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ABSTRACT 

There have been many studies performed and techniques applied to solve the problem 

of estimating man-month effort for software projects. Despite all the effort expended to 

solving this problem the results achieved from the various techniques have not been 

embraced by the software community as very reliable or accurate. 

This thesis uses Monte Carlo methods to obtain optimal values for COCOMO effort 

multipliers which minimize the average of the absolute values of the relative errors 

(AARE) of man-month estimates for two industry supplied casebases. For example, when 

using three COCOMO cost drivers (complexity, language experience, application 

experience) and the COCOMO effort multiplier values, AARE values were 60% for 

casebase 1 and 53% for casebase 2; using Monte Carlo to obtain optimal effort multiplier 

values, AARE values were 34% for case base 1 and 41% for case base 2. 

By repeatedly removing the cases which contributed the greatest Absolute Relative 

Error, the Monte Carlo method was also used to determine optimal casebase subsets with 

AARE values of less than 1 0%. This latter approach identifies case base cases for which 

the cost drivers may have been rated incorrectly or cases which are not rated consistently 

with respect to a subset of cases. 
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CHAPTER 1 

INTRODUCTION 

The process of estimating the development time and cost for a software project has 

proved to be an extremely difficult task. In general, the effort expended on development 

exceeds the estimated effort. Consequently, software projects are subject to cost overruns 

and very often are delivered after the scheduled completion date. The process of 

software cost estimation is typically performed at the beginning of a project when there 

are many variables and unknown factors. Many factors influence the amount of time 

required to complete a software project. In most cases the first step is to predict the 

number of lines of code required to complete the development. From this point, various 

factors are taken into account in an attempt to estimate the total effort for completing the 

development. This approach raises the questions: What factors are to be included in the 

process? How much influence will these factors have on the development process? 

A standard practice throughout the software industry is to ask an expert who is 

familiar with the development environment for an effort estimate on the project. This 

expertise is typically derived from having worked on projects that contain qualities 

similar to the new project. The estimation process involves using past experiences on 
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software development projects and then adjusting the estimate based on how various 

factors for the new project are different then the previous projects. 

This is the basic concept qfthe COCOMO model for estimating man-month efforts for 

software development projects. COCOMO focuses on estimating the influence of various 

factors, also known as cost drivers, on the development effort. First an estimate of the 

software size is made which is then converted into man-months effort. This effort is 

adjusted by the influence of the applicable factors. The model has assigned numerical 

values for each factor that is used when calculating the man-month effort. The COCOMO 

model assigns numerical values to factors based on a rating scale consisting of the levels 

Very Low, Low, Nominal, High, Very High, Extra High. Table 1 presents an example of 

some COCOMO factors and their associated values. Each level for a specific factor has a 

pre-assigned value which is used when adjusting the man-month estimate. Consequently 

the factor values represent their influence on the man-month effort. The rating for a factor 

is determined by an expert who is familiar with the project. 

Factor Very Low Low Average High Very High Extra High 
Complexity 0.70 0.85 1.00 1.15 1.30 1.65 
Language 1.14 1.07 1.00 0.95 
Experience 
Application 1.29 1.13 1.00 0.91 0.82 
Experience 

Table 1. COCOMO Factor Effort Multiplier Values 
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This paper challenges the process of pre-assigning the numerical values for the factor 

levels. Using Monte-Carlo analysis optimal factor multipliers were determined for each 

case base. An iterative proc~s_s. was used to determine factor values which provided the 

best Absolute Average Relative Error for each of the case bases. This process eliminates 

pre-determining which factors have the most influence on the effort adjustment. For 

example, in COCOMO the application experience factor has a rating range from 1.29 to 

.82 while the language experience factor has a range from 1.14 to .95. Due to the wider 

range of the experience factor values it can have a larger influence on the man-month 

effort calculation. Pre assigning values also determines the degree of difference between 

the individual levels for a factor. Using the Monte Carlo method these constraints are 

eliminated. The only constraints applied were a minimum of 0 and maximum limit which 

was determined empirically by adjusting so no factor values where converging on the 

upper limit. The only other constraint applied to the random factors was that they 

logically increase or decrease according to their factor effort multiplier value. For 

example, on the application experience factor a value for the very low rating (AEXP _ VL) 

would have to be higher than a rating for the low value (AEXP _L) which in turn would 

be higher than the nominal rating (AEXP _ N). Summarizing, this states that AEXP _ VL > 

AEXP _L > AEXP _N> ... ).Logically this makes sense because using developers with a 

lower level of experience will increase the man month effort required to complete a 

project. 
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The first goal was to produce factors which would provide the lowest absolute average 

relative error for a casebase using Monte Carlo methods. This indicates that the factors 

will produce man-month estimates that are as close to the actual man-months as possible. 

Using the industry supplied ratings for the cases factors assumes that the cases which 

were grouped into a casebase were rated in a consistent and predictable manner. Second, 

a series of iterations were performed in which after each run the case with the highest 

absolute relative error was removed. This approach was used to show the effect of 

removing cases which possibly were not classified in a manner consistent with the other 

cases in the case base. This process also provided a mechanism for determining if a new 

case was classified consistently with the cases in the casebase. Finally, a comparison was 

made between the results achieved using the Monte Carlo methods, COCOMO, and the 

math tool Solver. 

Chapter 1 introduces the problem that this paper attempts to solve. Chapter 2 presents 

the basic method that was used described in terms of the applicable equations, variables, 

and the basic flow of the process. After the generic process is described then the specific 

case base data used and the results are described in Chapter 3. The last chapter 

summarizes the data obtained and draws conclusions from the results while also 

suggesting some future work which could be done to possibly further improve the results. 
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CHAPTER2 

:METHODS 

There are many techniques for estimating software development costs. Most of them are a 

combination of the following techniques [Heemstra, 1992] : 

• Estimates made by an expert 

• Estimates based on reasoning by analogy 

• Estimates based on Price-to-win 

• Estimates based on available capacity 

• Estimates based on the use of parametric models 

This paper uses the technique which is a combination of estimates made by an expert 

and a parametric model. While the other techniques can also supply reasonable estimates 

they are not considered in this paper. The process of estimating software development 

costs is not as simple as estimating a predictably repetitive task such as producing 

integrated circuits or vacuum cleaners. There are many reasons for this; some of the main 

ones are: 
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• Source instructions are not a uniform commodity, nor are they the essence of 

the desired product. 

