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ABSTRACT 

Light as a “green” source of energy has become increasingly attractive throughout the past 

century and has shown versatility for the application of activating chemical reactions. Compared 

with traditional energy sources, it provides a more direct, selective and controllable method. My 

PhD study was focused on the study of photochemistry of organic materials in two different 

systems. The first system is regarding reversible photoacids which generate protons on 

irradiation. With the aim of systematically studying these novel types of long lived photoacids, a 

series of photoacids was designed, synthesized and whose chemical mechanism was thoroughly 

investigated. This type of photoacid changes from a weak acid to a strong acid with a pH change 

of several units, which achieves nearly complete proton dissociation upon visible light irradiation. 

The whole process is reversible and the half-life of the proton-dissociation state is long enough 

to be used in many applications. Besides fundamental studies, different applications based on 

this type of photoacids were also completed. An esterification reaction was catalyzed and the 

volume of a pH-sensitive polymer was altered due to the large amount of photo generated 

protons from this photoacid. A reversible electrical conductivity change of polyaniline (PANI) 

was also achieved by doping with this reversible photoacid. In order to induce a large 

conductivity increase, an irreversible photoacid generator (PAG) was embedded in a novel 

PANI/PAG/PVA novel composition.  In this system, Poly (vinyl alcohol) (PVA) forms a 

hydrogen-bonding network to facilitate proton transfer between the PAG and PANI. A final 

electrical conductivity of 10
-1

 S cm
-1

 was successfully achieved after irradiation.   

The second system in which I explored photochemistry of organic molecules concerns Photo-

retro-Diels-Alder (PrDA) reactions and a variety of Diels-Alder (DA) adducts were designed for 

these studies. UV light was used to trigger the retro-Diels-Alder reactions. Quantum yield of 
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each DA adducts was investigated. This revealed that the photo-reactivity of this process 

depends on the electron-donating ability of the diene and the electron-withdrawing ability of the 

dienophile component. Mechanistic studies of this PrDA reaction reveal that a charge-separated 

intermediate is generated from a singlet excited state. This was applied to an unsaturated cyclic 

α-diketones (DKs), which underwent PrDA reactions and generated anthracene derivatives and 

carbon monoxide (CO), which itself plays profound and important roles in biological systems. 

These unsaturated cyclic α-diketones (DKs) encapsulated in micelles are effective CO-releasing 

molecules (CORMs) and are capable of carrying and releasing CO in cellular systems. This 

novel type of organic CORMs has potentially low toxicity and generates fluorescence, which 

provides a useful tool for the study of the biological functions of CO.  
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CHAPTER 1. INTRODUCTION 

1.1 Significance of Dissertation Research 

Light is one form of “green” energy which has steadily become more and more attractive since 

last century. In 1912, the father of photochemistry and nine-time Nobel Prize nominee Giacomo 

Ciamician published “The photochemistry of the future” in Science[1]. He wrote, “On the arid 

lands there will spring up industrial colonies without smoke and without smokestacks; forests of 

glass tubes will extend over the plains and glass buildings will rise everywhere; inside of these 

will take the photochemical processes that hitherto have been the guarded secret of the plants, 

but that will have been mastered by human industry…” Today, photovoltaic solar panels allow 

for the conversion of solar energy to electricity for powering so many homes and buildings that 

Ciamician’s dream may very well come true. Aside from this attractive ideal, the discovery of 

photochemistry has also fostered an explosion of interesting chemical research. 

1.1.1 Mechanistic Background 

The study of chemical reaction, isomerizations and physical behavior that may be triggered by 

the visible and/or ultraviolet light is called photochemistry[2]. A molecule absorbs a proton of 

light and changes its electronic structure, inducing novel reactivity with other molecules. Each 

type of molecule has a different photochemical mechanism; however they all obey the same 

basic laws of photochemistry.   

The first law of photochemistry, the Grotthuss-Draper law, states that light must be absorbed by 

a compound for photochemistry to occur. According to this law, all of the light used in the 

experiments should match with the absorption wavelength of the compounds, otherwise no 

photochemistry will occur.  
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The second law of photochemistry, the Stark-Einstein law, states that for each photon of light 

absorbed by a chemical system, only one molecule is activated for a photochemical reaction. 

This law was derived by Albert Einstein during his development of the quantum (photon) theory 

of light. Photochemistry under ordinary light intensities obeys this law very well. With the new 

technique of laser, two-photon reactions could active one molecule to a higher energy level than 

one photon absorption.  

In photochemistry, short-wavelength visible and/or ultraviolet light are often used to trigger the 

most photochemical reactions. The equation E= hc/λ explains the reason for this: longer 

wavelengths of visible light has less energy than those short wavelengths light. One major 

consequence of this is that short wavelengths of light impart enough energy to break or 

reorganize most covalent bonds in the molecule to effect a photochemical reaction. Other 

wavelengths of lights may incur other effects. For example, far-infrared light will cause the 

vibrational excitation of molecules and increase the temperature. 

When a molecule absorbs a photon from the light, it will cause an electron to be promoted to a 

higher energy level. The Jablonski Diagram (Figure 1) illustrates the principal photo physical 

radiative and nor-radiative processes displayed by organic molecules in solution. S0, S1, T2 

represent the ground electronic state (S0), first excited singlet state (S1), second excited triplet 

state (T2) and so on. The horizontal lines represent the vibrational levels of each electronic sate. 

Straight arrows indicate radiative transitions, and “wiggle” arrows indicate non-radiative 

transitions. The boxes detail the electronic spins in each orbital, with electrons shown as up and 

down arrows, to distinguish their spin[2]. Excited states may occur as singlet states and triplet 

states, based on their electron spin angular momentum. The distinction between singlet and 

triplet states is important because photon induced excitation leads to a state of the same 
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multiplicity. Because most of the ground states are singlet, absorption of a photon will usually 

result in singlet excited state. An excited state will return to the ground state by emitting a photon; 

this phenomenon is called fluorescence. Intersystem crossing may convert a singlet state to a 

lower energy triplet state, or vice versa. Phosphorescence is the radiative decay of an electron 

from a triplet state back to the ground state. Non-radiative decays may take place by 

intermolecular energy transfer to a different molecule.  

 

Figure 1. The basic concepts of Jablonski diagram 

Although electronically excited state can be produced by thermal activation, this method is very 

inefficient in the formation of excited states of organic molecules compared to photochemical 

activation[3]. Also, photochemistry can provide more spatial and temporal control than thermal 

method.  

In the presented dissertation research, the focus is on photochemistry in two major areas: the first 

one is on the fundamental study of photoacids and their applications in material chemistry. The 

second area concerns the systematic study of the Photo-retro-Diels-Alder reaction and its 

applications.  
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1.1.2 Photoacids 

The process of proton transfer is prevalent in a broad array of chemical processes that encompass 

numerous systems[4]. Photoacids are a kind of molecules that reversibly undergo proton photo 

dissociation and thermal reassociation. Irradiation of photoacids by various wavelengths of light 

to liberate protons could spatially and temporally control these systems in a noncontact way, and 

convert optical radiation to other types of energy. The proton transfer from an aromatic molecule 

to the surrounding solvent is closely related to the electronic structure of not only the protonated 

form, but also the deprotonated form. Proton transfer in the solution is determined by the 

electronic rearrangement of the excited acid, the microenvironment around it, and solvent 

properties[5]. The geminate recombination of the two separated ions affects the overall proton-

dissociation process. Since the 1970s, many reviews have been published based on photoacids[6, 

7]. Photoacids have received a great deal of attention because of their fundamental importance 

and various possibilities for applications, such as the control of molecular and supramolecular 

events [8-10], switching conductive polymer electrical properties [11, 12], serving as effective 

photo protecting agents[13-15] and use in photodynamic therapy[16, 17].  

In this dissertation research, part of the research effort has been devoted to discover a novel long 

lifetime photoacid which generates large concentration of protons in solution whose acidity may 

be directly tested using a commercial pH meter. Earlier research could only study photoacids’ 

the excited-state proton transfer (ESPT) and calculate the excited state pKas by picoseconds laser 

spectroscopy. Most steady-state techniques cannot be used to study these photoprototropic 

equlilibra because of the extremely short lifetime of the conjugated base of the photoacid in the 

ground state [18]. Another important feature about this photoacid is its reversibility. It is also 

desirable to develop a photoacid whose acidity can be controlled using irradiation with different 
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wavelengths of light. To realize this research goal, protonated merocyanine was developed as a 

model system for the pH change test and application experiments. The pKa of photoacid can be 

changed by modifying the electron-donating group or electron-withdrawing group in the 

protonated merocyanine. In order to demonstrate the application of this type of photoacid, I used 

it to precisely control a model acid-catalyzed process, change a pH-sensitive material’s physical 

property, and modulate electrical materials’ conductivity. 

Another part of the research effort was devoted to increasing the photo-induced conductivity of 

polyaniline (PANI-EB) by adding photo-acid generators (PAGs). The Nobel Prize in Chemistry 

for the year 2000 was awarded jointly to Alan J. Heeger, Alan G. MacDiarmid and Hideki 

Shirakawa “for the discovery and development of conductive polymers”. Discovery of 

conductive polymers such as PANI opened a new area of research for polymers, in which they 

could be used as electronic materials. PANI was one of the most widely investigated conductive 

polymers in last century and tremendous advances have been made based on these research. A 

new research area has been open owing to a deeper understanding of the chemistry, 

electrochemistry, structure, electrical, and optical phenomena of conductive polymers. Their 

relative ease of synthesis by chemical or electrochemical oxidative polymerization of monomers 

and stability in many different environments make them of great interest to the field of materials 

chemistry. Polyaniline was first reported in 1862 by Letheby[19]. In 1910-1912, polyaniline was 

found to exist as four different oxidation states, each of which was an “octamer”[20, 21]. On 

every important discovery was that emeraldine oxidation state of polyaniline could change its 

conductivity upon being doped with acid[22]. Compared with a normal acid, doping with a 

photoacid could change the conductivity of PANI with more precise spatial control and less 

damage to the electrical device as a whole. In this dissertation research, several photoacid 
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generators were doped with PANI; however the conductivity increase of composites comprised 

of only PANI and PAG composition is not large enough for real application. In order to 

significantly increase the conductivity of PANI from an insulator to a semiconductor without 

using strong acid vapors, additional polyvinyl alcohol was added and the mechanism was studied 

in this dissertation.  

1.1.3 Photo-retro-Diels-Alder Reaction 

From 1935, the mechanism of the Diels-Alder cycloaddition has been the subject of many 

investigations and controversial interpretations[23]. Between 1965 and 1969, Woodward and 

Hoffmann defined the term pericyclic reaction and stated the rules for conservation of the 

symmetric orbital in this process[24].  This theory could successfully explain most Diels-Alder 

cycloaddition reactions; however there are some nonconcerted mechanisms could not be applied. 

Bartlett et al.[25-28] proposed a radical mechanism to produce cyclobutane derivatives. Since a 

conjugated diene and a dienophile could form a substituted cyclohexene system, Diels-Alder 

reaction has been proven to be one of the most versatile strategies for six-membered carbocycle 

synthesis[29].Some of the Diels-Alder reactions are reversible and those decomposition reaction 

of the cyclic system is called the retro-Diels-Alder (rDA) reaction, which has evolved into a 

powerful synthetic tool and has been used for preparing many reactive, strained chemicals. It 

usually forms or regenerates an unsaturated bond, but often requires high temperature which is a 

major drawback. In order to help this cycloreversion reaction more applicable, several techniques 

have been developed, such as acid catalysis[30], antibody catalysis[31], silica gel[32] or alumina 

catalysis[33]. Photo-rDA (PrDA) reactions, which allow spatical and temporal control, have been 

reported by some individual cases and may find application in photoresponsive materials, 

photolithography, drug delivery, and mechanistic research. For example, Nozaki and Kato found 
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that the DA adduct of anthracene and styrene yielded anthracene under photo irradiation, while 

the adduct of anthracene and 2-butene is photostable[34]. Although many individual cases have 

been studied, no systematic research of PrDA reactions has been done.  

In this part of dissertation research, I studied the mechanism of PrDA reaction and generated a 

guide which could predict whether a compound will undergo PrDA reaction or not. To 

experimentally and theoretically study this reaction, a variety of normal-electron-demand DA 

adducts were prepared. The quantum yield of these adducts was very carefully measured for the 

first time. All the results support a mechanism that involves a charge-separated intermediate 

generated from a singlet excited state. 

Based on this Photo-retro-Diels-Alder reaction mechanism, those cyclic Diels-Alder adducts 

were studied as one of the application. The unsaturated cyclic α-diketones (DKs) generates 

carbon monoxide (CO) and anthracene derivatives. Since the beginning of last century John 

Haldane first described the physiological effects of CO on the human body[35], CO has been 

discovered not only as a “silent killer” but also a signaling mediator in many biological 

processes[36]. Trying to find a safety and controllable method to administer CO to a specific part 

of the body become a very attractive area. These unsaturated cyclic α-diketones (DKs) could 

only be activated by visible light which provide a new type of CO therapeutic agent candidate.   
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CHAPTER 2. LONG LIVD REVERSIBLE PHOTOACID 

2.1 Introduction 

Ground-state proton transfer reactions are one of the most fundamental and important process in 

chemistry. The excited-state proton transfers (ESPT) reactions are not so famous in general 

chemistry. However, in the realm of photochemistry, ESPT reactions are the indispensible 

building block in fundamental and applied area. Both the intermolecular and intramolecular 

ESPT reactions have been applied in many areas: As mechanistic tools, intermolecular ESPT 

reactions have been used in pH[37] and pOH jump[38] experiments to study the proton hydration 

dynamics[39, 40], photolithography[41]. In biology environment, intermolecular ESPT reactions 

have also been developed as probes around proteins[42], micelles[43, 44] and films[45]. 

Analogous intramolecular reactions also have many applications, such as chemical lasers[46], 

energy storage systems and information storage devices at a molecular level[47]and polymer 

stabilizers[48, 49].  

