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ABSTRACT 

The rapid advances in networking technology have enabled large-scale deployments of online 

video streaming services in today’s Internet.  In particular, wireless Internet access technology has been 

one of the most transforming and empowering technologies in recent years.  We have witnessed a dramatic 

increase in the number of mobile users who access online video services through wireless access networks, 

such as wireless mesh networks and 3G cellular networks. Unlike in wired environment, using a dedicated 

stream for each video service request is very expensive for wireless networks.  This simple strategy also 

has limited scalability when popular content is demanded by a large number of users.  It is desirable to 

have a robust wireless access environment that can sustain a sudden spurt of interest for certain videos due 

to, say a current event. Moreover, due to the mobility of the video users, smooth streaming performance 

during the handoff is a key requirement to the robustness of the wireless access networks for mobile video 

users. In this dissertation, the author focuses on the robustness of the wireless mesh access (WMA) 

environment for mobile video users. Novel video sharing techniques are proposed to reduce the burden of 

video streaming in different WMA environments. The author proposes a cross-layer framework for 

scalable Video-on-Demand (VOD) service in multi-hop WiMax mesh networks. The author also studies 

the optimization problems for video multicast in a general wireless mesh networks. The WMA 

environment is modeled as a connected graph with a video source in one of the nodes and the video 

requests randomly generated from other nodes in the graph. The optimal video multicast problem in such 

environment is formulated as two sub-problems. The proposed solutions of the sub-problems are justified 

using simulation and numerical study. In the case of online video streaming, online video server does not 

cooperate with the access networks. In this case, the centralized data sharing technique fails since they 

assume the cooperation between the video server and the network. To tackle this problem, a novel 

distributed video sharing technique called Dynamic Stream Merging (DSM) is proposed. DSM improves 

the robustness of the WMA environment without the cooperation from the online video server. It optimizes 

the per link sharing performance with small time complexity and message complexity. The performance of 
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DSM has been studied using simulations in Network Simulator 2 (NS2) as well as real experiments in a 

wireless mesh testbed. The Mobile YouTube website (http://m.youtube.com) is used as the online video 

website in the experiment. Last but not the least; a cross-layer scheme is proposed to avoid the degradation 

on the video quality during the handoff in the WMA environment. Novel video quality related triggers and 

the routing metrics at the mesh routers are utilized in the handoff decision making process. A redirection 

scheme is also proposed to eliminate packet loss caused by the handoff.  



 v

ACKNOWLEDGMENTS 

This dissertation would not have been possible without the guidance of my committee members, 

helps from my friends, and support from my parents and wife. 

My deepest gratitude goes to my advisor, Dr. Kien A. Hua, for his stimulating advice, 

encouragement, and patience during my research and study. It is pleasure to thank Dr. Mostafa A. 

Bassiouni and Dr. Cliff C. Zou for their guidance on my research of network communications. I would like 

to thank Dr. Sheau-Dong Lang for his guidance on the algorithms. Special thanks go to Dr. J. Michael 

Moshell who adjusted his tight schedule to attend my defense. 

I am grateful for the help and suggestion from my friends during my doctoral study. I would like to 

thank Dr. Ning Jiang, Dr. Yao H. Ho, Dr. Wenjing Wang, and Ai H. Ho whom I have collaborated with in 

the field of wireless networks. I would also like to thank Dr. Tai T. Do for the constructive discussions on 

video streaming. I would like to express my gratitude to Richard Zhou, Steven Nichols, and William Cecil 

for their contributions to the prototype system included in this dissertation. Many thanks go to the 

following members of the Data System Group for their help and support. They are Dr. Danzhou Liu, Dr. 

Hao Chang, Ning Yu, Fuyu Liu, Rui Peng, and Sirikunya Nilpanich. 

I would like to thank my parents for their invaluable life guidance which has the positive influence 

on anything that I have achieved so far. 