• Software requires. the creativity and cooperation of human beings, whose 

individual and group behavior is generally hard to predict. 

• Software has a much smaller base of relevant quantitative historical 

experience, and is hard to add to the base by performing small controlled 

experiments. 

One criticism which tends to coincide with the reasons listed above is that " much of 

what we believe about which approaches are best is based on anecdotes, gut feelings, 

expert opinions, and flawed research, not on careful, rigorous software-engineering 

experimentation" [Fen ton, 1994]. 

COCOMO 

Perhaps the industries most popular regression-based cost model was completed in 1981 

by Barry Boehm of TRW Corporation, and it is called Constructive Cost Model 

(COCOMO) [Boehm, 1981]. COCOMO is based on data from 63 projects, collected by 

Boehm during the mid-to-late 1970's. "He clustered the data into three groupings, which 

he called modes. he then derived two linear equations for each mode in the log-log 

domain; one equation for estimated effort as a function of software size and one for 

estimated development time as a function of estimated effort. Boehm and his colleagues 
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identified 15 cost drives as those factors that contributed most to the observed variations 

in effort and schedule for software projects similar in size and mode. The ranges of cost 

driver values were derived _by .expert judgment using the Delphi procedure. Boehm 

illustrated, by example, how to construct a regression-based cost model; hence the name 

of the model"[Fairley, 1994]. 

Monte Carlo Method 

The first portion of this paper will focus on the technique of using Monte Carlo 

methods for determining factor values. The COCOMO model uses predetermined fixed 

values for each factor effort multiplier value. These fixed values imply that when a factor 

effort multiplier value is determined that the perception of the difference between the two 

is the same as was implied by the COCOMO tool. For example, the Complexity factor 

has a value for Very Low equal to 0.70 while the Low value is 0.85. It is very possible 

that in reality when the factor effort multiplier values were determined it was assumed 

that a Very Low value required an effort which was significantly less , maybe 50%, less 

than a Low value. In that case a Very Low value optimally would be 0.425 when a Low 

value of .85 is used. The fixed values also restrict how much adjustment one factor can 

have on the man month estimation versus another factor. For example, the Complexity 

factor has a value range from 0.85 to 1.15 (Low to High) whereas the language 

experience factor has a range from 0.95 to 1.07 (Low to High). Looking at the range of 
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these numbers shows that it has been predetermined that the language factor can have a 

greater percentage of effect on the man month estimate than the language experience 

factor. The Monte Carlo method eliminates these assumptions and provides a mechanism 

for determining the optimal factor effort multiplier values. 

Factor Effort MultiplierValues 

The factor values presented in Figure 1 - Figure 3 are from the COCOMO model 

[Boehm, 1981 ]. The Monte Carlo values listed are simply variables which are used to 

describe the factor effort multiplier values relative to each other. For the Complexity 

factor the restriction of C 1 < C2 < C3 < C4 < C5 would apply when randomly choosing 

the values. Similar restrictions were applied to the Language Experience factor, L1 < L2 

< L3 and the Application experience factors, A 1 < A2 < A3. 

Factor Effort Multiplier Description Monte Carlo COCOMO 
Value Value Value 

Very Low Rebuilt system with large segments of existing code Cl 0.70 
Low Entirely new stand alone C2 0.85 
Nominal Composite system independent subsystems C3 1.00 

development 
with considerable overlap 

High Composite system independent subsystems C4 1.15 
development 
in parallel 

Very High Entirely new must interface with other systems C5 1.30 

Figure 1. Complexity (CPLX) Adjustment Values 
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Factor Effort Multiplier Description Monte Carlo COCOMO 
Value Value Value 

High 3 years L1 0.95 
Nominal 1 year L2 1.00 
Low ·4 inonths L3 1.07 

Figure 2. Language Experience (LEXP) Adjustment Values 

Factor Effort Multiplier Description Monte Carlo COCOMO 
Value Value Value 

High 6 years A1 0.91 
Nominal 3 years A2 1.00 
Low 1 year A3 1.13 

Figure 3. Application Experience (AEXP) Adjustment Values 

Case bases 

While the COCOMO model allows for up to 6 ratings for each factor, the ratings 

provided in Figure 1- Figure 3 were the only ratings used with the casebases provided for 

this paper. Table 2 and Table 3 sununarize the casebase data which was supplied from 

industry sources. Each case within the casebase has been described in terms of how many 

Lines of Code were required to complete the project, what factor effort multiplier values 

were assigned to the three factors Complexity (CPLX), Language Experience (LEXP), 

and Application Experience (AEXP), and the actual number of man months that were 

required to complete the project. Since the concept is to not use pre-assigned factor effort 

multiplier values they are labeled simply as variables which will be determined using 

Monte Carlo methods. For example, case_l of Table 2 has a complexity factor effort 
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multiplier value ofC2 which indicates that the industry source rated the case's 

complexity as Low (see Figure 1), a Language experience rating ofL2 which equates to a 

rating ofNominal (see Fig\}fe2}, and an Application experience of A3 which implies a 

rating of Low (see Figure 3). This particular case required 25000 Lines of Code and 72 