As early as 1930s, Weber was the first to discover 1-naphthylamine-4-sulfonate showed strong 

pH dependence of the emission spectrum[50]. The correct explanation about this observation 

was not given until 1949 by Fӧrster[51]who first mentioned the field of excited state 

intermolecular proton transfers (ESIerPT). One year later[52], he proposed famous Fӧrster cycle 

which is a valuable method to predict the excited-state pKa based on the ground-state pKa and 

the excited-state energy difference between the unprotonated and protonated forms of the 

photoacid: 

                                         
                                                                             (1) 

Weller[53] continued the previous work and reviewed[54] the early study on excited-state 

intramolecular proton transfers (ESIerPT) which laid the fundamentals for this area. After that 
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this area attracted a lot attention and brought a quick development. Vander Donckt[55]reviewed 

ESIerPT about rationalized excited-state acid-base equilibria based on charge transfer and 

resonance theories. In 1976, Ireland and Wyatt [56]published an extensive review on 

thermodynamic acidities of ESIerPT which gives a whole picture about the development in this 

area at that point. Until 1980
th

, the steady-state method was still the main tool to study the 

kinetics of the proton transfers step in singlet states and measure the protonation and 

deprotonation rates. Not until the development of experiment techniques with fast time 

resolution, the real-time determination of many singlet states could not be solved since its 

relatively short lifetime. The short lifetime of the proton-dissociation state is limited by the 

lifetime of the conjugated base of the photoacid in the ground sate, which could be useful for 

some fast processes. However, photo induced proton concentration of these previously reported 

photoacid usually is too small to control other chemical processes. Arnaut, L[37]reported a 

extremely long-lived photoacid with nearly one second of the proton releasing time, which was 

estimated by pump-probe absorption spectroscopy. Increase the lifetime of the proton 

dissociation state could increase the potential usage of the photoacid in many other areas, such as 

controlling molecular and supramolecular events[57], so here we introducing an intramolecular 

photoreaction, photochromic reaction, to stabilize the proton dissociation state.  

The history of photochromism will go back to the end of nineteenth century when people 

discovered the first example of the phenomenon of photochromism in both organic substances 

and inorganic complexes[58]. Photochromism is a reversible transformation of chemical species 

in one or both directions by different region light irradiation. The study of organic materials’ 

photochromism began to receive increased interest around 1940[59]. The systematic studies of a 

photochromism consist of three parts: First one is acquiring an insight into the mechanism of the 
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photo processes. Second one is determining the structure of the colored and uncolored 

compounds. The last one is developing synthetic methods.   

                                                           
   
       

     
                                                              (2) 

Predominantly in the photochromism reaction, compound B has at least one longer wavelength 

than compound A’s. Most of the activating radiation is in the UV region (300 nm to 400 nm) and 

some of them are in the visible region (400 nm to 700 nm). Reversibility is the most important 

feature of the photochromism. Usually, the reverse reaction (B→A) occurs under extra heat 

stimulus, such as spiropyrans spirooxazines. However, in some other systems, such as 

arylethenes, compound B is thermally stable and the reverse reaction occurs by a photochemical 

mechanism. 

Photochromic transformation and the changes in the chemical and physical properties are related 

to the system geometry modification and electronic difference. These kinds of material have two 

major applications: One is directly related with the spectral changes between two compounds (A 

and B), such as photochromic ophthalmic lenses. The other application depends on the change of 

physical and chemical properties, such as optoelectronic systems.  

Although photochromic compounds have been proved to induce proton transfer and consequent 

molecular events before, the lifetime of their proton-dissociation state was not reported. This 

chapter reports a long-lived photoacid based on a photochromic reaction and demonstrates its 

applications in catalyzing an esterfication reaction and altering the volume of a pH-sensitive 

polymer.  
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2.2 Photoacid Based on Merocyanine 

2.2.1 Study of Photoacid 1 

In this chapter, we focus on UV and pH change of several long-lived photoacid based on 

merocyanine structure. These novel photoacids were synthesized by our lab members following 

a literature method[60]. The process of photoreaction was monitored by UV-Vis spectroscopy. 

According to the UV-Vis spectra, the mechanism of the photoreaction is proposed as in the 

scheme 1. In an aqueous solution, the protonated merocyanine (MEH) form of 1 was irradiated 

by 419 nm light and induces a trans- to cis- isomerization of MEH. The cis-MEH will release a 

proton and change to the deprotonated cis-merocyanine (ME) form, and then undergoes a 

nucleophilic ring closing reaction to yield spiropyran (SP) form. In the dark, this whole reaction 

is reversible and SP form will change back to the MEH form at room temperature. Extra using 

570 nm light, which is only absorbed by ME structure, also helps the transformation from MEH 

to SP. During this whole process, photoirradiation induces trans-cis isomerization rather than 

proton dissociation.     

 

Scheme 1. The proposed mechanism 

Figure 2 is the pH change of a 5.88×10
-4

 M photoacid 1in aqueous solution. This solution started 

with pH value of 5.5, so the pKa of photoacid 1 was calculated to be 7.8 based on this pH number. 
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Then the pH of the solution dropped to 3.2, which is more than 2 units’ difference after 3minutes 

419 nm light irradiation. Compare with the theoretical value for complete proton dissociation 

(3.2), the value of photoacid 1 is very close, so it’s a strong acid under irradiation. The reverse 

reaction is very fast when the light turned off. It only took 1minute to increase to pH 4.5 and then 

gradually returned to its original value in 5 minutes. This compound still has very good 

reversibility and stability even after 15 cycles.  Therefore by control the light on and off, the 

proton concentration could be easily modified.  

 

Figure 2. Cycles of pH change of photoacid 1 
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Figure 3. The UV-Vis spectra of photoacid 1 solution after 419 nm 10minutes irradiation 

Figure 3 shows the UV-Vis spectra of photoacid 1 in aqueous solution. As shown in the spectra, 

this photoacid kept the MEH form (λmax=470 nm) after dissolved in water in the dark. After 10 

minutes 419 nm visible light irradiation, most of the MEH form changed to the SP form, which 

absorbs at 300 nm[61]. From 10 seconds to 240 seconds in dark after irradiation, SP form 

converted back to the MEH form without any extra stimuli and MEH concentration almost 

recovered to the initial value. In the spectra, there was a small peak around 570 nm after 

dissolved in the water which represents the ME form and this explains why the initial solution is 

weakly acidic. After irradiation, this peak quickly disappeared, and only leaving the SP and 

MEH form in the solution. In the dark, ME structure recovered at the same time as MEH peak 

increased without isosbestic point. Both of these indicates ME structure could not be the 

intermediate between SP and MEH. The disappearance of ME could be due to the equilibrium 

between MEH and ME: with more and more MEH form converted to the SP form and lower the 

pH of solution, ME form will change to MEH to increase the concentration of MEH. The 419 nm 

light irradiation induces a trans-cis isomerization of MEH. Cis-MEH loose a proton to generate 

cis-ME, and then this cis-ME undergoes a nucleophilic ring closing reaction to form SP. In the 
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dark, this process will go back and convert MEH again. The 570 nm irradiation is only absorbed 

by ME structure and helped MEH to SP transformation.  

The UV-Vis spectroscopy is also used to monitor the lifetime of the proton-dissociation state. As 

showed in the spectroscopy graph, the UV-Vis spectra were tested every 20 second after 

irradiation. The overall concentration subtracts the MEH concentration will be the proton 

concentration. Through these data Figure 4 was obtained by the first 100s’ data which was fit to 

a first order kinetic equation. Since the rate constant k=0.009138 s
-1

, the half-life time of the 

proton dissociation state was 76s (t1/2 =0.693/k) according to this graph. However the real case is 

much more complicated since it’s a reversible reaction. Although this half-life time is only an 

estimation, it is consisted with the pH change. This first order decay is a reasonable 

approximation for the early stage of the proton concentration decay. 

 

Figure 4. Fitted first order reaction equation 

There are two major advantages compare with other photochromism photoacid: First, this 

process is only need one light source instead of two light sources with different wavelengths. 

Second, this light source is in the visible region instead of using UV light.       
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Figure 5. Derivatives of MEH synthesized 

To further understand the factors that affect the photoacidity, several similar compounds were 

synthesized followed the same method of compound 1 (Figure 5). Each of these compounds was 

studied by the UV-Vis spectrum and pH meter. 

2.2.2 Study of Photoacid 2 

 

Figure 6. The UV-Vis spectra of photoacid 2 in water with different light stimuli 

In Figure 6, the solid line shows the UV-Vis spectra of photoacid 2 dissolved in water in the dark. 

The two major peaks represent the MEH form (λmax = 400 nm) and the ME form (λmax =560 nm). 

Unlike photoacid 1, a large amount of MEH form of this compound converts to ME form in the 

initial solution. Then both of the absorption of MEH and ME form decreased by irradiated at 419 
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and 570 nm for 5mins, at the same time the peak at 270 nm increased which is assigned to the SP 

form[62]. From the UV-Vis spectra, the ME form totally disappear after 419 and 570 nm 

irradiation, leaving the SP to be observed. But the reverse process of this compound is not as 

good as the photoacid 1, which SP form will revert to the MEH in the dark. With 254 nm UV 

light irradiation, partial of the SP structure revert to the ME structure but remain most of the SP 

structure unchanged.  

The pH study also confirmed the UV-Vis data. A 3.20×10
-4

mol/L compound 2 aqueous solution 

initially has a pH value 4.86, which is lower than the photoacid 1 and also confirmed by UV-Vis 

spectra. When the solution was irradiated with 419 and 570 nm light, which is closed to the 

MEH form (λmax = 400 nm) and the ME form (λmax =560 nm), pH drops to 3.87. Then the pH 

slightly changes after 254 nm irradiation. However heat is an efficient method to convert the SP 

form of this compound back to MEH form, which is confirmed by pH change (Figure 7) and 

UV-Vis data (Figure 8). The pH of this SP solution after heating immediately increases to 4.59. 

SP peak decreased and the MEH peak and ME peak significantly increased. Photoacid 2 also 

shows reversible changes, however the stability of this reversible change is not as good as 

photoacid 1.Compare with photoacid 1, and photoacid2 has an electron-withdrawing group NO2 

on the phenol moiety, which increased its initial acidity in the dark. The pKa of photoacid 2 in 

the dark is 6.36, which is 1.5 units lower than that of photoacid 1. The acidity of 2 after 

irradiation is lower than 1, which should be due to a less efficient nucleophilic cis-ME-to-SP 

reaction.  
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Figure 7. Cycles of pH change of photoacid 2 

 

Figure 8. UV-Vis spectra of Photoacid 2 after heating 
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2.2.3 Study of Photoacid 3 

 

Figure 9. UV-Vis spectra of photoacid 3 in water 

Compound 3 has an electron-donating group OH on the phenol moiety compare with photoacid 1. 

Figure 9 shows the UV-Vis spectra of photoacid 3 dissolved in water. From the spectra, there are 

two major bands with maxima at λMEH=390 nm and λME=470 nm after the photoacid 3 dissolved 

in water. However, photo irradiation is not good enough to drive the MEH form change to the SP 

form in this case even with both 419 nm and 570 nm wavelength light irradiation. The reason 

may be the cis-MEH form cannot undergo proton dissociation under irradiation, so the cis-ME 

form is not able to generate.   
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2.2.4 Study of Photoacid 5 

 

Figure 10. UV-Vis spectra of photoacid 5 in water 

The solubility of photoacid 4 is too bad in both water and organic solvent to be tested. Compare 

photoacid 1 and 4, the only difference is the propyl sulfonate group which increases the 

solubility of the photoacid 1. However, the solubility of photoacid 5 is much better in water. 

Figure 10 is the UV-Vis spectra of an aqueous solution of photoacid 5(1.40×10
-4

 M). MEH form 

(λ=430 nm) is the major compound in water after dissolved in water in the dark with a small 

amount of ME form (λ=530 nm). After 5minutes 419 nm irradiation, both of MEH and ME peak 

decrease and the new peak around 300 nm increases which is assigned to SP form. The process is 

reversible too, but SP form of photoacid 5 took almost 2hours to revert back to MEH in the dark.  

pH test provides the same result. Photoacid 5 has a pH value of 5.90 after dissolved in water, 

from which the pKa was calculated to be 7.95. After irradiated by 419 nm light, pH drops to 4.53. 

It takes more than 1 hour to recover back to pH 5.19. Compare with photoacid 1, the reverse 

process of photoacid 5 is much longer. The main reason is the alkyl sulfonate groups on the 

nitrogen of the indoline moiety which could stabilize the open ring forms (MEH and ME)[63]. 

Another reason is the positive charge of N+ on the indoline moiety without the shield from SO3- 
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will help the nucleophilic ring-closing reaction of the phenoxy anion, and favor the forward 

reaction.        

2.2.5 Applications of the Photoacid 

Three kinds of experiments were conducted to demonstrate the application of this type of 

photoacid. Since this type of photoacid after irradiation will generate proton and become a strong 

acid, it could be used as a catalyst to catalyze a Fisher esterfication reaction. In the second type 

of experiment, the volume of a pH sensitive polymer was changed in this photoacid solution 

under different wavelength irradiation. In the last experiment, this photoacid was doped with 

other conductive polymer and reversibly changed its conductivity by UV or Vis irradiation. With 

respect to the conductive polymer, polyaniline(PANI) is one of the most studied conductive 

polymers due to its low cost of the monomer, tunable properties and good stability[64]. These 

polyaniline related experiments and results will be extensively discussed in Chapter 4. 