I would like to give my sincere gratitude to my wife, Wenjing Lai, who has dedicated her full 

support to my academic study since the first day I entered the PhD program. 



 vi

TABLE OF CONTENTS 

LIST OF FIGURES ..................................................................................................................... viii 

LIST OF TABLES.......................................................................................................................... x 

1. INTRODUCTION................................................................................................................... 1 

2. RELATED WORKS ............................................................................................................... 6 
2.1 Video Streaming in Wired Networks ...................................................................... 6 
2.2 Video Streaming in WMN ...................................................................................... 7 
2.3 Multicast Routing in WMN .................................................................................... 7 

3. VOD IN WIMAX-BASED WMA .......................................................................................... 9 
3.1 Introduction............................................................................................................. 9 
3.2 System Model ....................................................................................................... 14 
3.3 Admission Control for Unicast ............................................................................. 17 
3.4 Multicast Routing Scheme.................................................................................... 19 
3.5 Adopt Patching ..................................................................................................... 21 

3.5.1 Data Rate Guarantee for Patching..................................................................... 21 
3.5.2 Physical Layer Multicast................................................................................... 24 

3.6 Performance Study................................................................................................ 25 
3.6.1 Compare Unified Approach and Split Approach .............................................. 26 
3.6.2 Compare AC, WP and WP+.............................................................................. 29 

3.7 Conclusion ............................................................................................................ 31 
4. OPTIMIZING PATHCING IN WMA .................................................................................. 33 

4.1 Introduction........................................................................................................... 33 
4.2 MCMT Problem.................................................................................................... 35 
4.3 MBMG Problem ................................................................................................... 40 

4.3.1 Definition of D .................................................................................................. 40 
4.3.2 Optimal Patching Window................................................................................ 43 
4.3.3 Derivation of [ ]mE D .......................................................................................... 44 
4.3.4 Derivation of [ ]pE D ........................................................................................... 47 

4.3.5 Calculate *τ ........................................................................................................ 49 
4.4 Performance Study................................................................................................ 50 

4.4.1 Model Validation .............................................................................................. 50 
4.4.2 Performance of MCT Algorithm....................................................................... 54 

4.5 Conclusion ............................................................................................................ 56 
5. DYNAMIC STREAM MERGING ....................................................................................... 57 

5.1 Introduction........................................................................................................... 57 
5.2 Dynamic Stream Merging..................................................................................... 58 

5.2.1 Stream Merging................................................................................................. 58 
5.2.2 Buffering Scheme.............................................................................................. 65 
5.2.3 Cancel the Merging ........................................................................................... 67 
5.2.4 Merging Tree..................................................................................................... 71 

5.3 Design of DSM ..................................................................................................... 73 



 vii

5.3.1 General Requirement and Data Structure ......................................................... 73 
5.3.2 Control Operations ............................................................................................ 74 
5.3.3 Algorithm for Data Forwarding and Sharing .................................................... 75 

5.4 System Design and Implementation ..................................................................... 77 
5.5 Simulation Study................................................................................................... 81 
5.6 Experimental Study............................................................................................... 85 
5.7 Conclusion ............................................................................................................ 91 

6. HANDOFF FOR VIDEO STREAMING.............................................................................. 93 
6.1 Introduction........................................................................................................... 93 
6.2 QoS Oriented Handoff .......................................................................................... 97 

7. CONCLUDING REMARKS .............................................................................................. 101 

LIST OF REFERENCES............................................................................................................ 102 



 viii

LIST OF FIGURES 

Figure 1. Video streaming in the wireless mesh access environment .................................... 3 

Figure 2. An example of WiMax WMN and its scheduling tree ......................................... 11 

Figure 3. Different ways to join a multicast......................................................................... 12 

Figure 4. Illustration of the construction of the multi-graph scheduling tree ...................... 16 

Figure 5. Illustration of using physical layer multicast........................................................ 24 

Figure 6. Simulation Topology ............................................................................................ 25 

Figure 7. θ  with different wp................................................................................................ 27 

Figure 8. τ with different wp................................................................................................. 27 

Figure 9. Compare θ  of Unified and Split Approaches....................................................... 28 