Man-Months of effort to complete the project. The data for each casebase was obtained 

from an industry source which assumes that the projects were rated in a consistent and 

predictable manner. The process of identifying cases which are consider erroneous and 

probably rated in an inconsistent fashion compared to the other cases in the casebase is 

looked at in a later portion of this paper. 
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case# LOCS CPLX LEXP AEXP Man-Months 
case I 25000 C2 L2 A3 72.0 
case2 1120 C3 L--l AI 7.5 
case3 258I C3 L2 A2 9.0 
case4 I11I C3 L2 A2 5.4 
case5 740 C3 L3 AI 4.5 
case6 413I C3 L2 A2 8.5 
case? I200 C2 L2 A3 3.0 
caseS 4900 C3 LI AI 5.8 
case9 2950 CI L2 A2 33.0 
case IO 5346 CI L2 A2 22.0 
case II 900 C2 LI AI 2.5 
case I2 1127 C3 L3 A3 4.5 
case I3 5800 C2 L2 A2 I8.9 
case I4 I2352 C3 LI A2 32.5 
case I5 300 C2 L3 A3 3.0 
case I6 300 C2 L3 A3 1.5 
case I7 I67 C3 L2 A2 0.7 
case I8 4557 CI LI A2 9.7 
case 19 2892 CI L2 A3 I0.5 
case 20 I726 C3 L2 A2 Il.O 
case 2I I7I76 C3 L2 A2 47.5 
case 22 2956 CI L2 A3 I0.5 
case 23 I706 C3 L2 A2 Il.O 
case 24 I2288 CI L2 A2 I53.0 
case 25 5I66 CI L2 A2 38.0 

Table 2. Case base Data- 25 Cases 
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case# LOCS CPLX LEXP AEXP man-months 

case I 72000 C4 L2 A2 750.0 
case2 I2760 CI -- -LI AI I25.0 
case3 7000 cs L2 A2 550.0 
case4 88000 cs L3 AI 972.0 
caseS IOOOOO C4 L2 A2 450.0 
case6 55700 cs L2 A2 495.0 
case7 I40000 cs LI AI 900.0 
caseS 46000 C3 LI AI I02.0 
case9 I?9600 C2 L2 A2 427.0 
case IO 20000 CI L2 A2 IIS.O 
case II 30000 cs L3 AI 260.0 
case I2 5000 cs L2 AI 72.0 
case I3 I6700 cs L2 AI I70.0 
case I4 5000 cs L2 AI I2.0 
case IS 40000 C2 L2 AI 80.0 
case I6 27000 cs L2 AI ISO.O 

Table 3. Casebase Data- I6 Cases 

Basic Equations 

The Average Absolute Relative Error (AARE) was used as a gauge for determining 

when the optimum factor values had been reached. The ideal optimum AARE for a 

case base would result when the estimated man months for each case in a case base are 

equal to the actual man-months required to complete each case. While it is not realistic to 

estimate the man-months exactly, the goal was to derive the optimal factor values from 

the case base data received from the industry sources. The basic process consisted of 

randomly choosing factor values for each factor within the case base and calculating the 
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AARE. This process was repeated for many iterations and the factors which resulted in 

the lowest value AARE were considered the optimal values for the particular case base. 

The process is described in more detail in the following sections. 

Before calculating the AARE for the entire casebase the Absolute Relative Error 

(ARE) for each case within the casebase must be calculated. The Absolute Relative Error 

(ARE) for an individual case is the estimated man-months minus the actual man-months 

divided by the actual man-months (Equation 1 ). The actual man-months value was 

provided in the casebase data from the industry source, it is the number of man-months 

that were required to complete the tasks associated with a specific case. The estimated 

man months is calculated using the Monte Carlo techniques applied to the COCOMO 

model. 

ARE. = estimated(MM;)-actual(MM;) 
' actual( MM;) 

Equation 1. AbsoluteRelative Error 

ARE; = Absolute value of Relative Error for i'h case in the casebase 

estimated( MM;) = estimated man-months to complete the i'h case in the case base 

actual(MM;) =actual man-months to complete the i'h case in the casebase 
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Calculating the ARE provides a means for gauging how close the tool is estimating the 

number of man-months required to complete a case compared to how many man-months 

were actually required to complete the case. 

As shown in Equation 2 the estimated man-months for a specific case i is a product of 

the basic COCOMO model multiplied by the factor effort multiplier values for each 

factor which has been determined to be included in the calculation . In this paper the three 

factors Complexity (CPLX), Language Experience (LEXP), and Application Experience 

(AEXP) have been used in calculating the man-month effort. Once again this is primarily 

a function of the data that was received from the industry sources for the case bases used. 

Equation 2. Estimated Man-Months for Case i 

A,B = parameters for COCOMO organic or embedded models 

L; = thousands of Lines of code required to complete the i th case 

(Factor _1;). .. (Factor_ n;) = effort multiplier values for each factor 

Substituting the three factors CPLX, LEXP, and AEXP into Equation 2 to generate the 

estimated man months and then substituting Equation 2 into Equation 1 results in the 
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absolute relative error for an individual case. Equation 3 contains the associated factors 

used for calculating the absolute relative error for an individual case within a case base. 

ARE.= estimated(MM;)-actual(MM;) = A(L;)B(CPLX;){LEXP;){AEXP;)- M; 

' actual( MM;) M; 

Equation 3. Absolute Relative Error 

i = case number within a casebase 

M; = actual man-months for the i th case 

A,B = parameters for COCOMO organic or embedded models 

L; = thousands of lines of code required for the i th case 

CPLX; = complexity factor effort multiplier values for the i th case 

LEXP ; = language experience factor effort multiplier values for the i th case 

AEXP ; = application experience factor effort multiplier values for the i th case 

After the ARE was calculated for each case the AARE could then be derived. As 

Equation 4 shows, calculating the Average Absolute Relative Error (AARE) is the 

summation of the ARE for each case in the case base divided by the total number of cases. 
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1 N 
AARE = -LIARE;I 

N i=l 

Equation 4. Average Absolute Relative Error -. -

AARE = Average Absolute Relative Error for the entire case base 

i = case number 

ARE; =Absolute Relative Error fori th case in the casebase (Equation 3) 

N = number of cases in the case base 

i = case number 

AARE Method Flow 

The iterative process of generating random numbers, calculating the ARE for a case, 

and then calculating the AARE for the entire case base is summarized in the C language 

pseudocode of Figure 4. 
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for (NUMBER_ RUNS) 
{ 

} 

I* Generate the required random numbers to be used for factor values *I 
for (each FACTOR) 
{ 

} 

for (each FACTOR::RATING of the current FACTOR) 
{ 

} 

get a random number between 0 and 1 and scale it to MAX RANGE. 
sort the random number in ascending order. 