According to previews result, the proton concentration in the solution could be directly 

controlled by switching the light on and off.  This feature could be used to directly control the 

process of those reactions which need acid as a catalyst. In this application, a Fischer 

esterfication reaction was controlled by adding photoacid 1. Commonly used catalysts are strong 

acids, for example sulfuric acid or tosic acid. When the light turned on, the photoacid 1 

generated protons and was a strong acid. When the light turned off, SP form reverted to MEH 

form and became a weak acid. Thus photoacid 1 (3.1mM) was added to a mixture of acetic acid 

(12.5mM) in ethanol. Ethyl acetate was generated by irradiated at 419 nm and 570 nm and the 

process was monitored by HPLC. Figure 11 shows the yields of the esterfication reaction were 

33%, 50% and 66% after 1, 2 and 3 hours irradiation respectively. The reaction didn’t happen in 
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the sample without light irradiation. No ethyl acetate was detected in the control experiment 

using photoacid 2 instead of photoacid 1 after 3 hours irradiation.  

 

Figure 11. HPLC result of the esterfication reaction progress 

With different temperature or solvent composition, various kinds of hydrogels have been 

observed the volume phase transition, for example discontinuous volume change.[65-71]Till the 

date, no experimental demonstration have been made to alter the volume of a gel by photo 

control the pH value of the solvent. Thus the cross-linked polyacrylamide hydrogel was prepared 

according to Dr. Tanaka’s method[67]. Soaked in 1M NaOH solution, a copolymer of poly 

(acrylic acid) and polyacrylamide was partially hydrolyzed.  All of the sample hydrogels were 

cut into similar size cuboids and then soaked in 1mg/ml photoacid 1 aqueous solution. After 

irradiate this solution by a 470 nmLED light, the cuboid was taken out of the solution and 

measured the volume on a ruler. Figure 12 shows the volume of the hydrogel shrank to almost 

1/8 of its original volume. The gel didn’t increase to original volume after soaking in this 

aqueous solution in the dark while the pH of the solution already increased. However this 

property is not due to the photoacid but the hydrogel.  In the control experiment, the cuboid of 

hydrogel shrinked in strong acid solution but kept the same size in weak acid solution.  
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Figure 12. pH sensitive hydrogel 

2.2.6 Conclusions 

Instead of using UV light, a new visible light activatable photoacid was discovered and a series 

experiments about the proton dissociation process was investigated. According to the UV-Vis 

spectroscopy experiments, the half life time of the proton dissociation states was around 70 s. A 

sequential intramolecular reaction is the main reason to keep the proton dissociation state 

lifetime so long. Several photoacid have successfully altered the pH value of the whole solution 

by reading from a pH meter. The photoinduced pH change is around 2 units which are large 

enough for real applications. Two demonstration experiments were tested with this photoacid: It 

successfully catalyzed a Fischer esterfication reaction and shrank the volume of a pH sensitive 

hydrogel. More effort should be put forth to develop more useful applications based on this 

photoacid, such as using fiber optics or noncontact irradiation to control photoresponsive 

actuators or artificial muscles.  

2.3 Visible Light Activatable and Thermostable Carbon Based Photoacid 

2.3.1 Background 

Carbanions are one of the most important intermediated in organic chemistry and are the key 

step in organic synthesis due to their facility in forming C-C bonds. Most of the photoacids or 

photoacid generators have been reported are based on oxygen acid. Although there are a few 

literatures reported carbon based photoacids[72-74], none of their lifetime of the proton 
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dissociation sate is long enough to be used in real application. Another of the potential problems 

of the applications of oxygen acid (such as spiropyrans) is that UV light has to be used to open 

the thermostable spiro form, which could cause photodegradation during the photochromic 

process. In addition, since the visible-light absorbing merocyanine form also absorbs UV-light, a 

high degree of conversion is difficult to achieve. It is desirable to develop a photochromic 

compound that has a thermostable form which absorbs visible light, and has a zwitterionic form. 

Herein we synthesized another novel photochromic compound 6(scheme 2) based on carbon 

photoacid. 

 

Scheme 2. Photoacid 6 

This compound has a neutral and thus thermostable form that absorbs visible light. Upon visible-

light irradiation, the neutral form quickly undergoes a ring-closing reaction and transforms to a 

UV-absorbing zwitterionic form (scheme 2). The structure of photoacid 6 consists of a 

tricyanofuran (TCF) moiety and a phenyl moiety, bridged by a double bond. This is a negative 

photochromic compound that does not belong to any category of the previously reported 

photochromic compounds[75]. Unlike most of the photochromic compounds, negative 

photochromic compounds have thermally stable forms that absorb at longer wavelengths than the 

products of the photochromic reactions[76]. TCF is a very strong electron acceptor that has been 

successfully utilized in the development of nonlinear optical[77] and fluorescent materials[78]. 

Its strong electron withdrawing ability makes it possible for the phenyl ring to attack the carbon 
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adjacent to TCF, via a nucleophilic mechanism. Compound 6was synthesized by our lab mate 

from a Knoevenagel reaction. 

2.3.2 Results and Discussion 

In EtOH, compound 6has a maximum absorption (λmax) at 470nm (Figure 13). To study the 

photochromic behavior of this compound, a 4.37×10
-5

M solution was irradiated with a 470 nm 

LED array. Prolonged irradiation did not significantly increase the conversion, which is due to 

the reverse thermal reaction at room temperature. The cyclized zwitterionic form has a λmax at 

310 nm. It lowly transformed back to photoacid 6 at room temperature in dark. UV-Vis spectra 

were recorded every 12 seconds after 5mins irradiation, and the concentrations of 6 in the first 

1.6min were fitted in a first order kinetic equation. A rate constant k =0.9511 min
-1

 was obtained, 

and thus the half-life (t1/2) of 6 was calculated to be 0.693/k = 0.73 min. However, the intensity 

of the absorption peak at 470 nm was lower than that of the solution before irradiation, while the 

intensity of the small shoulder at 340 nm increased. When the solution that has been kept in the 

dark overnight was irradiated at 470 nm again, its UV-Vis spectrum was identical to that of the 

first-time irradiation; thus, the process is truly reversible. Therefore, we concluded that the small 

change of the UV-Vis spectrum is not due to decomposition. It may be due to the presence of a 

small amount of the cis-isomer of 6. 
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Figure 13. UV Spectra of photoacid 6 in EtOH 

Photoacid 6 has very bad solubility in water but dissolves very well in ethanol. So the UV-Vis 

spectrum and pH test were run in ethanol. After dissolved in ethanol, photoacid 6 is the 

predominant in the dark, which is indicated by the UV-Vis (Figure 13). A 1.19×10
-4

 M ethanol 

solution of photoacid 6 has a pH value of 4.70. When the solution was irradiated with 470nm 

light, pH drops more than 2.5 units to 2.08.  When the lights turned off, the pH value increased 

back to 4.80 in 10 minutes. According to H. Goldschmidt’s work[79], ethanol is about 400 times 

as weak a base as water. The pH number here may not be very precise, but the pH change value 

is very trustable. More than 2.5 units’ difference indicates photoacid 6 generates proton large 

enough to be used in different applications. This cycle can be repeated many times (Figure 14).  
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Figure 14. Cycle of pH change under irradiation and in the dark 

This kind of photoacid has good solubility in organic solution which could be mixed with other 

organic pH indicator. The photoacid will donate proton after irradiated by visible light which 

will change the pH indicator color directly. From the UV-Vis spectrum, the change could be 

observed clearly (Figure 15). The green line is a 10% pH indicator bromophenol blue sodium salt 

UV-Vis spectrum in ethanol. There are two major peaks at 600 nm and 430 nm. The peak at 600 

nm will not overlap with photoacid 6 UV-Vis spectrum, which could be an indicator to monitor 

the change of photoacid. The red line is the UV-Vis spectrum of the mixture solution of 

photoacid (3.97×10
-5

 M) and indicator, which shows a small peak around 600 nm. After 

irradiated by 470 nm for 5mins, this small peak disappeared and an absorption peak at 300 nm 

increased, which should be the zwitterionic form based on the UV-Vis spectrum of Figure 13. In 

the dark, the absorption intensity of 600 nm peak recovered to the level before irradiation in 

around 10mins. The 300 nm peak decreased to the initial level too. Based on these result, this 

photoacid could dope with corresponding pH indicator and cast into films which will indicate the 

pH and change color at the same time. More efforts need to be put into this study to demonstrate 

the real application.  
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Figure 15. Photoacid 6 with indicator 

2.3.3 Conclusions 

In conclusion, this novel photoacid compound based on carbon acid transforms to a cyclic 

zwitterionic form upon visible light irradiation. High degree of conversion and reversibility were 

demonstrated. Photoacid 6 could be used as a basis for designing desirable photochromic 

compounds by varying the electron withdrawing moiety and heteroaromatic moiety accordingly.  

Doped with corresponding pH indicator could vivid monitor the pH change by switching the 

visible light on and off. 
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CHAPTER 3. MECHANISTIC STUDY OF PHOTO RETRO-DIELS-

ALDER REACTION 

3.1 Introduction 

The Diels-Alder reaction is a powerful reaction for generate the carbon-carbon bonds in the 

organic synthesis, which allows facile, stereospecific entry into six-member ring systems. At the 

early of 20
th

 century[80-84],numerous near-discoveries about the [4+2] cycloaddition reaction 

was reported by several luminaries in organic chemistry area. Otto Diels and Kurt Alder properly 

indentified the products from the reaction of cyclopentadiene with quinone and brought the 

famous reaction that would bear their names[85]. Diels and Alder anticipated the importance of 

this discovery for the nature product synthesis in this paper: “Thus it appears to us that the 

possibility of synthesis of complex compounds related to or identical with natural products such 

as terpenes, sesquiterpenes, perhaps even alkaloids, has been moved to the near prospect.” 

Because of this important discovery, Otto Diels and Kurt Alder received the Nobel Prize in 1950. 

In 1952, R.B. Woodward et al. discover the historic routes to synthesize steroids cortisone and 

cholesterol[86] which open a truly visionary application for the Diels-Alder reaction. In this 

paper, Woodward recognized that by using a differentiated quinone nuleus could regioselective 

control the intermolecular Diels-Alder union. Since then, more than 17000 papers have been 

published concerning synthetic, mechanistic and theoretical aspects of the reaction[87]. 

The classical Diels-Alder reaction is a cycloaddition between a conjugated diene and a 

dienophile (Scheme 3). Hetero-Diels-Alder reaction is a cycloaddition reaction when one or 

more heteroatoms are present in the diene and/or dienophile.  
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Scheme 3. A Diels-Alder reaction 

The Diels-Alder reaction is reversible and the cycloreversion occurs when the diene and/or 

dienophile are particularly stable molecules or when one of them can be easily removed by 

consumed in a subsequent reaction. The retro-Diels-Alder (rDA) reaction is almost as old as 

Diels-Alder reaction when Diels and Alder observed the adduct from furan and maleic anhydride 

dissociated at its melting point of 125°Cat 1929[88]. In 1937, Alder and Rickert summarized the 

retro-Diels-Alder reaction[89].Usually, rDA reaction requires high temperature to surmount the 

high activation barrier of the cycloreversion. It’s still a powerful synthetic tool and has been used 

for preparing many reactive, strained and metastable chemicals[90-95]. As an unimolecular 

process, rDA reaction could achieve high yield in solid state since it will not affected by 

diffusion rate. Also rDA reaction does not require addition of any other reagents such as acids, 

bases or catalysts which is not possible in processing solid materials or will cause contamination. 

So rDA reactions have been widely applied to many areas of materials science[96-103]. 

According to the Woodward-Hoffman rules[104], if a reversible DA process proceeds via a 

concerted mechanism, it is thermally allowed and photochemically forbidden. However, the 

Woodward-Hoffman rules cannot be applied to a stepwise or a nonadiabatic mechanism, which 

are both common to organic photoreactions. In fact, photo-rDA (PrDA) reactions have been 

sparsely reported in literature[96, 105-107]. For example, Nozaki and Kato reported that the DA 

adduct of anthracene and styrene yielded anthracene under photoirradiation, while the adduct of 

anthracene and 2-butene is photostable[106]. Jones et al. published PrDA reactions of a chiral 
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compound that may be used as a chiral auxiliary[105]. Recently, Nakagawa et al. demonstrated a 

photoinducible HNO releasing agent based on a PrDA reaction[96]. 

The PrDA reaction, which allows spatial and temporal control, may find applications in 

photoresponsive materials, photolithography, drug delivery and mechanistic research[108]. 

Although individual cases of PrDA reactions have been reported, no systematic study of PrDA 

reactions has been done either experimentally or theoretically, and no quantum yield of any 

PrDA reaction has been reported. Consequently, there was no guide to predict whether a 

compound could undergo PrDA reaction. All of these factors obstruct the wide application of 

PrDA reactions in chemistry and materials science. This chapter will focus on the structure-

reactivity relationship and the mechanism of the PrDA reaction, which may help researchers 

design photoresponsive materials. One example application based on these photoresponsive 

materials will be present at the end.  