Figure 10. Compare τ of Unified and Split Approaches........................................................ 28 

Figure 11. Request acceptance ratio....................................................................................... 29 

Figure 12. Average waiting time............................................................................................ 29 

Figure 13. Acceptance ratio with different number of videos................................................ 31 

Figure 14. Average waiting time with different number of videos ........................................ 31 

Figure 15. Illustration of the transition graph ........................................................................ 47 

Figure 16. Result of a simple numerial study of  E[D] .......................................................... 50 

Figure 17. Results from 4 random graph with 10 nodes ........................................................ 53 

Figure 18. Results from 4 random graph with 30 nodes ........................................................ 53 

Figure 19. Results form 4 random graph with 50 nodes ........................................................ 54 

Figure 20. Illustration of the testing WMA environment....................................................... 58 

Figure 21. A simple merging example ................................................................................... 61 

Figure 22. Example of the buffering scheme ......................................................................... 66 

Figure 23. Examples of handling network dynamics ............................................................. 70 

Figure 24. Example of packet forwarding using M-tree ........................................................ 72 

Figure 25. Example of DSMGW............................................................................................ 79 

Figure 26. Architecture of the DSM module.......................................................................... 80 

Figure 27. Simulation Topology ............................................................................................ 82 

Figure 28. Average PSNR of the sex streams ........................................................................ 83 

Figure 29. Work load and throughput at N2 and N3 ............................................................... 84 

Figure 30. The line topology in the validation test ................................................................ 86 

Figure 31. Streams from n0 to n1 in scenario 1....................................................................... 87 

Figure 32. Streams from n1 to n2 in scenario 1....................................................................... 87 

Figure 33. Streams from n0 to n1 in scenario 2....................................................................... 89 



 ix

Figure 34. Streams from n1 to n2 in scenario 2....................................................................... 89 

Figure 35. Network topology in the stress test....................................................................... 90 

Figure 36. Result of the stress test.......................................................................................... 91 

Figure 37. Example of traffic redirection during handoff .................................................... 100 

 
 



 x

LIST OF TABLES 

Table 1 Algorithm 3.1........................................................................................................ 18 

Table 2 Algorithm 3.2........................................................................................................ 20 

Table 3 Algorithm 3.3........................................................................................................ 21 

Table 4 Algorithm 3.4........................................................................................................ 23 

Table 5 Algorithm 4.1........................................................................................................ 36 

Table 6 Algorithm 4.2........................................................................................................ 39 

Table 7 Notations used in Section 4.3 ............................................................................... 42 

Table 8 Average on the minimum E[D]............................................................................. 55 

Table 9 Algorithm 5.1........................................................................................................ 60 

Table 10 Algorithm 5.2........................................................................................................ 68 

Table 11 Important Fields in the Session Table................................................................... 74 

Table 12 Pseudo code of the Recursive_Forward function ................................................. 76 

Table 13 Comparison of data in bottleneck node N2 .......................................................... 85 

 



 1

1. INTRODUCTION 

A picture is worth a thousand words, and the addition of sound and motion can breathe life into a 

picture. As a result, video data has become an inseparable part of many applications with the rapid 

advances in networking technology. Specifically, online video service has become one of the killer 

applications on the Internet. Video sharing websites such as Youtube [1] and Hulu [2] have attracted 

millions of daily access. Emerging online streaming applications such as web conferencing (e.g., the 

webinar) and IPTV services are also good examples demonstrating the tight coupling between the 

advanced video streaming techniques and networking techniques. In recent years, we have witnessed a 

dramatic increase in the number of users who access online video service through access networks 

employing different wireless technologies, such as wireless mesh networking [3], 3G access technologies 

(e.g., [4], [5]).  Due to the wireless feature of these access networks, many users in these environments are 

mobile users.  

In a typical video streaming application, a video server launches a dedicated stream for each video 

request. The data rate of today’s online video stream is usually up to hundreds kilo bit per second (kbps). 