I* Calculate the ARE for each case using the randomly generated factor values *I 
for (each CASE in the CASEBASE) 
{ 

} 

calculate the Absolute Relative Error (ARE) for the current CASE. (Equation 3) 
Add the current CASE's ARE to the Total Absolute Error for this RUN. 

I* Calculate the AARE and save it off and the associated factor values if it is the lowest *I 
calculate the Absolute Average Relative Error (AARE) for this RUN.(Equation 4) 
If (this is the lowest AARE for this NUM _RUNS) 

save off the AARE and FACTOR values as optimal for this run. 

Figure 4. Method Flow for Determining AARE 

The process of generating a set of random numbers to be used as the effort multiplier 

values for each factor associated with the case base is a very simple process. Following 

the pseudocode of Figure 4, when the 16-case casebase was used it required that 5 

random numbers be generated for the CPLX factor effort multiplier values (C 1-CS), 3 

random numbers for the LEXP factor effort multiplier values (L1-L3), and 2 random 

numbers for the AEXP factor effort multiplier values (A1-A2). After generating the 

required factor effort multiplier values for each factor the ARE was calculated for each 

case in the casebase. The sum of the individual case's AREs was then summed together 
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and divided by the number of cases in the case base to obtain the AARE. This process was 

repeated for a the required number of runs and the factor effort multiplier values which 

resulted in the lowest ~ was determined to be the optimal factor values for the 

case base. 

The Number ofRuns was determined to be 1 million. This number of runs provided 

results which would produce a minimum AARE which would change less than 5% as the 

number of runs was increased . This number was determined by running many series of 

runs with varying numbers from 100,000 up to 5 million on a series of cases. 

A random number generator was used which generated numbers between 0 and 1. This 

number was then scaled by the value ofMAX_RANGE. The value for MAX_RANGE 

was usually 2.5 as it was determined that most optimum factor values were less than 2.5. 

This determination came from a combination of the results obtained from the Solver math 

tool and empirical data which indicated that the factor values were not converging on the 

upper limit. For the exceptional cases where the optimum factor values were determined 

to be greater than 2.5 the MAX_RANGE was adjusted accordingly. The optimum values 

which were used a guideline for determining the MAX_RANGE values were taken from 

the work performed using the Solver math tool. The MAX_RANGE numbers for the 

various iterations run are summarized in the Results portion of this paper. 

The casebases contained in this study contained cases which had the following factors 

associated with them: 
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• Complexity (CPLX) 

• Language Experience (LEXP) 

• Application Experience (AEXP) 

Each factor has a rating associated with it. There are 6 distinct ratings for each factor. The 

possible ratings are Very Low (VL), Low (L), Nominal (N), High (H), Very High (VH), 

and Extra High (EH). Table 2 and Table 3 summarize the factor effort multiplier values 

that were supplied from the industry source for each casebase. 

Table 4lists the number of rating values associated with each factor which determined 

the specific quantity of random numbers that would need to be generated. 

16-case Casebase 25-case Casebase 
Factor #Factor Values #Factor Values 

(i.e., Random #'s) (i.e., Random #'s) 
CPLX 5 3 
LEXP 3 3 
AEXP 2 3 
Total Random #'s per Run 10 9 

Table 4. Random Numbers per Iteration 

The basic process of generating random numbers for factor values in an iterative 

process was a simple procedure which was accomplished using the C programming 

language. The concept is adaptable in the manner that the number of 'factors could vary 

among casebases but can easily be handled by the process described in Figure 4. 
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CHAPTER3 

MONTE CARLO METHOD 

The use of the Monte Carlo methods for determining factor effort multiplier values can 

only be verified as a useful technique if there are existing casebases from industry 

sources. "In general, data collection is not common in the software community. It is labor 

and time-intensive and requires an attitude not only focused on the constructive part but 

also on the analytical part of software engineering. Furthermore, data collection, usable 

for software cost estimation, is limited to a relatively small number of software 

development organizations. Only a few organizations realize large software projects each 

year" [Heemstra, 1992]. Two casebases were used for this paper to determine if the 

process of using Monte Carlo methods would produce acceptable results when 

determining factor values for man-month estimation of software development. A 

comparison of the results between the Monte Carlo methods, COCOMO, and the Solver 

math tool provides a means for analyzing the various techniques. 

The two case bases used for the analysis each provided ratings for the three factors 

CPLX, LEXP, and AEXP. Consequently, it was determined that the Monte Carlo 
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techniques would be applied to each possible combination of factors. Table 5 and Table 6 

show that the same combinations of factors were run for each case base. 

