dynamic profile infor-
mation.” ACM SIGPLANNotices, 36(11):166, 179, November 2001.

[WRW03] Neil Walkinshaw, Marc Roper, and Murray Wood. “The Java system
dependence graph.” Third IEEE International Workshop on Source
Code Analysis and Manipulation, September 2003.

[ZC91] Hans Zima and Barbara Chapman. Supercompilers for Parallel and
Vector Computers. ACM Press, New York, New York, 1991.

[Zha98] Jinjian Zhao. “Multithreaded Dependence Graphs for Concurrent
Java Programs.” Proceedings of Workshop on Software Engineering
and Database Systems, International computer Symposium, 1998.

[Zha99] Jinjian Zhao. “Applying Program Dependence Analysis to Java Soft-
ware.” Proceedings of the International Symposium on software Engi-
neering for Parallel and Distributed Systems, 1999.

174