3.2 Mechanistic Study 

A variety of normal-electron-demand DA adducts were prepared by our lab[109-113], and 

systematic mechanistic studies about these components on the PrDA reaction was performed 

(Scheme 4). Aromatic DA adducts were used since they can efficiently absorb at 254 nm, which 

was the wavelength chosen for measuring the quantum yields of these photoreactions. These DA 

adducts were prepared by mixing the corresponding dienophiles and aromatic dienes at room 

temperature or elevated temperatures.  
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Scheme 4. Structures of the studied DA adducts 

3.2.1 Study Based on TCNE and Polyaromatics 

All of these compounds’ quantum yields in acetonitrile were measured by the chemical 

actinometry method. The actinometer was uridine, which is hydrated under UV irradiation with a 

known quantum yield of 0.018 at 254 nm[114, 115].All of the solution was degassed by freeze-

thaw method and kept in an inert atmosphere. The 254 nm UV lamp is only 8 W and the reaction 

was conducted in a ventilation hood. Under these conditions, photo heating effect can be ignored 

and the “total absorption” required for measuring quantum yield with chemical actinometry can 

be achieved.  
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Figure 16. UV-Vis absorption change of TCNE/anthracene adduct (12) 

Figure 16 is a UV-Vis absorption change of TCNE/anthracene (3.24×10
-3

 M) solutions after 

irradiated by 254 nm UV light. The 254nm UV-Vis absorption of all of the DA adduct solutions 

are more than 2. The transmission of the solution is more than 100 according to the Beer-

Lambert law which is account as “total absorption” for quantum yield measurement. These DA 

adduct solutions do not have specific absorption above 300nm. However, the product anthracene 

solution has multiple strong peaks between 300nm and 400nm which could be used to monitor 

the reaction process. One challenge of analyzing PrDA reaction of the TCNE adducts is that 

TCNE reacts with these dienes so fast that any PrDA products will immediately undergo DA 

reaction and change back to the DA adduct unless the product is stabilized or reacts with other 

reagents. Previous work by Brown and Cookson showed that this problem can be solved by 

adding a small amount of methanol, which prevents the reverse reaction by quickly reacting with 

TCNE and allows the analysis of the aromatic dienes[116]. Thus the solution was a 1:4 mixture 

of methanol and acetonitrile. The inserted figure in Figure 16 is a linear relationship indicates a 

“total absorption” condition in the early stage of the reaction. TCNE/anthracene adduct 
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underwent PrDA reaction quickly with a quantum yield of 0.021. A control in darkness did not 

show any reaction during the test time.  

 

Figure 17. UV-Vis absorption change of TCNE/naphthacene adduct (17)(The insert graph 

is the UV-Vis spectra of 17) 

 

 

Figure 18. UV-Vis absorption change of TCNE/pentacene adduct (19) 
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Figure 17 shows the UV-Vis change of TCNE/naphthacene adduct after 254nm UV light 

irradiation. The insert figure is the UV-Vis absorption of DA adduct before irradiation and the 

extinction coefficient at 254nm is 1.24×10
4
 M

-1
 cm

-1
. The UV-Vis absorption of naphthacene 

product red shifts to 400 nm to 500 nm range compare with anthracene. Surprisingly, the PrDA 

reaction of the thermally more stable TCNE/naphthacene adduct was even faster than 

TCNE/anthracene adduct. The quantum yield (Φ=0.185) is nearly an order of magnitude higher 

than the anthracene adduct. Figure 18 is the UV-Vis change of TCNE/pentacene adduct after 254 

nm UV light irradiation. Product pentacene has strong absorbance between 450 nm and 650 nm, 

however the solubility of pentacene is very low which makes the UV-Vis absorbance of 

pentacene is very low. On the other hand, since the most of the product precipitates out, this 

PrDA reaction is more straightforward. The quantum yield of TCNE/pentacene (Φ=0.019) is 

close to that of TCNE/anthracene adduct.  

 

Scheme 5. A step-wise PrDA mechanism of TCNE/anthracene 

The trend of the quantum yields (TCNE/naphthacene> TCNE/anthracene ≥ TCNE/pentacene) 

can be qualitatively explained by a tradeoff between the stability of the charge-separated 

intermediate states and the stability of the DA adducts (Scheme 5). The more stable the charge-

separated intermediate state is, the higher the photo reactivity is; while the more stable the DA 

adduct is, the lower the photo reactivity is. The stability of the charge-separated intermediate 

states increases in the order of TCNE/anthracene< TCNE/naphthacene< TCNE/pentacene due to 
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the increased number of resonance structures. (The numbers of resonance structures for the 

charge separated intermediate states are 7, 9 and 11 for TCNE/anthracene, TCNE/naphthacene 

and TCNE/pentacene respectively.) The DA adduct stability may be estimated by the difference 

between the resonance energy of the DA adduct (starting material) and that of the polyaromatic 

compound (product). (Since all three compounds produce TCNE, the resonance energy of TCNE 

can be ignored when we compare the stability among them.) The resonance energy of a DA 

adduct approximately equals to the sum of its aromatic moieties. For example, the resonance 

energy of the TCNE/naphthacene adduct is close to the resonance energy of a benzene plus that 

of a naphthalene.  We calculated the resonance energy difference (polyaromatic product - DA 

adduct) based on the data reported by Herndon and Hosoya[117], and the results are -0.11, -0.37, 

and -0.66 eV for TCNE/anthracene, TCNE/naphthacene, TCNE/pentacene systems respectively. 

The loss of resonance energy disfavors the rDA reaction and thus increases the stability of the 

DA adduct. Therefore the stability of the DA adducts increase in the order of TCNE/anthracene< 

TCNE/naphthacene< TCNE/pentacene due to increased loss of resonance energy. In fact, 

TCNE/anthracene adduct undergoes rDA reaction slowly at room temperature and quickly at 40-

60 °C [116] while the other two adducts are thermally stable. The different trend of the thermal 

reactivity supports that the observed reactions are indeed photo reactions rather than 

photothermal ones. One can see that the stability of the charge-separated intermediate states and 

the stability of the DA adducts have the same trend while opposite effects on PrDA reactivity, 

which may explain why TCNE/naphthacene adduct that has medium stability of the charge-

separated intermediate state and medium stability of the DA adducts showed the highest 

quantum yield. The more detailed research about this charge separated mechanism will be 

performed in next study. 
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3.2.2 Study on Electronic Effects of the Diene and Dienophile 

On the other side, electronic effects of the diene and dienophile components on the PrDA 

reactivity were studied too. The electronic effects of the diene component were examined by 

varying the 2,6-substituents of the anthracenes. Maleic anhydride was used as the common 

dienophile in this study because the DA adduct of maleic anhydride and unsubstituted anthracene 

(7 in Scheme 4) undergo PrDA reaction with a moderate quantum yield of 0.0057 under 254 nm 

UV irradiation (Figure 19).DA adduct 7 doesn’t have any strong absorption above 300 nm and 

the extinction coefficient at 254 nm is 4.54×10
2
 M

-1
 cm

-1
 (insert figure of Figure 19). When 

electron donating substituents were introduced, the PrDA reactivity was enhanced. DA adducts 

of 2,6-dimethyl (9) (Figure 20), tetramethyl-diamino (10) (Figure 21), and dimethoxy (11) 

anthracenes showed quantum yields of 0.0068, 0.0157, and 0.023, respectively. The extinction 

coefficient of 9, 10, and 11 at 254 nm is 9.46×10
2
 M

-1 
cm

-1
, 1.36×10

4
 M

-1
 cm

-1
, 2.41×10

3
 M

-1
 cm

-

1, respectively. When the substituent was Br, a weak electron withdrawing group, DA adduct 8 

was photostable. The quantum yields of the DA adducts and the Hammett para-substituent 

constants[118] of the corresponding substituents are listed in Table 1. Hammetpara-substituents 

constants were measured by Dr.Weng’s lab. The trend of the PrDA reactivity is consistent with 

the trend of the Hammett substituent constants (Table 1).The low reactivity of 2 may also be due 

to intersystem crossing, which is enhanced by the heavy bromine atoms. 
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Figure 19. UV-Vis absorption change of DA adduct 7 after 254 nm UV light irradiation 

(The insert graph is the UV-Vis spectra of 7) 

 

Figure 20. UV-Vis absorption change of DA adduct 9 after 254 nm UV light irradiation 

(The insert graph is the UV-Vis spectra of 9) 
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Figure 21. UV-Vis absorption change of DA adduct 10 after 254 nm UV light irradiation 

(The insert graph is the UV-Vis spectra of 10) 

The electronic effects of the dienophile component were also studied. DA adducts of dienophiles 

including acrylonitrile (14), N-methyl maleimide (13), maleic anhydride (7) and 

tetracyanoethylene (TCNE) (12) were prepared using unsubstituted anthracene as the common 

diene. Among the dienophiles, TCNE has the strongest electron withdrawing ability and the 

adduct (12) has a quantum yield of 0.021 (Table 2). Maleic anhydride is less electron deficient 

than TCNE. As described above, maleic anhydride/anthracene adduct 7 was also photoactive. 

However, the quantum yield (0.0057) was significantly smaller than that of the TCNE adduct. 

When the electron-withdrawing ability of the dienophile was further reduced, as in N-

methylmaleimide/anthracene adduct 13 and acrylonitrile/anthracene adduct 14, the adducts 

became photostable. 
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Table 1. Quantum yields and Hammett para substituent constants of the DA adducts of 

substituted anthracenes and maleic anhydride 

DA adducts Substituent Hammett constant σp Φ 

8 Br +0.232 X
a
 

7 H 0 0.0057 

9 Me -0.170 0.0068 

10 N(Me)2
 

-0.205 0.016 

11 OMe -0.268 0.023 

a
 The quantum yield is too low to be measured because prolonged irradiation caused unidentified side reactions. 

Table 2. Quantum yields of the DA adducts studied to understand the electronic effects of 

the dienophile 

DA adducts Φ 

12 0.021 

7 0.0057 

13 X
a
 

14 X
a
 

15 0.0094 

16 0.0015 

a
The quantum yield is too low to be measured because prolonged irradiation caused unidentified side reactions.
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The results indicate that the PrDA reactivity of a DA adduct depends on both the electron-

donating ability of the diene and the electron-withdrawing ability of the dienophile. If this 

structure-reactivity relationship holds, DA adducts of weakly electron-withdrawing dienophiles 

may become photoactive when a strong electron-donating diene is used, and adducts of weakly 

electron-donating dienes may become photoactive when a strong electron-withdrawing 

dienophile is used. To test this, adducts of N-methyl-maleimide/2, 6-dimethoxy-anthracene (15) 

and acrylonitrile/2,6-dimethoxy-anthracene (16) were studied since the adducts of N-methyl-

maleimide/anthracene (13) and acrylonitrile/anthracene (14) are photostable. When the electron-

rich dimethoxyanthracene was used as the diene, the DA adduct of N-methyl-maleimide (15) 

underwent PrDA reaction with a moderate quantum yield of 0.0094(Figure 22) and extinction 

coefficient at 254 nm is 1.34×10
3
 M

-1
 cm

-1
. Even acrylonitrile adduct 16 became photoactive, 

although the quantum yield was low (Φ=0.0015). 

 

Figure 22. UV-Vis absorption change of DA adduct 15 after 254 nm UV light irradiation 

(The insert graph is the UV-Vis spectra of 15) 
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The structure-reactivity relationship also indicates that mechanism may involve a charge 

separated intermediate, on which a positive charge is localized on the diene and a negative 

charge on the dienophile. One might think that the structure-reactivity relationship could be a 

result of the relative thermal stabilities of the DA adduct since the mechanism is a nonadiabatic 

one. However, we found that the DA adduct of naphthacene and TCNE (17) has a PrDA 

quantum yield of 0.18, which is much higher than that of 12 (0.021), while 11 is obviously more 

thermally stable than 6, which slowly decomposes at room temperature. The higher 

photoreactivity of 11 than 6 can be contributed to the extended aromatic structure that stabilizes 

the positive charge in the intermediate. To determine the structure of the charge-separated 

intermediate, the adduct 17 was irradiated in a solution of 20% of methanol in acetonitrile for an 

extended time. Large amount of methanol was used to trap the intermediate. The product was 

analyzed by GC-Mass. Besides the expected PrDA products, a product showed a fragment with 

m/e=259.0, which is the mass of the cation resulting from the fragmentation of the trapped 

intermediate (a in Scheme 6). More convincing evidence was obtained from the reaction of 18, 

which is a DA adduct of TCNE and phencyclone. Photo-irradiation of TCNE/phencyclone 

adduct also yielded the PrDA product, phencyclone. However, phencyclone was only a minor 

product. The major product was the compound in scheme 6, which is resulted from a 

nucleophilic reaction of methanol. After 8 hrs irradiation, the product is a mixture of 

approximately 3:1 compound (b) and phencyclone together with a small amount of unidentified 

side products.  
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Scheme 6. Trapping the charge-separated intermediate in the PrDA reactions of 17 and 18 

Further more oxygen quenching experiments were conducted to understand the excited states 

involved in the reaction. A solution of 17 saturated with air was irradiated for 5 min and was 

compared to a carefully degassed solution irradiated under the same conditions. The UV 

absorption of naphthacene, the product of the PrDA reaction, was only slightly lower than that of 

the degassed sample, which is due to the oxidation of naphthacene. Since oxygen does not 

quench the PrDA reaction, the reaction does not involve a triplet state. This result is consistent 

with the charge-separated intermediate a shown in Scheme 6. The intermediate must be in a 

singlet state since all the electrons are paired. Therefore it is unlikely that is from a triplet excited 

state. The excited states of 17 were further studied by femtosecond time-resolved absorption 

spectroscopy by Dr.Weng’s lab and the results also support the charge separated intermediate 

mechanism. On the basis of all the results, the PrDA reaction mechanism is proposed in Scheme 

7.  
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Scheme 7. Proposed mechanism of the PrDA reaction of 11 

Based on these studies, the photoactivity depends on the electron-withdrawing ability of the 

dienophile component and the electron-donating ability of the diene component. The mechanism 

was studied by trapping the reaction intermediate, O2 quenching and femtosecond time-resolved 

absorption spectroscopy. All the results support a mechanism that involves a charge-separated 

intermediate generated from a singlet excited state. It may be worth mentioning that we used 254 

nm light for all of the PrDA adducts so that their photoactivities could be compared. However, if 

a high reaction yield is desired, 254 nm may not be a suitable wavelength for some of the DA 

adducts due to the strong absorption of the products at this wavelength. For real applications, a 

suitable wavelength must be carefully chosen so that only the reactant absorbs strongly at this 

wavelength, while the products do not or only weakly absorb. In biology environment, a visible 

light instead of UV light will be more preferred since it will bring less damage to the tissue and 

less toxic. Based on this PrDA reaction, a novel CO-releasing material was designed and studied.  

3.3 CO-releasing Materials Based on PrDA Reaction 

3.3.1 Background 

The use of gaseous molecules in biological and therapeutic field has attracted great attention in 

recent years. At the beginning of last century, John Haldane first described the physiological 

effects of carbon monoxide (CO) on the human body through its binding to hemoglobin[35]. For 
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decades CO has been viewed as a “silent killer” owing to its strong affinity with hemoglobin. 