A= 3.2, B=l.05 A=2.8, B=l.2 
Factor Effort Multipliers MAX RANGE MAX RANGE Qty. Random Numbers Time 

( 106 iterations) (mins) 

CPLX 0-2.5 0-2.5 5 X 106 16 

LEXP 0-2.5 0-2.5 3 X 106 14 

AEXP 0-2.5 0-2.5 2 X 106 12 

CPLX and LEXP 0-2.5 0-2.5 8 X 106 19 

CPLX and AEXP 0-2.5 0-2.5 7 X 106 17 

LEXP and AEXP 0-2.5 0-2.5 5 X 106 16 

CPLX and LEXP and AEXP 0-2.5 0-2.5 10 X 106 45 

Table 5. 25-Case Casebase- Factor Effort Multipliers and MAX_RANGE 

A= 3.2, B=l.05 A=2.8, B=l.2 
Factor Effort Multipliers MAX RANGE MAX RANGE Qty. Random Time 

Numbers (mins) 

( 1 06 iterations) 

CPLX 0-2.5 0-2.5 3 X 106 19 

LEXP 0-2.5 0-2.5 3 X 106 19 

AEXP 0-2.5 0-2.5 3 X 106 19 

CPLX and LEXP 0-2.5 0-2.5 6 X 106 23 

CPLX and AEXP 0 - 6.5 0-4.5 6 X 106 23 

LEXP and AEXP 0-3.5 0-2.5 6 X 106 23 

CPLX and LEXP and AEXP 0-6.5 0-2.5 9 X 106 26 

Table 6. 16-Case Casebase- Factor Effort Multdp1ers and MAX_RANGE 

It was decided to run all combinations to see if there were any substantial differences 

in the results that occurred as a function of a specific factor. Since the industry supplied 
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case bases did not specify the details on the development mode for the cases, each 

combination was also run using both the COCOMO Organic model (A=3.2, B=1.05) and 

the Embedded model (A=2.~, _B==-1.2). The organic mode is characterized as being a stable 

development environment, less innovative, and relatively small in size. The embedded 

mode consists of developing within tjght constraints, innovative, complex, and having 

high volatility of requirements. 

Also listed in Table 5 and Table 6 are the quantity of random numbers for each 

combination of factors and the time required to complete the 1 million iterations for the 

specific combination. In choosing random numbers it becomes very important that the 

random number generator not start repeating itself before the required quantity of random 

numbers is generated. The largest quantity of random numbers to be generated at any one 

time was 10 million. A 32-bit random number generator was used for this paper which 

means that there was no problem with getting into a repeating· sequence. As expected, the 

more random numbers that had to be processed the longer the time was required to 

complete the run. Certainly the times are a direct function of the specific computer on 

which the code was running. These results were obtained on a 486 66 MHz machine with 

8 megabytes of RAM. 
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Results 

This section will discuss the results obtained using the Monte Carlo methods. Figure 5 

shows the results that were obtained for the 25-case case base using the Monte Carlo 

Methods. The optimal AARE was determined for each combination of factors for both 

the embedded and organic modes. The factor values which resulted in the optimal AARE 

are the result of performing 1 million iterations of choosing random numbers. A random 

number was chosen for each factor value and the ARE calculated for each case and then 

consequently the AARE for the entire case base. Also included are the factor values which 

resulted in the optimal AARE for each combination of factors. 

25-Case Casebase Result Comparison 

Figure 6 provides a summary of the AARE results for the 25-case case base. The data 

presents a comparison of the optimal AARE Monte Carlo results versus the COCOMO 

and Solver math tool results. The percent difference and absolute difference between the 

Monte Carlo results versus the COCOMO and Solver math tool results are provided for 

both the organic and embedded modes. The average AARE for all the factor 

combinations is also provided. 

The Monte Carlo and Solver results tracked each other very closely. The AARE 

percent difference for the organic mode was typically less than 1%, the average percent 

difference was 1.066%. The factor combination ofCPLX, LEXP, and AEXP resulted in a 
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6% difference, but this is still only an absolute difference of0.021229. The AARE 

percent difference between the Monte Carlo results and COCOMO were considerably 

higher. The percent differen~e _ranged from a low of5.951885% to a high of21.381900%. 

Across all factor combinations this resulted in an average AARE percent difference of 

13.89%. For each individual factor combination the Monte Carlo methods produced 

factor values which resulted in a lower AARE than COCO MO. 

In the embedded mode the results tracked very similarly to the organic mode. The 

average percent difference between the Monte Carlo and Solver results was only 

2.995910% while the percent difference to COCOMO was 15.885390%. Once again, in 

all factor combinations the Monte Carlo derived factor values resulted in a lower AARE 

than the COCOMO factor values. 
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Optimal AARE 
A=3.2, 8-1.05 
CPLX LEXP AEXP CPLX, LEXP CPLX,AEXP LEXP,AEXP 

Solver 0.423174 0.339678 0.398310 0.339677 0.398691 0.339677 
Cocomo 0.449908 0.418695 0.431842 0.436023 0.442827 0.413217 
Monte Carlo 0.423103 0.338042 0.396839 0.342793 0.401609 0.341148 

Difference : Monte Carlo - Solver -0.000071 -0.001636 -0.001471 0.003116 0.002918 0.001471 
%Diff = MOnte Carlo -vs- Solver -0.016778 -0.481633 -0.369310 0.917342 0.731895 0.433058 

Difference = Monte Carlo - COCOMO -0.026805 -0.080653 -0.035003 -0.093230 -0.041218 -0.072069 
%Diff- Monte Carlo -vs- COCOMO -5.957885 -19.262948 -8.105511 -21.381900 -9.307924 -17.440957 

Optimal AARE 
A=2.8, 8=1 .2 
CPLX LEXP AEXP CPLX, LEXP CPLX,AEXP LEXP,AEXP 

Solver 0.506355 0.394257 0.477932 0.395673 0.398691 0.394261 
Co como 0.547219 0.518081 0.541982 0.532386 0.442827 0.526041 
Monte Carlo 0.507176 0.393463 0.462857 0.403977 0.465391 0.394682 

Difference : Monte Carlo - Solver 0.000821 -0.000794 -0.015075 0.008304 0.066700 0.000421 
%Diff = Monte Carlo -vs- Solver 0.162139 -0.201391 -3.154214 2.098703 16.729748 0.106782 