For example, the data rate of the video stream (resolution 176×144 pixels, encoded by h.263) from Mobile 

Youtube [6] is about 400 kbps. Using a dedicated stream for each user is very expensive in the wireless 

environment. This simple strategy also had limited scalability when popular content is demanded by a large 

number of users. It is desirable that a robust wireless access environment should be able to sustain a sudden 

spurt of interest for certain videos due to, say current event. For example, the events such as the earthquake 

in Haiti and the death of Michael Jackson incurred a period of great interest in the related videos worldwide. 

When an event like this arises, we do not want the substantial increase in demand for the related videos to 

significantly impact the normal access to other regular videos. Addressing this problem is also highly 

desirable for applications whose access pattern follows the so called 80:20 rule.   That is, 80% of the 

demand is for 20% of the videos.  For instance, most of the news video accesses are for recent big events, 

such as sports, scandal, and disaster. 
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There are generally two approaches to addressing the aforementioned issues.  One is to reduce the 

data rate of each video stream by adopting advanced video coding technique such as the H.264/AVC [7]. 

As the per-stream data rate is reduced, the overall demand in the access network declines. Moreover, the 

scalable video coding [8] technique provides different levels of video quality which corresponds to 

different data rate. Heterogeneous video users are able to choose the affordable level of quality based on 

various bandwidth capacities of the access networks.  Although this strategy is very promising, it could 

incur more power consumption at the video client due to the execution of more complicated decoding 

algorithms.   Another way to reduce stress on the network is through data sharing.   That is, the users are 

allowed to share video streams to conserve network bandwidth.  In practice either advanced coding or data 

sharing techniques, or both can be used.  We focus on data sharing in this paper. 

Video streaming applications can be classified into two categories, namely live video streaming 

(LVS) and video-on-demand (VOD).  For VOD, users can request a video at any time and they generally 

playback the entire video from the beginning.  Examples of VOD application include movies on demand 

and video services at various social networks.  In contrast, users of a live video streaming service are not 

interested in playing back the entire video from the beginning.  Examples include live streaming of a sport 

event and video conferencing.  The users, in this case, want to see what is currently happening, not actions 

occurred some time ago.   In this environment, all the users are effectively always at the same play point in 

the video, with negligible differences due to network delay. It is easier to facilitate data sharing among 

LVS sessions than VOD sessions. This is because the LVS sessions always require the same content of the 

video at any given time. Video sharing in LVS, therefore, can be realized by broadcasting the live video 

data to all the users. Video sharing is more challenging for VOD applications due to the asynchronous 

nature of VOD sessions. That is, the users are generally at different play points in a given video. 

It is easier to facilitate data sharing among LVS sessions than VOD sessions. This is because the 

LVS sessions always require the same content of the video at any given time. Video sharing in LVS, 

therefore, can be realized by broadcasting the live video data to all the users. Video sharing is more 
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challenging for VOD applications due to the asynchronous nature of VOD sessions. That is, the users are 

generally at different play points in a given video.  Techniques such as Periodic Broadcast ([9], [10]), 

Overlay Multicast ([11], [12], [13]), and Peer-to-Peer (P2P) Streaming ([14], [15], [16]) can be used to 

facilitate sharing of video streams in different VOD environments. Specifically, Periodic Broadcast is 

designed for multicast-capable networks such as local area networks or cable TV networks; Overlay 

Multicast targets general IP networks; while P2P Streaming is amenable to Internet-scale applications.  

Recent research has also revealed that network coding techniques can be adopted for video streaming 

applications ([17], [18]). Since LVS session is a special case of VOD, techniques such as Overlay Multicast 

and P2P Streaming can also be applied for LVS applications. 

 

Figure 1. Video streaming in the wireless mesh access environment 

In this dissertation, we are interested in exploiting the possibility of video sharing in wireless mesh 

access networks.  By taking advantage of the broadband wireless technologies, wireless mesh networks 

(WMN), a special case of mobile ad hoc networks (MANET) with mesh topology, have been used as an 

edge technology to provide broadband Internet access in residential, business, and even city-wide networks.  