But at the end of last century, it became clear that CO has versatile properties as a signaling 

mediator and participates in many important biological processes [36, 119]. 

The mere mention of CO as a potential therapeutic that imparts potent beneficial effects draws 

even greater attention when it is presented as a clinically viable medicinal agent. However, other 

gases are already in clinical use or in clinical development, such as nitric oxide (NO) and 

hydrogen sulphide (H2S). Around twenty years ago, people found NO works as a messenger in 

processes essential for almost all living organisms, including humans [120, 121]. NO relaxes 

blood vessel walls and regulates blood pressure in mammals. In 1998, the Nobel Prize in 

Medicine was awarded to scientists who discovered NO physiological functions for its important 

roles in biology and medicine. Organic NO-releasing compounds which have similar life-saving 

effects to nitroprusside in the treatment of angina pectoris, have been synthesized and studied 

extensively, as well[122]. Hydrogen sulphide (H2S), produced from L-cysteine in mammalian 

cells, have shown anti-apoptotic and anti-inflammatory effects, and novel H2S releasing 

molecules have been developed[123, 124]. 

The advantage of using CO for therapeutic purposes stems from its unique chemistry, because 

unlike NO and H2S, which interact indiscriminately with several intracellular targets, CO reacts 

exclusively with transition metals. Because of its inherent chemical reactivity, CO is a relatively 

stable molecule compared with NO and H2S. It primarily targets metals with a specific redox 

state, (for example iron), offering more flexibility and versatility for the development of CO-

based pharmaceuticals. There is a steadily increasing interest in new complexes as solid storage 

forms for carbon monoxide[119]. The challenge is to develop non-cytotoxic water-soluble 

compounds that release CO relatively fast, with half lives of less than two hours; slower release 
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is unlikely to result in a high enough CO concentration from an acceptable CO-releasing 

molecules (CO-RMs) concentration, due to CO circulation within the body and the reduction in 

effective CO concentration by complexation with heme.  

Until now, there have been two major types of CORMs, one of which is transition metal 

carbonyl complexes[125, 126]. This class of compounds formed the basis for the design of 

CORM as therapeutic agent aimed at delivering controlled amounts of CO to tissues and organs. 

However, most of this type of CORMs are metal carbonyls. Introducing heavy metals to the 

human body could lead to severe side effects even though these CORMs have shown relatively 

low cytotoxicity in vitro. In addition, control of the CO release is difficult, since the affinities of 

the multiple COs bonded to the metal center in any of the CORMs are different, and metal 

carbonyls often have low stability in biological fluids[127].  

The other type is comprised of main group element compounds, which is very rare. 

Boranocarbonate and its derivatives are so far the only compounds studied that release CO at a 

reasonable rate under physiological conditions. The formation of the CO adduct of borane H3B-

CO in significant amounts was described in the 1969 by Parry and Malone [128]. This type of 

CORMs is less studied than the metal compounds perhaps because H3BCO3 is difficult to 

synthesize and handle. It has been proposed that boranocabonate could be transformed into esters 

or amides to introduce targeting moieties for delivering CO to specific targets [129]. However, 

no progress has been reported. 

In the manipulation of complex biological systems with externally applied chemical agents, it’s 

of great important to control the agent’s activity. This may be achieved by the precise control of 

spatial and temporal aspects, as well as the amount, of each dose delivered. This is why a 
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precursor which could be activated only by light otherwise stable is very attractive in drug design. 

Some manganese carbonyl complexes such as Mn2(CO)10 and [Mn(CO)3(tpm)]PF6 release CO 

upon photo-irradiation[130].This is a desirable property since it promises precise spatial and 

temporal control of CO release. However, These CORMs need ultra-violet (UV) light to release 

CO, which is apparently undesirable for biological applications. Herein a novel unsaturated 

cyclic ɑ-diketones encapsulated in micelles are effective CORMs that can be activated by visible 

light. Unlike most of previously developed CORMs, the materials reported here are organic 

compounds, which promises easy modification and relatively low toxicity. 

3.3.2 Vitro and Vivo Testing of PrDA Adducts 

The unsaturated cyclic ɑ-diketones (DKs) were prepared by our lab mates and the structures of 

these DKs list in Scheme 8. This type of diketone is known to undergo a photoreaction that 

releases CO (Scheme 8), and the mechanism has been previously studied [131, 132]. Upon 

irradiation at a wavelength in the absorption band of its n-π* transition (400-550 nm), the 

diketones release two CO molecules and generate anthracene derivatives. It is worth mentioning 

that unlike many polycyclic aromatic hydrocarbons, anthracene, is not acutely toxic, 

carcinogenic, or mutagenic[133]. Although the anthracene derivatives could be more or less 

toxic than anthracene, it is reasonable to expect that the remaining chemicals after CO release 

could have low toxicity, at least for some diketones, which is one of the advantages of these 

CORMs. 
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Scheme 8. Structures of the studied DKs and the PrDA reaction of DKs 

The photochemical reactions of DKs are examined in DMSO, acetonitrile and dichloromethane 

(DCM) solutions. UV-Vis spectra showed that the expected photoreactions occurred for all the 

three compounds. The absorption spectrum of DK22 in DMSO is shown in Figure 23. The 

absorption of the n-π
*
transition is between 400 nm and 550 nm with a maximum (λmax) at 465 

nm. After irradiation with a 470 nm LED array (Elixa, Ltd.) for 10 min, the absorption of DK3 

disappeared completely and the UV-Vis spectrum matched that of 2,6-bis(octyloxy)anthracene, 

which means the photoreaction occurred quantitatively in the organic solvents. 
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Figure 23. Absorption of DK22 in DMSO solution before and after irradiation at 470 nm 

To test the CO releasing capability of DKs in aqueous media, DK21, which has two hydrophilic 

PEG chains, was dissolved in DMSO (1%)/water mixture. The absorption peak at 465 nm 
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disappeared in the UV-Vis spectrum of the solution (Figure 24), and photo-irradiation at 470 nm, 

419 nm, 365 nm and 254 nm did not generate the corresponding anthracene derivative. Addition 

of DMSO to the solution regenerated the absorption peak at 465 nm, which indicates that the 

deactivation of the diketone is most likely due to reversible hydration of the carbonyl groups. All 

ketones form equilibrium with the corresponding hydrates in water, in which the ketone form is 

often predominant. However, in the ɑ-diketones, one of the carbonyl groups is activated by the 

other one, which shifts the equilibrium to the hydrates.  
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Figure 24. UV-Vis spectrum of DK21 in 1% DMSO/water mixture (left), and UV-Vis 

spectrum of aqueous solutions of Pluronic encapsulated DK22 before and after irradiation 

(right) 

To solve this problem, DKs were encapsulated in Pluronic F127 micelle following a literature 

method[134]. Pluronics are biocompatible block copolymers of polyethylene oxide and 

polypropylene oxide, which have been widely used as carriers for drug delivery[135, 136].The 

inner environment of Pluronic micelle is hydrophobic and thus can protect the DKs from 

hydration. In addition, encapsulating DKs in Pluronic micelles allows all the three DKs, 

including the hydrophobic DK22, to be dissolved in water without addition of DMSO. As shown 

Figure 24, pluronic encapsulated DKs showed 400-550 nm absorption band in their UV-Vis 

spectra. After irradiating the aqueous solutions of encapsulated DKs (407μM) for 10 min, the 
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400-550 absorption peak disappeared, and the absorption peaks for the corresponding anthracene 

derivatives appeared. To determine the yield of the photoreactions, DMSO was added and the 

UV-Vis spectra of the resultant solution were compared to that of the DMSO solutions of the 

corresponding anthracene derivatives at the same concentration. The photoreaction yields for the 

micelles of DK20, DK21 and DK22 were 78%, 71% and 90% respectively. Unlike the reactions 

in organic solvents, these reactions did not give quantitative yields, which indicates that 

encapsulation with Pluronic does not completely stop hydration of the diketons. DK21, which is 

the most hydrophilic one, showed the lowest yield, and DK22 which is the most hydrophobic 

one, showed the highest yield. 

Release of CO was qualitatively confirmed by using the CO sensitive Rh complex recently 

reported by Esteban and coworkers[137].CO release is often detected by a solution of myoglobin 

Fe(II), i.e. MbFe(II), freshly reduced with excess sodium dithionite under nitrogen. However, we 

found that the diketones react with sodium dithionite, so an in situ measurement of CO with 

MbFe(II) is not possible. Cis-[Rh2(C6H4PPh2)2(O2CCH3)2](HO2CCH3)2 dispersed on silica gel is 

highly sensitive to CO. Therefore, we sealed some silica gel powders absorbed with the Rh 

complex in a side arm of a round bottom flask filled with an aqueous solution of DK22 micelle. 

After irradiating the micelle solution, the color of the Rh complex changed from violet to orange, 

which is consistent with the color change reported in the literature (Figure 25).Reflectance UV-

vis spectrum of the powder showed that mono-CO complex formed after the reaction.  
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Figure 25. Photograph (left) and reflectance UV-Vis spectra (right) showing silica gel 

containing adsorbed cis-[Rh2(C6H4PPh2)2(O2CCH3)2](HO2CCH3)2 before irradiating the 

micelle solution and after irradiating the micelle solution 

Another advantage of this type of CORM is that the anthracene derivatives generated 

simultaneously with CO are fluorophores, which allows fluorescence imaging of the studied cells. 

For example, anthracene has a fluorescence quantum yield of 0.36[138]. To demonstrate this 

advantage, micelles of DK22 were incubated with acute myeloid leukemia cell KG-1. The 

following day cells were irradiated by a single wavelength of light (λ = 470 nm) for six 30 

second pulses. Photo-activation of the CORM was assessed by fluorescence microscopy (Figure 

26). The fluorescence image showed bright blue fluorescence in the cell, originating from the 

emission of the corresponding anthracene derivative. These results confirmed that DK22 were 

taken by the cells and the photo-induced CO release occurred in the cells. 
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Figure 26. Cell viability for DK micelle (Normal: KG1 cell only, vehicle control: KG1 cell 

with Pluronic, inactive: KG1 cell with the anthracene derivative), and fluorescence image 

of the cells incubated with DK3 micelles and irradiated with 470 nm light (right) 

 

Figure 27. Cell viability tests of the irradiated and not irradiated samples. (Normal: KG1 

cell only, vehicle control: KG1 cell with Pluronic, inactive: KG1 cell with the anthracene 

derivative) 

Cell proliferation and viability were monitored over a 3-day period (Figure 26 and Figure 27). 

No differences were observed in the viability of the cells exposed to the micelles of DK22 and 
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light activation as compared to control cells. Neither the photo CORM nor the anthracene based 

fluorophore (up to 40 µM) had effects on cell viability as assessed by measurement of the 

number of apoptotic and necrotic cells by flow-cytometry. Furthermore, no photo damage was 

observed under experimental conditions. Thus, this system is well suited for possible targeted 

delivery of gasotransmitter carbon monoxide to biological systems to study its function in 

signaling as well as for potential therapeutic applications. Detailed experiment procedure and 

data are given in the supporting information. 

3.3.3 Conclusions 

CORMs based on micelle encapsulated diketons were synthesized and their CO releasing 

capability was studied. These organic CORMs can be activated by visible light, have potentially 

low toxicity, allow the delivery of CO to be monitored by fluorescence imaging techniques, and 

thus could be useful tools for the study of the biological function of CO. 
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CHAPTER 4. PROTONATED POLYANILINE UNDER 

PHOTOIRRADIATION BY PHOTOACID GENERATOR 

4.1 Introduction 

In 1976, Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa together discovered 

conductive polymer which is able to be doped over the full range from insulator to metal [139, 

140]. This discovery opens a brand new area of research not only for chemistry but also for 

condensed-matter physics. Before this, most of the polymers were saturated insulator polymers 

which are not interested as electronic materials. In conjugated polymers, they have one unpaired 

electron per carbon atom which is the π-electron. This π-bonding helps the electron 

delocalization along the backbond of the polymer and generates a new way for charge mobility 

move along the backbond of the polymer chain. So the semiconducting or metallic properties of 

these polymers are determined by the electronic structure, such as the number of one specific 

repeat unit. Although there are many conductive polymers, most of them are not able to be 

processed in metallic form and could not be used in industrial products. Polyaniline (PANI) is a 

conducting polymer discovered in the late 19th century[19], which is the one to solve this major 

problem. Because of its ease of synthesis, low cost, tunable properties, and good stability, PANI 

become one of the most widely investigated polymers during the last decade. This interest allows 

PANI has many potential applications such as electrical materials [141], novel biosensors[142], 

and energy storage materials[143]. The electrical conductivity of the PANI depends on its 

oxidation and protonation state. PANI exists in three different states (Figure 28): 

leucoemeraldine, emeraldine and pernigraniline. Leucoemeraldine is fully reduced and all of the 

nitrogen atoms are amine forms. Pernigraniline is fully oxidized and all of the nitrogen atoms are 

imine forms. In both the leucoemeraldine and pernigraniline states, polyaniline is an insulating 

material. Emeraldine states is the half oxidized form which the ratio of amine form to imine 
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forms is 0.5.  When the half-oxidized emeraldine base (EB) form is protonated, the polymer 

becomes conductive and the conductivity can be as high as 10
2
S/cm

-1
[144, 145].  

 

Figure 28. Three different doping states of polyaniline 

Therefore it is expected that when a composite of insulating PANI-EB and a photo-acid 

generator (PAG) is irradiated, the PAG produces a Bronsted acid. This Bronsted acid protonates 

PANI to form the conductive salt form [146, 147].Photoacid generator (PAG) is a compound 

which could generate acids under light irradiation. PAG is different from photoacid which is 

based on excited-state proton-transfer reactions. Many photoacid generators are based on their 

photolysis mechanism. There are two major types of PAG: ionic and non-ionic compounds[148]. 