Difference = Monte Carlo - COCOMO -0.040043 -0.124618 -0.079125 -0.128409 0.022564 -0.131359 
%Diff = Monte Carlo -vs- COCOMO -7.317546 -24.053768 -14.599193 -24.119530 5.095444 -24.971247 

Figure 6. AARE Comparison Among Monte Carlo, COCOMO and Solver (25 cases) 

CPLX, LEXP, AEXP Average Median 
0.339677 0.368412 0.339678 
0.428770 0.431612 0.431842 
0.360906 0.372063 0.360906 

0.021229 0.003651 0.001471 
6.249761 1.066334 0.433058 

-0.067864 -0 .05~549 -0.067864 
-15.827600 -13.897818 -15.827600 

CPLX,LEXP,AEXP Average Median 
0.393223 0.422913 0.395673 
0.525323 0.519123 0.526041 
0.413787 0.434476 0.413787 

0.020564 0.011563 0.000821 
5.229603 2.995910 0.162139 

-0.111536 -0.084647 -0.111536 
-21 .231890 -15.885390 -21 .231890 



16-Case Casebase Result Comparison 

The AARE results obtained for the 16-case casebase are presented in Figure 7. The 

comparison of AARE results presented in Figure 8 indicate that the results varied more 

using the 16-case casebase compared to the 25-case casebase. In general, the Monte Carlo 

tracked the results from the Solver math tool. In all cases the Monte Carlo methods 

produced factor values which resulted in an AARE that was lower than the AARE from 

the COCOMO values. In the organic and embedded modes the Monte Carlo average 

AARE was 42% to 43%, while the Solver tool was extremely close with values from 

41% to 42%. These results were considerably lower than the COCOMO results, which 

were 51% in the organic mode and 63% in the embedded mode. 

When comparing the Monte Carlo and Solver results, there were a few factor 

combinations which did not track each other as closely as the others. These were 

exceptions to the results obtained for the other combinations and to all combinations in 

the 25-case case base. In the organic mode the two combinations of CPLX, AEXP and 

CPLX, LEXP, AEXP produced percent differences of27.58% and 47.15%. In the 

embedded mode the factor combination of CPLX, AEXP produced a percent difference 

of 27.50%. Since all three of these combinations had been run with a MAX RANGE of 

greater than 2.5, it was decided to increase the number of iterations from 1 million to 25 

million to see if this was possibly contributing to the source of error. The results shown in 

Table 7 clearly show that increasing the number of iterations to 25 million resulted in an 
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AARE which was '8.5% lower than the value at 1 million -iterations. The initial evaluation 

for determining the number of iterations to run was performed with a MAX_RANGE of 

2.5. For the few instances w4ere the MAX_RANGE was increased above 2.5 it appears 

that the number of iterations should have also been increased. 

Factors MODE AARE@ AARE@ AARE AARE@ % difference 
1 million 2 million @ 25 from 
iterations iterations 15 million 1 to 25 

million iterations million 
iterations iterations 

CPLX,LEXP, Organic 0.408934 0.402379 0.38104 0.374122 8.5% 
AEXP (A=3 .2, 2 

B=l.05) 

Table 7. AARE Comparison of 1 to 25 million iterations, MAX_RANGE = 6.5 
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Figure 7. Monte Carlo Results for 16-Case Casebase 
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Figure 8. AARE Comparison Among Monte Carlo, COCOMO and Solver (16 cases) 
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Case Removal 

The Monte Carlo and Solver results tracked each other for most every factor 

combination for each casebase and consistently outperformed the COCOMO factor 

values for calculating AARE. But there were a few instances where the tools did not track 

each other as might have been expected. While there are many variables which could 

contribute to the discrepancies in results between the tools this section of the paper 

investigates the process of removing 'bad' cases and determining if a new case will fit 

into an existing casebase. 

A case base consists of a collection of data from a set of completed projects. The data 

depends a great deal on the judgment of the expert and their ability to consistently rate the 

factors associated with a project. The process becomes a difficult exercise because the 

expert is required to remember facts and circumstances related to previous projects. As a 

result of this there is a very good possibility that cases may not be rated in a consistent 

manner. This results in what can be classified as bad cases within a casebase. It is also not 

possible to use cases from different organizations due to the many variations in the local 

expertise and work environment. 

In an attempt to identify bad cases in this papers casebases some additional processing 

was added to the procedure of determining the optimal AARE. The method for 

determining a bad case is shown in Figure 9. The process consisted of once again 

iteratively generating random numbers for the factor values, calculating the AARE, and 
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then saving off the factor values for the optimal AARE. After the optimal AARE was 

determined with all cases in the casebase present the individual case with the highest 

ARE was removed from the Gasebase. At this point the procedure was repeated but there 

was one less case in the case base then the previous set of iterations. lbis procedure 

continued until the STOP CRITERIA was met. The STOP CRITERIA indicates to the 

program when it no longer has to search for factors which will result in a lower AARE 

and no more cases will be removed. The process of removing one case at a time was 

continued until the stopping criteria was met. The STOPPING_ CRITERIA was that all 

remaining cases in the case base had to have an AARE of less than 1 0%. 
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while (STOP_ CRITERIA has NOT been reached) 
{ 

} 

for (NUMBER RUNS) 
{ 

} 

I* Generate the required random numbers to be used for factor values *I 
for (each FACTOR) 
{ 

} 

for (each FACTOR_RATING ofthe current FACTOR) 
{ 

} 

get a random number between 0 and I and scale it to MAX_ RANGE. 
sort the random number in ascending order. 

I* Calculate the ARE for each case using the randomly generated factor values *I 
for (each CASE in the CASEBASE) 
{ 

} 

calculate the Absolute Relative Error (ARE) for the current CASE. (Equation 3) 
Add the current CASE's ARE to the Total Absolute Error for this RUN. 

I* Calculate the AARE and save it off and the associated factor values if it is the lowest *I 
calculate the Absolute Average Relative Error (AARE) for this RUN. 
If (this is the lowest AARE for this NUM _RUNS) 

save off the AARE and FACTOR values as optimal for this run. 