In a WMN, the wireless mesh routers form a mesh-like wireless backbone network that allows end users to 

access the services in the Internet or Local Area Network (LAN) through mesh gateways. For convenience 

sake, we refer to such a network environment as a Wireless Mesh Access (WMA) environment. Figure 1 

illustrates the video streaming in the WMA environment.  



 4

Unlike the mobile routers in MANET, wireless mesh routers are deployed in fixed location. 

However, since the end users have mobility, mesh routers have to support the end user roaming and 

provide seamless handoff. Existing implementations (e.g., [19], [20]) of WMN aim to present the network 

as a conventional WLAN to the end users. The underlying mesh networking technology is transparent to 

the end users. This strategy facilitates the easy adoption of WMN since the end users do not need to install 

extra software to join the network. Besides user roaming, problems such as routing, rate adaptation, as well 

as power control in the wireless mesh backhaul have drawn attentions of the research communities in the 

past few years.  

Many researches ([21], [22], [23], [24]) have been conducted to improve the quality of unicast 

video streams in WMN by taking the video coding and the network parameters into account. Some of them 

([21], [22]) utilize the Rate-Distortion model to capture the relationship between video quality and the 

underlying network conditions, such as delay and packet loss. These works are complementing to the video 

sharing techniques as shown in [25], where a joint rate-distortion optimized video multicast scheme is 

discussed. Nevertheless, it has not been well studied on leveraging the video sharing technique to improve 

the robustness of the WMA environment. On the other hand, video sharing for VOD has been thoroughly 

studied in the wired environment (e.g., [9], [14], [26], [27]). However these schemes are not designed to 

take advantage of the broadcast capability of wireless transmission. Furthermore, due to the large scale of 

the Internet, these schemes adopt the high level overlay network and avoid the complexity associated with 

the physical topology of the Internet. In contrast, it is possible to take into account the near stationary 

topology of WMN in order to leverage the full potential of the wireless networks. Handling the dynamics 

of the wireless links and user mobility brings another great challenge unique to WMN. One of the 

important design issues for video sharing is that the content provider (e.g., the video server side) has certain 

cooperation with the media (e.g., the access networks) where sharing happens. Specifically, in the case of 

video sharing in the WMA environment, the conventional video sharing techniques require the video 

servers control over the WMN. This kind of cooperation might not be feasible for online video service.   
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In this dissertation, several novel techniques are proposed to tackle the aforementioned problems. 

The remaining part of the dissertation is organized as follows. The related works are discussed in Chapter 2. 

A cross-layer framework for scalable VOD service in multi-hop WiMax relay networks is proposed in 

Chapter 3. The optimization problems for video multicast in a general wireless mesh networks are studied 

in Chapter 4. In Chapter 5, a novel distributed video sharing technique called Dynamic Stream Merging 

(DSM) is presented. The implementation of DSM in a wireless mesh testbed is also covered in this chapter. 

A cross layer handoff scheme for mobile video users is studied in Chapter 6. The concluding remarks are 

presented in Chapter 7. 
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2. RELATED WORKS 

Our literature survey indicates that existing related works can be classified into three categories, 

namely video sharing in wired networks, video streaming in WMN, and multicast routing in WMN. 

2.1 Video Streaming in Wired Networks 

A video server typically can sustain only a very limited number of concurrent video streams. This 

problem, known as server or network–I/O bottleneck, limits the scalability of video services. Several 

periodic broadcast schemes have been proposed to address this problem (e.g., [9], [10]). In this approach, 

a video is fragmented into a number of segments, each periodically broadcast on a dedicated channel. It is 

up to the client software to tune to these channels to pick up the required segments just in time for the video 

playback. This strategy is highly scalable as it can serve a very large community of users requesting the 

same video with minimal server bandwidth. A limitation of this approach is that it requires instance 

occupation of the network bandwidth. To reduce this cost, one can leverage IP multicast to allow multiple 

clients to share a server stream ([26], [28]). Unfortunately, the deployment of such a facility beyond local 

area networks has been shown to be difficult. Alternatively, end hosts can implement multicast service at 

the application layer, assuming only IP unicast at the network layer, therefore called application-layer 

multicast (ALM). Existing ALM protocols can be classified into two categories: the infrastructure-based 