Those onium salts such as aryldiazonium, diaryliodonium, triarylsulfonium and 

triaryphosphonium salts that contain complex metal halides such as BF4
-
, SbF6

-
, AsF6

-
 and PF6

-

belong to ionic photoacid generators. These onium salts have been discovered for nearly a 
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century and the mechanism of these photoacid has been studied in detail[149]. Under particular 

wavelength in the range of 200 nm to 300 nm, they will undergo photolysis to generate a protic 

acid. The advantage of this kind of PAG is their thermal stability. They could be easily 

structurally modified to change their absorption wavelength without changing their photoacid 

characteristics.  About the non-ionic compounds, many of those will generate carboxylic acid, 

sulfonic acids, phosphoric acids and hydrogen halides through photoinduced reaction. Non-ionic 

photoacid generators, such as O-Nitrobenzyl esters of carboxylic acid and 1-oxo-2-

diazonaphthoquinone-5-arysulfonate derivatives will produce carboxylic acid under photo 

irradiation. Most of Non-ionic photoacid generators have much better solubility in most organic 

solvent and in polymer films than ionic photoacid generators. However, compare with ionic 

photoacid generators, their thermal stability is not very good.  

Many new commercially important technologies have been greatly improved with these 

photoacid generators. One of the most important applications of photoacid generators is in 

photoinitiated cationic polymerizations. They have opened an entire new area for this kind of 

applications, such as in coatings, inks[150]. Another application is in the area of new 

photoresists in the microelectronics industry. Such a photo-responsive material could be utilized 

to make conductive patterns [151]. In fact, photo patterning of PANI has been attracted a lot of 

interest since early nineties [146, 147, 151]. However, the conductivity after irradiation was 

normally quite low (~10
-4

-10
-6

S/cm
-1

) [152, 153]. Conductivity higher than 10
-3

 S/cm
-1

could only 

be achieved after treatment with HCl vapor. Treatment with strong acids not only increases a 

processing step, but also may be harmful for some parts of the devices. Therefore, it is desirable 

to achieve high conductivity only by photo-irradiation. Theoretical calculations have suggested 

that hydrogen bonding could improve the conductivity [154]. Hydrogen bonding may help 
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proton transfer and lock adjacent PANI chains together [155]. Herein, my work is focused on 

utilizing hydrogen bonding to improve the photo-induced conductivity of PANI/PAG composites. 

Photoacid which has been discussed in chapter 2 is a very strong acid after visible light 

irradiation and gives very good reversibility. So another part of this chapter is focused on this 

photoacid mixing with PANI to improve the photo-induced conductive reversibility.   

4.2 PANI with Irreversible Photoacid Generator 

4.2.1 Background 

 

Scheme 9. Structure of Ph3S+ OTf− (PAG 23) and [(PhOH)2PhS
+
OTf

−
] (PAG 24) 

The photoacid was synthesized by my lab mate by reacting diphenyliodonium triflate with bis-

paradihydroxydiphenylsulfide in a pressure vessel. Copper (II) benzoate was added to it as a 

catalyst. As described above, photo-irradiation of composites of PANIEB/PAG often resulted in 

low conductivity increase. There could be several reasons for this. These include low quantum 

yield of the PAG, low proton transfer rate and low film quality, etc. In this work we studied 

composites of PANI-EB, triphenylsulfoniumtriflate(Ph3S
+
OTf

−
) (PAG 23) and PVA. Ph3S+ 

OTf− is a PAG with a very high quantum yield of∼50% [156]. PVA was added for two reasons. 

First, the hydroxyl groups of PVA can form a hydrogen bonding network, which may assist 

proton transfer from PAG 1 to PANI-EB. Second, addition of PVA can also increase film quality 

by forming hydrogen bonds with PANI. In fact, film quality could be a major reason of low 

conductivity and low reproducibility. Theoretically, to achieve maximum conductivity, at least 
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0.5 molar equivalence of the PAG to the monomer of PANI must be added. At this ratio, the 

weight of the PAG is often more than that of PANI. The PAG and PANI tend to form 

macrophases, which cause low film quality, and thus low conductivity and reproducibility [157]. 

The PVA we used was 88% hydrolyzed. It is not hygroscopic and is easy to handle. Therefore, it 

is unlikely that doping PVA in the films significantly increased their water content, which could 

affect the conductivity[158]. 

4.2.2 Results and Discussion 

 

Figure 29. UV–visible spectra of PANI/PAG/PVA film before and after irradiation at 254 

nm 

To study the effect of PVA, different ratios of PVA were added to a mixture of PANI-EB/PAG 1 

with a fixed PANI-EB/PAG molar ratio of 2:1 (molar ratio of the polymers mentioned in this 

article refers to that of the corresponding monomers). Addition of PVA significantly improved 

film quality, and thus the reproducibility. After irradiation at 254 nm for 1 h, the conductivity of 

the thin films with PVA/PANI ratio of 0.5 changed from below 10
−9

 S/cm
−1

 to10
−3

 S/cm
−1

. As 

described before, such conductivity is difficult to achieve by photo-irradiation of PANI-EB/PAG 



58 

 

composites without treatment of HCl. The protonation of PANI-EB was proved by UV-Vis 

spectrometry (Figure 29). The color of the film was blue before UV irradiation and changed to 

green after irradiation. PANI-EB shows a band at 650 nm attributed to an intermolecular and/or 

intramolecular charge-transfer process from the benzenoid to the quinoid ring. This leads to the 

formation of a molecular “exciton”[159]. After exposure to UV light, the peak centered at 650 

nm disappeared. The disappearance indicates the absence of the exciton in the polaron lattice 

formed upon protonation of the imino groups [64]. Two absorption peaks appeared in the 

spectrum after irradiation. One centered at 445 nm and the other centered around 850 nm. They 

are ascribed to the polaron-π* and π-polaron transition, respectively[160]. These peaks suggest 

the formation of mid gap states due to protonation [64]. 

 

Figure 30. Conductivity (S/cm
−1

) of various concentrations of PVA (the molar ratio of 

PANI-EB to PAG is fixed to 1:0.5) 

When more than 0.5 molar equivalence of PVA was added to the1:0.5 PANI-EB/PAG mixture, 

the conductivity slightly increased at first and maximized at~1.0 equivalence (Figure 30). When 
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too much PVA was added, the conductivity started to decrease. Addition of PVA dilutes PAG 

and increases the average distance between PAG and PANI. When a high percentage of PVA 

was added, the dilution effect overcame the assistance of PVA in protonation, and thus decreased 

the conductivity. To optimize the composite, different ratios of Ph3S+ OTf− were added to a 

mixture of PANI-EB and PVA with a fixed ratio of 1.1:1. In Figure 31, the conductivity 

increased with the amount of the PAG 1 until the molar ratio of PAG: PANI was∼0.6. At this 

ratio, the composite has a conductivity of 10
−2

 S/cm
−1

. Further increasing PAG does not 

significantly increase the conductivity after irradiation even though the conductivity is still much 

lower than that could be achieved by protonation of PANI (10
-2

 S/cm
−1

). This is most likely due 

to the aggregation of the PAG when its concentration is high [157]. 

 

Figure 31. Conductivity (S cm
−1

) of various concentration of PAG (the molar ratio of 

PANI-EB to PVA is fixed to 1.1:1) 

Hydrogen bonding between PANI and PVA as well as protonation of PANI was studied by 

ATR-IR spectroscopy. Given that hydrogen bonding and proton transfer occur on the quinoidal 

nitrogen, C=C and C=N stretches of the quinoidal ring, which are located at∼1590 cm
−1

[161-



60 

 

163], shall be the vibration that is affected most. In fact, when PVA was doped in PANI, the 

quinoidal stretch shifted from 1585 cm
−1

 to 1591 cm
−1

, which is due to the 

hydrogenbondingbetween PVA and PANI [164-166]. Even after PAG 1 was added to the 

composite, the quinoidal stretch did not shift to a lower wavenumber. In fact, the peak shifted to 

a little higher wavenumber(1594 cm
−1

), which indicates strong hydrogen bonding between PVA 

and PANI. After a film of PANI/PVA/PAG 23 was irradiated, the quinoidal stretch shifted to 

1575 cm
−1

, which is typical for PANI salt[164]. In addition, a band at 1134 cm
−1

 can be assigned 

to a vibration mode of the protonized quinoidal structure [167]. The broadening of the peaks 

makes it difficult to analyze hydrogen-bonding effects although IR spectroscopy of PANI-

salt/PVA has been studied before[166] (Figure 32). 
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Figure 32. FTIR spectra of PANI films: (a) just PANI film, PANI doped with PVA film, 

before irradiate the PANI doped with PVA and PAG 23 film, after irradiate at 254 nm for 

30mins PANI doped with PVA and PAG 23 film and (b) just PANI film, before irradiate 

the PANI doped with novel PAG 24, after irradiate at 254 nm for 30mins PANI doped with 

novel PAG 24 film 
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To further improve the photo-induced conductivity, (PhOH)2PhS
+
OTf

−
 was synthesized and 

used as the PAG 24.This PAG 24 has not previously been used in photo-responsive PANI 

composites. Compared to PAG 23, PAG 24 has two hydroxyl groups that can form hydrogen 

bonds with PANI. Since the PAG 24 itself can form hydrogen bonds with one or two PANI 

polymers, it is not necessary to dope PVA. In addition, the hydrogen bonding between the PANI 

and PAG 24 may assist the PAG to distribute around the PANI better. Thus, 0.5 equivalence of 

the PAG 24 was doped in PANI-EB. The conductivity reached 10
−1

S/cm
−1

after irradiation, 

which is an order of magnitude higher than that of PAG 1. However, the initial conductivity of 

the thin films, before irradiation, was as high as 10
−5

S/cm
−1

. The quinoidal stretch in the IR 

spectrum was located at 1575 cm
−1

. This was approximately the same as that of the irradiated 

films, although the conductivity was four orders of magnitudes lower. We suspected that PAG 24 

contained some acidic impurity. However, both 1H and 13C NMR spectra were clean and the 

conductivity results were reproduced with different batches of PAG 24. Therefore, the high 

initial conductivity shall be due to the relatively high acidity of the phenol groups in PAG 24, 

which is enhanced by the sulfonium group at the para position. 

4.3 PANI with Reversible Photoacid 

4.3.1 Background 

As mentioned in chapter 2, a long lived reversible photoacid could be used in many applications, 

such as catalyze an esterification reaction. Here we report another application concerning the 

reversible control of the electronic properties of a conductive polymer by irradiation with 

different wavelengths of light. With respect to conductive polymers, polyaniline (PANI) is one 

of the most studied conductive polymers due to its low cost of the monomer, tunable properties 

and good stability[64]. The electrical conductivity of PANI depends on the level of oxidation and 
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the degree of protonation (Figure 28). We could control the extra acid/base (doping/de-doping) 

to switch PANI between base form and salt form and to further change the conductivity. Some 

photo-switchable conductive materials based on PANI have been reported[11, 168]. However, all 

of those photoacids were based on spiropyran structure and took proton from protonated PANI 

salt. The stable form of this novel photoacid is the protonated merocyanine structure and it will 

generate a proton to dope PANI base form. PANI conductivity studies showed the reversible and 

stable changes when blended with this novel photoacid and irradiated with different wavelengths 

of light. 

4.3.2 Photoacid 1 Doped with PANI 

Inter conversion among MEH and SP states upon visible light irradiation is showed in Scheme 

10. From the result of chapter 2, this photoacid could switch from MEH form to SP form under 

visible light irradiation and convert back to MEH with or without UV light irradiation. If the 

proton generated by this photoacid could be taken by PANI base form under visible light and 

released under UV light, then the electrical conductivity of PANI will be reversible.  
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Scheme 10. Illustration of photoinduced proton transfer between PANI and a three-states 

structure switch photoacid 

Since the previous result is generated from solution condition while this study is performed in 

thin films. First of all is to test whether this photoacid could generate proton in solid state. Figure 

33 shows the photoacid/PMMA/PEG film before and after irradiation. In order to make a good 

quality film, PMMA is the major matrix to dope with photoacid. Polyethylene glycol (PEG) is 

added to help the proton transfer with the help of hydrogen bond. The original color of this film 

is orange, which is the MEH form color. Then the film color changes to light yellow after 470 

nm irradiation, which is the SP form color. This film indicates even in solid states, MEH form 

will convert to SP and generate a proton under visible light irradiation. This color change is 

consistent with UV-Vis spectra result of this thin film (Figure 34). Initially, the photoacid is in 

MEH form and gives relatively high absorption peak at 450 nm. After irradiating with 470 nm 

light, this 450 nm peak decrease, which shows the MEH form convert to SP form. Then this 
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450nm peak increases under 254 nm light irradiation, which shows the SP form convert back to 

MEH form under UV light. The change between MEH and SP form is reversible by switch 

between visible light and UV light irradiation. Thus, these results indicate that this photoacid 

could release and retake proton under different light irradiation in solid state.   