If (the STOP CRITERIA has NOT been reached) 
remove case from the casebase with the highest ARE from the most recent RUN. 

Else 
terminate the process because the STOP_ CRITERIA has been met. 

Figure 9. Method Flow for Removing Bad Cases 

Similar to when the data was obtained when the determining the optimal AARE a 

variety of factor combinations were run. Runs were made for both the organic and 

embedded modes with each single factor, all three factors, and also varying the A and B 

variables with each single factor and all three factors. Equation 5 represents the basic 

equation with all the variables for the Absolute Relative Error for a case. 
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ARE. = estimated(MM;)-actual(MM;) = A(L;)B(CPLX;}(LEX"l~}(A.E.XP;)- M; 

' actual ( A_'fJ:'!;} M; 

Equation 5. Absolute Relative Error 

The following is a summary of the factor combinations run for the process which 

consisted of removing cases until the stopping criteria was met. These combinations were 

run for both the 16 and 25-case case bases. The complete set of data obtained when 

running these combinations is presented in Appendix A. 

I. A=3.2, B=l.05 (Embedded) 

• ratings for only CPLX are variables 

• ratings for only LEXP are variables 

• ratings for only AEXP are variables 

• ratings for only CPLX, LEXP and AEXP are variables 

2. A=2.8, B= 1.2 (Organic) 

• ratings for only CPLX are variables 

• ratings for only LEXP are variables 

• ratings for only AEXP are variables 

• ratings for only CPLX, LEXP and AEXP are variables 
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3. 

• A, B and ratings for only CPLX are variables 

• A, B and ratings for-only LEXP are variables 

• A,B and ratings for only AEXP are variables 

• A,B and ratings for only CPLX, LEXP, and AEXP are variables 

To better illustrate the process which was used for removing cases until the stopping 

criteria was met consider the data presented in Figure 10 which consists of keeping the A 

and B variables constant in the organic mode (A=3.2, B=l.05) and varying the factors 

CPLX, LEXP, and AEXP. The first series of 1 million iterations, with all 16 cases, 

resulted in an optimal AARE of 0.408934. During this series of iterations case number 

three (3) had the highest ARE of0.912722. Therefore, at the completion of the first series 

case 3 was removed from the casebase and a second series of 1 million iterations was run. 

At the end of the second series, the new case base of 15 cases (i.e., case 3 removed) now 

had an AARE of0.369662, and case two (2) now had the highest ARE of0.898823. This 

sequence was repeated until all the remaining cases had an ARE of less than 10%. For 

this particular set of sequences, on the fourteenth series all three remaining cases had an 

ARE of less than 10%. 

35 



w 
0'. 

Figure 10. Case Removal, 16-Case Casebase, A=3.2, B=1.05, CPLX, LEXP, AEXP 



It is interesting to note how the removal of just three cases, in this situation cases 2,3, 

and 14, resulted in a 36% lower AARE for the casebase. The AARE dropped from 

0.408934 to 0.261637. This is. a significant drop in the AARE and it is possible to now 

consider cases 2, 3, and 14 as having been improperly characterized by the expert and 

classified as bad cases for this case base. Certainly many criteria can be applied for 

determining what constitutes a bad case. A user may indicate that the AARE must be 

below 20% before no more cases are removed. For this particular instance that would 

mean that five cases (2, 3, 14, 5,6) would need to be removed. Or possibly that all 

remaining cases must have an ARE which is less than 40%. This criteria would need to 

be identified on a case by case basis. The stopping criteria that all cases must have an 

ARE of less than 10% is probably not a very realistic criteria because that indicates that 

the software man-month estimate would be within 1 0% of the actual man-months 

required to complete the projects. Unfortunately software tools as a whole are no where 

near that accurate. This criteria was used to fully illustrate how the AARE changes as a 

function of removing cases from a case base. 
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CHAPTER4 

CONCLUSIONS 

The process of estimating the man-month effort required for developing software is 

not a simple task. There have been many studies performed and techniques applied to 

solve this problem. Even with all the effort that has been expended to solving this 

problem the results achieved from the various techniques have not been embraced by the 

software community as a reliable and accurate solution. 

Goodman [Goodman, 1992],condensed all the problems associated with software cost 

estimation rather plainly when he wrote "one conclusion seems to have been drawn by 

every major research project that has looked at this problem [software cost estimation], 

and this seems to be borne out by every industrial organization the author has spoken to 

... put simply, the conclusion and the starting premise is that no one technique, metric or 

tool is ideal or universally accepted. Goodman felt that based on this conclusion, one 

should adapt a strategy employing several estimation techniques that could attack the 

problem from many angles as opposed to just one. 

The COCOMO regression-based model presents an equation for estimating the 

number of man-months required to develop a software product. This model has been 
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accepted as a good starting point for estimating man-months of effort but can only 

produce results which many times are considered marginal or unacceptable. It was the 

intent of this thesis to take the. basic COCOMO model and modify its associated 

assumptions in the selection of factor values to achieve an improvement in the man­

month estimates for a casebase compared to both the COCOMO model and the Solver 

math tool. Then take the modified process a step further and attempt to identify whether a 

new case would fit into the existing casebase and if all cases in the casebase have been 

classified in a consistent manner. 

This does not imply that COCOMO is the 'best' method for determining man-month 

estimates for all software products. For many instances there are probably a combination 

of methods which can generate equal if not better results. The basis behind this paper was 

to provide a technique using Monte Carlo methods to improve the results achieved when 

using the COCOMO model. 

This thesis accomplished the goal of providing a method for determining optimal 

effort multiplier values for a casebase. Using the Monte Carlo method on two industry 

supplied case bases, optimal effort multiplier values were determined which consistently 

yielded lower AARE results than those achieved with COCOMO effort multiplier values. 