(IB) approach ([13], [29]) and the P2P approach ([14], [15], [16], [27], [30]). In the IB approach, a set of 

dedicated machines called overlay nodes act as software routers with multicast functionalities. These 

overlay nodes form a certain overlay topology (e.g., tree) to facilitate the multicast in the network. Due to 

the high cost of deployment and maintenance of the IB approach, the P2P approach, was proposed to 

simplify the implementation of ALM and has been widely used in today’s Internet. Examples include 

PPLive [31], PPStream [32], and Coolstreaming [33],. These techniques, however, cannot take full 

advantage of the network topology; nor are they well suited to leverage the broadcast nature of wireless 
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transmission. Moreover, they are not designed for a mobile-user environment. Recent research has also 

revealed that network coding techniques can be adopted in the P2P streaming applications. 

2.2 Video Streaming in WMN 

Besides video sharing, another class of research focuses on using cross-layer design approach to 

improve the quality of the video streaming in the wireless environment. The works in this category are 

complementing to the video sharing. Under the cross-layer design framework, problems with routing, rate 

control, and scheduling are solved by considering together the video coding schemes (e.g., scalable video 

coding and multiple descriptions video coding) and the parameters of the wireless network. In these works 

(e.g, [21], [22], [23], [34]), the rate-distortion model is usually used to capture the relationship between the 

quality of the video and the quality of the network connectivity. In [21], the authors encode the video into 

multiple streams and distribute them over multiple paths in an ad hoc network. This scheme can take 

advantage of the path diversity in the mesh networks. Authors of [22] propose a multi-source multi-path 

video streaming system. Their assumption is that the client may keep a local copy of the video. The video 

files have multiple copies in different clients. A video session can get data from multiple sources. Authors 

of [23] solve the joint routing and rate allocation problem for multiple video streams in ad hoc networks. 

Other works, such as [24] and [35], try to improve the video streaming quality in a one hop scenario. 

Recent work [36] has studied real-time video multicast in cognitive radio networks. 

2.3 Multicast Routing in WMN 

Multicast routing can be leveraged to efficiently share video data in WMN. This category of 

research has been studied from both the theory and protocol aspects.  Finding a multicast tree with a 

minimum sum of edge weights in a random weighted graph is the famous Steiner Tree problem [37]. 

However, the authors of [38] have recently pointed out that the optimal multicast tree in wireless mesh 

networks is not a Steiner tree.  The actual number of transmissions required to multicast a packet is smaller 

than the number of links of the tree due to the broadcast nature of wireless transmissions.  Broadcast, a 
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special case of multicast, has been studied in many works.  For example, the authors of [39] proved that 

finding a set of broadcasting nodes with minimum energy consumption is NP Complete in both the general 

graph and unit disk graph. However, it is still interesting and important to study the complexity of general 

multicast in WMN.  

For large scale WMN such as city-wide WMN, distributed multicast routing protocols are 

necessary.  Many multicast routing protocols have been proposed for MANET [40]. A topology-based 

approach (e.g., [41], [42], [43], [44], [45], [46]) aims to establish an efficient multicast tree or mesh 

topology to facilitate the multicast.  Due to mobility in MANET, a topology-based approach incurs control 

overhead associated with the maintenance of the topology overtime. To address this problem, stateless 

multicast (e.g., DDM [47]) is proposed, wherein a source explicitly mentions the list of destinations in the 

packet header.  Many multicast routing protocols (e.g., [41], [42], [48]) leverage WMA by using link layer 

multicast. In [49], the authors point out that the routing metrics in multicast routing protocols are 

substantially different from those used in unicast routing protocols due to the use of WMA.  However, in 

many wireless technologies, the link layer broadcast is less reliable than link layer unicast.  For instance, 