 

Figure 33. The color change of a photoacid/PMMA/PEG film 

 

Figure 34. 450 nm UV-Vis absorption change between 470 nm and 254 nm light irradiation 

Figure 35 shows not only the photoacid’s UV-Vis absorption changes but also the PANI 

absorption. PANI/PEG/PAA/PAH films containing the SP structure were prepared by spin-
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coating onto quartz slides. PANI-EB was dissolved in N-methylpyrrolidinone(NMP), and then 

mixed with PEG and PAA. Photoacid was dissolved in NMP and irradiated at 470 nm for 

5minutes in order to change into SP form. Under 470 nm LED light irradiation, the PANI 

solution was mixed with the photoacid solution and irradiated another 5minutes. By this method, 

PANI was doped with SP form and partially protonated during mixing. The 420 nm absorption 

band of the photoacid decreased after 5mins of 470 nm light irradiation, while the 300 nm peak, 

which is associated with the SP structure, increasing at the same time. The 800 nm peak, which 

is characteristic of the “salt form” of PANI, increased a small amount after irradiation and 

implies some degree of protonation. The absorption band around 600 nm is the typical “base 

form” band of PANI, which decreased a small amount after irradiation. The other characteristic 

absorption band of the “salt form” of PANI around 400 nm is overlapped with 420 nm MEH 

absorption band. So the change is not very clear in this UV-Vis spectrum. Under 300 nm UV-

light irradiation for 5mins, the reverse phenomenon was observed on the UV-Visible absorption 

spectrum. These spectra clearly indicate proton transfer from photoacid to PANI under visible 

light irradiation followed by proton recapturing by the SP structure from PANI under UV 

irradiation. However, from the change of 600 nm peak and 800 nm peak, the degree of proton 

transfer between PANI and photoacid is small. This is probably due to the limited ability of the 

proton transfer to PANI. Although a large amount of the photoacid could switch between MEH 

and SP form, most of these generated protons stay around photoacids and could not reach PANI. 

This result is consistent with electrical conductivity test result.  
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Figure 35. The absorption spectra of PANI with photoacid under different light irradiation 

A dark bluish green film was prepared by spin coat the mixture solution of PANI and photoacid 

(more detail procedure see Experimental Chapter). Figure 36 demonstrates the switchable 

conductivity variation of the PANI/PEG/PAA/PAH thin film upon UV and visible light 

irradiation for 5 different cycles. According to Venugopal’s results[157], conductivity of PANI 

increases significantly from 40% acid doping level. So 20% of PAA as a weak acid was added 

into PANI-EB solution which will increase the initial conductivity of PANI films to observe the 

largest conductivity increase. On the other hand, less amount of photoacid will be added into this 

film composition to receive better quality films. The initial conductivity was relative high 

compared with the conductivity of PANI EB. After the first 5minutes of 470 nm irradiation, 

conductivity only increased around 5% which also demonstrated that most of the photoacid was 

in the SP form. Then the electrical conductivity was decreased almost 50% under 300 nm UV 

light irradiation for 10minutes.  With another 5minutes of visible-light irradiation, the electrical 

conductivity of thin films was restored to the value after the first 470 nm 5mins irradiation. 

Figure 36 demonstrates this reversible electrical conductivity variation upon visible light and UV 
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light irradiation for 5 consecutive cycles. From these results, the repeatability and stability of this 

switchable photoacid with PANI is very good. 

 

Figure 36. Film conductivity switches by different light irradiation 

4.3.3 Photoacid 2 Doped with PANI 

Some other photoacid I mentioned in Chapter 2 have been tested with PANI too. Photoacid 2 is 

one of them which also give good pH change in aqueous solution (from 4.9 to 3.9) and show 

good reversibility. However there is no report about this photoacid in solid states. So in this part, 

I dopedphotoacid2 with PANI and observed the conductivity and UV spectra change. 

Absorption spectral studies showed that before irradiation, most of the photoacid was in MEH 

form which gave a strong peak between 400 nm and 500 nm. So there is no obvious observation 

about proton transfer between PANI and photoacid before irradiation. Then after 10minutes 470 

nm light irradiation, MEH peak decreased. At the same time, a 300 nm peak showed up. These 

changes indicate after 470 nm irradiation, photoacid changes from MEH form to SP form and 

should generate a proton.  At the long wavelength area, PANI peak gave a blue shift from near 

900 nm to 800 nm. This observation indicates that PANI receives a proton which is generated 
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from photoacid during visible light irradiation. Then I used 300 nm light to irradiate this film. 

The MEH peak increased double and 300 nm peak also decreased a little, which means the 

photoacid changed from SP back to MEH under UV light irradiation. However, the absorption 

band at around 800 nm -- the characteristic absorption band of the “salt form” of polyaniline-- 

decreased only a little bit. This observation indicates that the proton shift from MEH photoacid 

form to PANI-EB is easier than the proton shift from PANI salt form back to SP photoacid. Then 

I repeated this whole process one more time and the absorbance indicated the switching between 

SP and MEH again.   

 

Figure 37. The absorption spectra of photoacid 2 with PANI 

The electrical conductivity of the PANI thin film doped with photoacid increased from 0.0017 

S/cm to 0.0038 S/cm which is more than double of the original conductivity after irradiation with 

470 nm for 10minutes. This increase of conductivity is almost certainly due to the proton 

generated by photoacid and doped with PANI-EB form. With 10minutes irradiation of 470 nm, 

PANI-EB doped with a proton and increased conductivity. Figure 38 also demonstrates the 

conductivity of this change after several cycles and this result is consistent with the UV spectra. 
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From the UV spectra, the first 10minutes 470 nm irradiation gave a big shift around 800 nm 

which indicated the proton doped with PANI-EB. After that, UV spectra showed a little change 

after both UV and visible light irradiation. From the electrical conductivity result, the first 470 

nm light irradiation increased the conductivity a lot. However, after that, both the UV and visible 

light irradiation didn’t give much change.  

 

Figure 38. Electrical conductivity of photoacid 2 with PANI 

All of these results indicate that this photoacid is easier to change from MEH to SP form and SP 

form is the relatively stable state. From this photoacid solution result, the initial pH of this 

photoacid is 4.9, which means in aqueous solution before irradiation, part of the MEH form has 

already changed to SP form and generates protons. Compared with photoacid 1, the initial pH of 

photoacid 2 is one unit higher. This indicates the SP form of photoacid 2 is more stable than 

photoacid 1 SP form in aqueous solution. Another reason is the film’s pH. PANI EB is a little 

basic which will help the MEH form donate a proton and favor the SP form.  
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4.4 Conclusions 

Electrical conductivity change of PANI doped with irreversible and reversible photoacid were 

investigated and compared with the solution spectroscopy. It was observed that proton 

transferred from photoacid to PANI both in solid state and solution. With the help of hydrogen 

bonding from PVA, electrical conductivity of PANI film could reach to 10
-1

 S/cm
-1

after 

irradiation when doped with irreversible photoacid generator. For reversible photoacid, the 

conductivity of the PANI thin film could be controlled by switching UV or visible light. 

According to these results, the new composition of PANI with different photoacid could be a 

new electrical material for semiconductor industry.  
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CHAPTER 5. INSTRUMENTATION AND EXPERIMENT 

5.1 Photoacid Solution Experiments 

5.1.1 Photoacid Sample Preparation 

A photochemical reaction is a process that a molecule absorbs the appropriate energy form light 

radiation. The excited molecule could change, in one or several steps, into a product or an 

intermediate compound that will participate into other chemical reaction, such as radical 

polymerization reactions. Because of its easy precisely controllable character, photochemical 

reactions draw great attention and many literatures about photochemical reactions has been 

published. Most of these reactions require one operating condition: excitation of the reactant is 

only performed by light energy without extra heating energy. So the reaction set up should have 

very poor heating aptitudes or good cooling systems.  

To prepare all of the photoacid solution for the photoreaction, around 1gram of photoacid was 

weighed and dissolved by 20 ml of DI water under dark. To dissolve the photoacid fully, this 

solution was ultrasonicated for 30 seconds and then kept in dark for 10 minutes. This solution 

was transferred into a quartz test tube. This test tube will be inserted into the Rayonet 

photochemical reactor or clamped under 470 nm LED light bundle. 

In the photocatalyzed esterification reaction, a solution of the reactants and the photoacids was 

divided into two solutions and placed in Pyrex test tubes. One of the test tubes was wrapped with 

aluminum foil and used as the control. As a blank control, a third Pyrex test tube was filled with 

only reactants without photoacid. These test tubes were sealed under ambient atmosphere. All 

three test tubes were placed together in a RPR-100 Rayonet photochemical reactor and were 

irradiated with a 419 and/or a 570 nm light. The photoreactor was equipped with a ventilation 
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fan, which kept the temperature close to room temperature. After each hour irradiation, 1ul 

sample from each test tube was taken and tested by HPLC. 

In the experiment that demonstrated the photoinduced volume change, the hydrogel cuboid was 

placed in an open beaker filled with an aqueous solution of the photoacid. The mixture was 

irradiated in the photochemical reactor, and the size of the cuboid was measured by placing the 

wet cuboid on a ruler. 

5.1.2 Instruments 

5.1.2.1 Photoreactor 

 

Figure 39. Photoreactor used in photoreaction 
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Table 3. Intensity reading of each wavelength 

Wavelength (A°) Center 2 Inches From Lamps 1.5 Inches From Lamps 

2537 12800 16000 21000 

2652 388 488 640 

2804 14 16 21 

2894 18 22 29 

2967 66 83 109 

3022 32 40 52 

3129 250 313 411 

3654 213 267 351 

4047 250 316 416 

4359 768 960 1260 

5461 418 523 687 

5780 91 113 149 

The photoreactions were performed by using a RPR-100 Rayonet photochemical reactor 

equipped with 16 lamps with different emission wavelength. This photoreactor is 16”high, 

12”square and equipped with a ventilation fan, which keeps the temperature close to room 

temperature. Table 3 lists intensity readings in μW/cm
2
 at each wavelength. 

A light-emitting diode (LED) is a semiconductor light source which was first introduced as a 

practical electronic component in 1962 by Nick Holonyak, Jr.. LEDs are very efficiency which 

emit more light per watt than incandescent light bulbs and could generate an intended color 

without using any color filter. LEDs radiate much less heat in the form of IR compare with the 

most light sources, so LED light are the good source for the photoreaction. A LED contains a 

chip of semiconducting material doped with impurities to create a p-n junction. The current 
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flows from p-side (anode) to the n-side (cathode). The electrons and holes flow into the junction 

from electrodes from two sides. When they meet each other, an electron will fall into a lower 

energy level and release energy in the form of a photon. So the wavelength of the light emitted is 

determined by the band gap energy of the materials forming the p-n junction. The LEDs used in 

this research are the blue lights with wavelength between 450 nm and 500 nm. These bright blue 

LEDs are based on the wide band gap semiconductors GaN (gallium nitride) and InGaN (indium 

gallium nitride). To study the photo behavior, some of the compounds were irradiated with a 470 

nm LED array with 120 10000 mcd LEDs (Elixa, Ltd.).(Figure 40) 

 

Figure 40. 470 nm LEDs 

5.1.2.2 UV-Vis Spectroscopy 

For those highly conjugated organic compounds, like chromophores, UV-Vis spectroscopy is the 

most common technique to use. A typical spectrometer usually has two light sources, a 

deuterium (D2) lamp to generate ultraviolet light and a tungsten lamp to generate visible light. A 

diffraction grating will separate a beam of light into its component wavelengths and a half-

mirrored device will be used to split each single wavelength beam into two equal intensity beams. 

One beam will pass through a sample cuvette which contains the sample we want to test and the 

other beam will pass through an identical cuvette which only contains the pure solvent the 

sample using. The intensities of both light beams will be collected and compared by electronic 

detectors. All of the wavelengths we selected will be scanned one by one. The intensity of the 

reference beam is defined as I0 and the sample beam is defined as I. Beer-Lambert law will be 

used as a quantitative method to determine the concentration of the sample compound: 
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                                                         log
10
  0                                                                 (3) 

The UV absorption spectral studies were collected with a Varian Cary 50 Scan UV-vis 

spectrophotometer using a quartz cuvette with 1 cm path length. The decay UV spectra were 

collected with time intervals of 10 or 20 seconds.  

5.1.2.3 Fluorescence 

Fluorescence emission spectra were taken with a NanologTM HoribaJobin Yvon fluorimeter 

using the same cuvette used in UV-vis absorption measurements.  

5.1.2.4 pH meter 

Fisher Scientific accumet Research AB15 pH/mV/°C Meter and an accumet liquid-filled, glass 

body combination pH Ag/AgCl Electrode was used to run pH tests. 

5.1.2.5 High performance liquid chromatography (HPLC) 

All of the HPLC tests were run by PerkinElmer series 200 HPLC with Microsorb-MV C8 5um 

100A HPLC column from Rainin Instruments Co. INC. 

HPLC is a chromatographic technique used to separate a mixture of compound based on the 

different retention time caused by the process of different distributions of the individual 

compound between two phases: the mobile phase and the stationary phase. It’s a very common 

technique in the analytical chemistry and biochemistry to identify, quantify and purify the 

individual compound.  

In liquid chromatography, the mobile phase is a liquid which is a solvent to carry the compounds 

passing through a separating medium, often within the closed environment of a column. The 

difference interaction time will led the mixture towards the large separation and redistribution 

from the time of the start after injection. Then the appearance of individual component zones in 

time will be recorded during the elution by a detector as the chromatogram. In order to more or 
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less complete separate the individual compound from the mixture, the subjecting solute 

molecules should generate different velocity and lead to selective movement based on the 

stationary- and mobile- phase inside the column. 

HPLC typically uses different type of stationary phase inside column, a pump keeping the 

mobile phase and compounds flowing, and a detector which will tell the retention time and the 

amount of each analyte passed. Sometimes, the detector will provide more detail information 

such as UV-Vis spectra of each analyte. By choosing different stationary phase, the composition 

and flow rate of mobile phase, and the column dimensions, the retention time of each compound 

will vary. Compare with ordinary liquid chromatography, HPLC usually choose small size 

columns and higher mobile phase pressure. So it’s a very efficient method to provide a good 

separation of a mixture.  

Common mobile phases used include any miscible combination of water with organic solvents, 

such as acetonitrile or methanol. In order to provide better separation result, acids or buffers or 

salts may be added into the mobile phase.  The composition of the mobile phase could keep 

constant during the whole analysis as an isocratic elution mode or varied as gradient elution 

mode. When the compounds are relative similar in the affinity for the stationary phase, isocratic 

elution will be effective in separation. In gradient elution, the composition of the mobile phase is 

typically increased from low to high eluting strength. The composition of the mobile phase 

depends on the intensity of interactions between analytes and the stationary phase. In order to 

find the best condition which is the shortest time to complete separate the mixture, a series of 

trial runs will be performed to choose the best mobile phase components, additives and gradient 

conditions.  
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Figure 41. PerkinElmer series 200 HPLC 

5.1.3 Supporting Data 

An aqueous solution of photoacid 6 (5.27×10
-3

 M) gives a UV-Vis spectrum like Figure 44. 