The fact that the results using the Monte Carlo methods consistently tracked the results 

obtained using the Solver math tool also indicates that the optimal values were 

determined with the available data. 
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The Monte Carlo techniques were used on casebases which contained data obtained 

form industry sources. The effort multiplier values were supplied for the cost drivers 

Complexity (CPLX), Application Experience (AEXP), and Language Experience 

(LEXP). Since it was decided to use data from real world industry projects as opposed to 

fabricated projects the supplied data is considered a constraint. The author believes that 

the three factors used in the project are very relevant for estimating man-month effort but 

there are most certainly other factors which could additionally influence the final 

estimates. The model provided in this paper is generic in nature and allows for additional 

factors to be included when determining optimal factor values. 

The second objective of this paper was to provide a mechanism for determining if a 

new case can be added to an existing case base and if all cases within a case base have 

been consistently rated. The process of applying factor effort multiplier values will vary 

from person to person. For example, classifying a project as having a 'Very Low' 

complexity is subject to an individuals experience and capabilities. For this reason it 

becomes important that cases which are grouped into a case base are rated in a consistent 

and predictable manner. 

The process of determining which case is providing the greatest AARE, removing it 

from the case base, and then recalculating the AARE indicates how well a case fits into 

the casebase. The data clearly demonstrates that as cases are removed from the casebase 

the AARE can be lowered. 

40 



Certainly there is the opportunity to continue to improve on the basic process of 

estimating man-month effort using the process presented in this paper. One item which 

was identified in the paper is to-determine how many iterations should be run when the 

maximum range for the random generator is increased above 2.5. As the number of 

iterations is increased the processing time also increases, so at some point it can become 

an extremely time consuming effort to calculate the optimal effort adjustment factors. 

A second item would be to investigate how much effect additional factors could have 

on the AARE. This paper used three factors because that was what was provided by the 

industry sources. The basic model allows for additional factors to be added, so if a 

case base with the appropriate data was obtained perhaps the AARE could be brought 

down to even lower levels. 

A third option might be to investigate the use of neural networks combined with the 

process of using Monte Carlo methods for determining the optimal factor values and how 

well a case fits into an existing case base. The capability of neural nets to learn from their 

inputs and adjust their outputs accordingly might provide a mechanism for generating 

man-month estimates without using a pre-defined formula. 

In closing, this paper was intended to present an enhancement to an existing method 

for determining man-month estimates for software development projects. Perhaps this 

incremental improvement will result in further studies which will continue to improve the 

overall goal of achieving more accurate estimates. 
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Appendix A 

Case Removal Data for 16-Case Casebase 
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Figure A-I. 16 Cases, CPLX, A=3.2, 8=1.05 
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Figure A-2. 16 Cases, LEXP, A=3.2, B=l.05 
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Figure A-4. 16 Cases, CPLX, LEXP, AEXP, A=3 .2, 8=1.05 
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Figure A-5. 16 Cases, CPLX, A=2.8, 8=1.2 
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Figure A-6. 16 Cases, LEXP, A=2.8, B=1.2 
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Figure A-7. 16 Cases, AEXP, A=2.8, B=l.2 
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Figure A-8. 16 Cases, CPLX, LEXP, AEXP, A=2.8, 8 = 1.2 
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Figure A-9. 16 Cases, CPLX, A=variable, B=variable 
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Figure A-1 0. 16 Cases, LEXP, A=variab1e, B=variable 
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Figure A-ll. 16 Cases, AEXP, A=variable, B=variable 
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A= variable, 8= variable 
Average Relative Error (ARE) 
Series 1 2 3 4 

case 1 .385411 .580129 .569764 .495205 
case 2 .903324 .909508 * 
case 3 .936789 * 
case 4 .036321 .029495 .078475 .133576 
case 5 .543597 .098833 .113771 .300954 
case 6 .064553 .089875 .130238 .012545 
case 7 .031702 .034006 .097876 .115754 
case 8 .101741 .105284 .170193 .069383 
case 9 .100165 .200373 .144267 .010648 
case 10 .690798 .686907 .675096 .722218 * 
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case 12 .748083 .789600 .823913 * 
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Optimal AARE .354144 .312731 .269978 .229534 

Factors Factor Values 
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C5 1.088766 1.081275 1.157309 .735777 
L1 .580429 .757562 .614564 .727866 
L2 .773856 1.199051 .835571 1.069821 
L3 1.197799 1.453100 1.478541 1.478802 
A1 1.167902 1.164322 .396757 .816591 
A2 1.470796 1.263009 .532302 .942008 
A 2.471866 1.100099 3.820817 3.261549 
8 1.248358 1.373593 1.340466 1.326848 

Figure A-1 2. 16 Cases, CPLX, LEXP, AEXP, A=variable, B=variable 
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Figure B-1. 25 Cases, CPLX, A=3.2, 8 =1.05 
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Figure B-2. 25 Cases, LEXP, A=3.2, 8=1.05 
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Figure B-3 . 25 Cases, AEXP, A=3 .2, B=l.05 
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Figure B-4. 25 Cases, CPLX, LEXP, AEXP, A=3 .2, 8=1.05 
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Figure B-5. 25 Cases, CPLX, A=2.8, 8=1.2 
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Figure B-6. 25 Cases, LEXP, A=2.8, B= l.2 



0'1 
N 

Figure B-7. 25 Cases, AEXP, A=2.8, 8=1.2 
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Figure B-8. 25 Cases, CPLX, LEXP, AEXP, A=2.8, 8=1.2 
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Figure B-9. 25 Cases, CPLX, A=variable, B=variable 
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Figure B-1 0. 25 Cases, LEXP, A=variable, B=variable 
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Figure B-11. 25 Cases, AEXP, A=variable, B=variable 
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Figure B-12. 25 Cases, CPLX, LEXP, AEXP, A=variable, B=variable 
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