Basically, 5.6mg of photoacid 6 was weighted and dissolved in 2ml of ultrapure water by 

ultrasonic in the dark. Filled the quartz cuvette with 2ml of the same ultrapure water and 

collected the UV-Vis spectrum as background. Filled another cuvette by this photoacid solution 

and collected the UV-Vis spectrum as before irradiation. Then irradiated this quartz cuvette by 

300 nm UV light for 10minutes and collected the UV-Vis spectrum as after irradiation. All the 

other UV-Vis spectrum of photoacid solution was followed the same procedure.  
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Figure 42. UV-Vis spectra of photoacid 6 

Some of the photoacid was dissolve in solution and mixed with polymer to cast into films. 40mg 

Poly(methyl methacrylate beads) (PMMA) (avg MW 35000, ACROS ORGANICS) was dissolved 

in 1ml chloroform and then 2mg of carbon based photoacid 6 was added into this solution. 

 

Figure 43. UV-Vis spectrum of photoacid 6 PMMA film 
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Figure 44. Fluorescence of photoacid 
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Figure 45. HPLC of esterification reaction catalyzed by photoacid  

5.2 PrDA Reaction 

5.2.1 PrDA Sample Preparation 

5.2.1.1 PrDA Mechanistic Study Sample 

All starting materials for preparing the DA adducts were purchased without further purification. 

HPLC grade solvents were used without further purification except degassing. Acetonitrile was 

distilled over molecular sieve under nitrogen before being used.  
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Millimolar solutions of the adducts in acetonitrile or acetontrile/methanolmixture were irradiated 

under 254 nm UV light in an inert atmosphere at room temperature. The power of the UV lamp 

is only 8 W, and the reaction was conducted in a ventilation hood. Under these conditions, the 

photo heating effect can be ignored and the “total absorption” required for measuring quantum 

yield with chemical actinometry can be achieved. Quantum yields were measured by chemical 

actinometry using uridine as the chemical actionmeter[169, 170]. 

For each solution, before irradiation under 254 nm, the concentration was carefully calculated to 

make the absorption at 254 nm well above 2. Except the solution for the oxygen quenching 

experiment, all solutions were carefully degassed before irradiation. Transferred the sample 

solution into a large quartz test tube and sealed with a rubber stopcock. Stopcock was double 

tapped with 3M Scotch Super electrical tape. Hooked the test tube up to a Schlenk line (leave the 

attached hose on vacuum) and froze the liquid in dry ice acetone solution. When the solution was 

frozen, opened the hose to vacuum and pump off the atmosphere for 15minutes. Sealed the test 

tube again and thawed the solution until it just melted using a tepid water bath. Filled the test 

tube with ultrapure nitrogen gas and sealed the test tube again. Changed to cooling bath and 

refroze the solution again. Repeated the above steps for three cycles, the solution was filled with 

ultrapure nitrogen and ready to use. 

The reaction time was controlled so that less than 5% of starting material reacted, which lowers 

the error caused by the absorption of the product. The concentrations of the products were 

analyzed by the long-wavelength absorption of the anthracene products. Before irradiation, 0.5ml 

of solution was taken and tested by UV-Vis spectroscopy. During each reaction time intervals, 

0.5ml of the solution was taken and tested by UV-Vis spectroscopy again till the end of the 

reaction. 
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Multiple measurements were conducted to obtain are liable value. For each sample, if an 

approximate linear relationship is obtained from the data at different time intervals, the first data 

was used to calculate the quantum yield using the following equation[170]. The quantum yield is 

defined as the number of the photo events divided by the number of the photons absorbed. 

Unlike the reaction rate, it is independent of the absorption at the irradiation wavelength. 

Therefore, although the DA adducts have different molar absorption coefficients at 254 nm, their 

quantum yields are comparable. 

                                                                                                                                 (4) 

ε°, t°, Φ°, and ∆A° are the molar absorption coefficient, irradiation time, quantum yield, and 

absorption change of the standard, and ε, t, Φ, and ∆Aare the molar absorption coefficient, 

irradiation time, quantum yield, and absorption change of the PrDA product. The quantum yield 

of uridine at 254 nm is 0.019 and the absorption coefficient is 10338 M
-1

 cm
-1

. The absorption 

and absorption coefficient of each PrDA product was carefully measured (see chapter 3). 

For the TCNE adduct, the backward DA reaction also occurs at room temperature unless one of 

the products is stabilized or reacts with other reagents. According to previous results[116], 

methanol was added to the acetonitrile solution of the TCNE adducts immediately before the 

photoreaction. Except in the reaction of 18, such amount of methanol did not produce detectable 

amount of trapped inter mediate in the experimental condition for quantum yield measurement, 

and thus did not significantly alter the results. 

In the trapping experiment of 18, a 1mM solution of 18 in 1:3 methanol/MeCN was irradiated at 

either 254 nm or 365 nm under nitrogen using an 8W UV lamp. After 6 hours reaction, two 

major products were isolated by filtration and column chromatography. One is phencyclone, 
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which is the product of the corresponding PrDA reaction. The other is the methanol trapped 

product.  

5.2.1.2 CORM Sample Preparation 

All chemicals are obtained from commercial sources and used without further purification. 

100mg Pluronic 127 was dissolved in 5ml DI water and ultrasonicated for 5minutes. 1mg of DKs 

was dissolved in 5ml of CH2Cl2 and mixed with Pluronic solution. The resulting mixture was 

stirred at room temperature for 48 h to slowly evaporate the CH2Cl2. The DK concentration was 

approximately 0.5 mM in water, as estimated by absorption spectra. The whole process was 

produced in dark.  

In order to detect CO generated by CORM, two-compartment myoglobin test was used. The 

setup of the two-compartment test is illustrated in Figure 42. Specifically, myoglobin solution 

was degassed and mixed with excess amount of Na2S2O4 in a sealed Erlenmeyer flask. Reduction 

of the MbFe(III) to MbFe(II) was confirmed by UV-Vis absorption spectroscopy. DK22 micelle 

solution in PBS buffer was degassed and stocked in an air-tight syringe. The long needle tip of 

the syringe was positioned at the very bottom of the MbFe(II) solution. The syringe was chilled 

in ice-water bath to increase the solubility of CO in water and irradiated by 470 nm LED light. 

The plunger of the syringe was pulled very slowly in order to draw the Mb solution from the 

flask into the syringe without making gap between the solution and the plunger. The amount of 

Mb is ~4 times that of the theoretical yield of CO. The absorbance of the mixture solution was 

recorded again in a quartz cuvette. The concentration of MbCO was calculated by using the 

following equations[171]. 
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Where A542 and Aiso are the absorbance at 542 and 552 nm, and [Mb] and [MbCO] are the 

concentration of Mb and MbCO.  

 

Figure 46. Setup for the two-compartment myoglobin test of CO released from the 

photoCORM 

5.2.2 Instruments 

5.2.2.1 UV-Vis Absorption and Fluorescence 

The UV-Vis absorption and fluorescence spectra were collected using the same instruments as 

for the photoacid solutions. 

5.2.2.2 NMR 

The 1H spectroscopic measurements were performed using a Varian 500 NMR spectrometer ant 

500 MHz with tetramethysilane (TMS) as internal reference.  

5.2.2.3 High Resolution Mass Spectrometer (HRMS) 

High resolution mass spectrometers are measured in Agilent 6210 TOF-MS. 
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5.2.3 Supporting Data 

 

Figure 47. Fluorescence of anthracene 

 

Figure 48. Fluorescence of diphenylanthracene 
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Figure 49. Fluorescence of naphthacene TCNE 

5.3 PANI Thin Films 

5.3.1 Thin Film Sample Preparation 

To have an ultra clean slide is a prerequisite in PANI thin films experiments. Every slide was 

ultrasonically cleaned by soap water, DI H2O, acetone, and DI H2O again for 20 minutes each. 

At the end, each slide was blow-dried with N2 gas before using for PANI sample preparation. For 

all of the films with gold electrodes, they were covered with a 1mm strip mask and then put into 

the electron beam evaporation system (Thermionics). First, a 2-nm chromium layer was 

deposited on the film by this system. Then a 50-nm thick gold layer was deposited on top of 

chromium in the thermal evaporator under high vacuum (< 10
-6

Torr).  

Polyaniline emeraldine base (MW=20,000), Poly(ethylene glycol) (MW=8000), Poly(acrylic 

acid), triphenylsulfoniumtriflate were purchased from Aldrich. Polyvinyl alcohol (PVA) 
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(MW=88,000, 88% hydrolyzed) was purchased from Acros Organics. All of the solvents were 

used without further purification.  

For all of the films tested in PANI with irreversible photoacid generator, PANI-EB and PVA 

(ratios described in Chapter 4 section 1) were dissolved in N-methylpyrrolidinone (NMP) at 

room temperature. The solid to solvent ratio (weight) was around 1:10. The PAG was added to 

the solution, and allowed to stir for 30 min. The resulting blue solution was subsequently filtered 

through a 0.45 m micropore filter. Thin films of the composites were prepared by spin casting on 

glass substrates with gold electrodes. Each thin film was placed in a vacuum oven at room 

temperature for 36 h to remove the solvent and then kept in the desiccators. The PANI layer 

thickness is around 1μm which is measured by profilometer. These samples were sealed in quartz 

tubes filled with argon, then placed in the center of a Rayonet photochemical reactor equipped 

with 254 nm UV lamps. The conductivity before and after irradiation was measured by I-Vscan 

using a Keithley 2400 source meter. Some irradiated samples were also tested with four-point 

probe method. The conductivities of these samples were in the same order of magnitude as the 

values obtained by I-V scan.  

For PANI with reversible photoacid experiments, I used two different methods to test the films. 

The first one is the mono layer method which is spun coating PANI/PAH/PEG/PAA solution 

directly on surface of a gold film. PANI-EB was dissolved in N-methylpyrrolidinone(NMP), and 

then mixed with PEG and PAA. Photoacid was dissolved in another test tube by NMP and 

irradiated at 470 nm for 5mins. Under LED light irradiation, the PANI solution was mixed with 

the photoacid solution and irradiated another 5mins. The resulting solution was subsequently 

filtered through a 0.45 μm micropore filter. Thin films of the composites were prepared by spin 

casting on glass substrates with gold electrodes. All thin films were vacuum-dried for 24h at 
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room temperature to remove the solvent and then kept in the desiccators. These samples were 

sealed in quartz tubes filled with argon, then placed under the 470 nm LED light bundle. The 

conductivity before and after irradiation was measured by I-V scan. 

The second way is two layers methods which is represented in Figure 43.The conductivity of 

each film was measured by I-V scanning or the four-point probe method.  

 

Figure 50. Two layers preparation method of PANI/PEG/PAA/PAH films 

5.3.2 Instruments 

5.3.2.1 Profilometer 

All of the thickness of films was measured by Alpha Step Profilometer from UCF Advanced 

Materials Processing and Analysis Center.  

5.3.2.2 Fourier Transmission Infrared Spectroscopy (FTIR)  

In order to study the solid state of DA adducts, Attenuated Total Reflectance (ATR) IR is a 

suitable technique. An ATR accessory operates by measuring the changes before and after the 

infrared beam contact with a sample. An infrared beam is directed onto an optically dense crystal 
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with a high refractive index at a certain angle, and then this internal reflectance generates an 

evanescent wave to go through the surface of the crystal into the sample, which only a few 

microns (0.5μm – 5μm). This evanescent wave will change to attenuated energy or altered 

energy. Only attenuated energy will pass back to the IR beam and be detected by the opposite 

side detector in the IR spectrometer. The system will generate a resulting spectrum, which 

represents the molecular absorption and transmission. These absorption or transmission match 

with different bond or group vibrate frequency. ATR-IR spectroscopy was collected on a Perkin 

Elmer Spectrum One spectrometer equipped with a Universal ATR Sampling Accessory (single 

reflection, Diamond/ZnSe). IR spectra were collected in a range of 600-4000 cm
-1

 with a 

resolution of 1 datum every 2 cm
-1

. 

5.3.2.3 Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) image was first obtained in the early 1930’s [172]and the 

first real instrument was developed by DuPont. A SEM is an electron microscope which scans a 

sample with a beam of electrons in a raster scan pattern and takes its image. Because of its large 

depth of field and high resolution, SEM becomes one of the most useful methods for physical 

properties characterization. A SEM generates six different types of signals: secondary electrons, 

back-scattered electrons (BSE), characteristic X-rays, light (cathode luminescence), specimen 

current and transmitted electrons. Detectors for secondary electron, BES and characteristic X-

rays will provide very high-resolution image of the sample surface and composition of the 

sample.  

In order to generate good SEM images, all of the samples, at least on the surface, must be 

electrically conductive, and also electrically grounded to prevent the accumulation of 

electrostatic charge on the surface. Those nonconductive samples will be coated by an ultrathin 
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layer of electrically conducting material by low-vacuum sputter coating or high-vacuum 

evaporation to prevent charge when scanned by electron beam, and especially in secondary 

electron imaging mode.  All of SEM image was characterized by a Zeiss (Ultra 55) SEM 

operated at 10 ke V. The sample for SEM observation was prepared by coating a 20 nm thin 

layer of gold or platinum.  

5.3.3 Supporting Data 

 

Figure 51. PANI (5.4mg) doped with SP (12mg) in 1:1 ratio NMP: m-cresol 
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Figure 52. PANI doped with photoacid generator (molar ratio 1:0.4) and PVA 

 

Figure 53. PANI doped with Camphorsulfonic acid (molar ratio 1:1) 
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Figure 54. SEM of PANI thin film 

 

Figure 55. SEM of PANI wrapped with PVA 
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