802.11 MAC unicast data transmission involves RTS/CTS/ACK to insure successful transmission; but 

there is no such guarantee in 802.11 MAC broadcast. The performance of these multicast routing protocols 

for video streaming and VOD applications is unknown. 
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3. VOD IN WIMAX-BASED WMA 

In this chapter, a cross-layer framework is proposed to facilitate the VOD service in multi-hop 

WiMax mesh networks. A joint solution of admission control and channel scheduling scheme is proposed 

to guarantee that the required data rate is achieved for video streams. This feature is crucial for multimedia 

streaming applications. An efficient and light-weight multicast routing technique is also proposed to 

minimize the bandwidth cost for a video user to join a multicast tree. Furthermore, the Patching technique 

is adopted in the application layer to improve the capacity of the video server. Overall, the quality of the 

VOD service is dramatically improved with the help of the efficient cooperation between the techniques 

proposed in different layers of the network. Simulation study shows that with the proposed approach, true 

VOD in WiMax mesh networks can be achieved under high video request arrival rate. 

3.1 Introduction 

Rapidly growing bandwidth demand for multimedia streaming services has spurred the 

development of new broadband access technologies over recent years. The emerging wireless mesh 

networks are expected to deliver high data rate wireless connectivity and provide significant extension of 

coverage for next generation ubiquitous multimedia streaming service. The IEEE 802.16 standard [50], 

also commonly known as WiMax,  is a standards-based technology that enables the delivery of last mile 

wireless broadband access as an alternative to cable and DSL. Compared to wired solutions, WiMax 

provides more ubiquitous access with lower deployment and maintenance costs. Besides the advantage of 

lower deployment expense, WiMax also offers ample bandwidth resource which enables future high-speed 

data and telecommunication services. 

We are interested in supporting VOD service in WiMax-based WMN. VOD is a critical 

technology for many important multimedia applications, such as home entertainment, digital video libraries, 

distance learning, company training, news on demand, electronic commerce, to name just a few. A typical 

VOD service allows remote users to playback any video from a large collection of videos stored on one or 
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more servers. In response to a service request, a video server delivers the video to the user in an 

isochronous video stream. 

In this work, we try to improve different layers of the network to favor the VOD applications. 

More precisely, we introduce a novel joint channel allocation and admission control scheme in MAC layer, 

a light-weight multicast routing in the network layer and application layer VOD technique. In the rest of 

this section, we first elaborate some preliminary knowledge of the WiMax networks and then briefly 

introduce the challenging parts of channel scheduling and routing for video streams in a WiMax based 

mesh network. We highlight our contributions at the end of this section. 

A WiMax network consists of a Base Station (BS) and multiple Subscriber Stations (SS). The 

mesh BS acts as the gateway for SSs to access external networks. Each SS is an access point which 

aggregates data traffics of end users using other protocols, such as 802.3 or 802.11. A WiMax network can 

operate under two modes.  The first mode is the Point-to-Multipoint (PMP) mode. In PMP, all the SSs 

directly connect to the BS through a single-hop wireless link. In other words, the PMP mode requires that 

each SS be within the Line of Sight (LOS) of a BS. The second mode is the mesh mode, in which a SS can 

communicate with either the BS or other SSs through multi-hop routes. The mesh mode extends the 

coverage of the network and is able to support non-LOS transmission. The mesh mode is an instance of the 

wireless backhaul networks. In this paper, we focus on the mesh mode.  In the mesh mode, SSs and BSs 

use scheduling trees for routing. A scheduling tree is a spanning tree built upon the physical topology of 

the mesh network. The root of a scheduling tree is the mesh BS. A scheduling tree is built and maintained 

as follows. Active nodes in a mesh network periodically broadcast Mesh Network Configuration (MSH-

NCFG) messages. Each MSH-NCFG message contains a Network Descriptor that includes configuration 

information of the mesh network. A new node searches for active networks by listening to MSH-NCFG 

messages. From all the possible neighboring nodes that advertise MSH-NCFG messages, the new node 

chooses one as its sponsor node. Then the new node sends a Mesh Network Entry (MSH-NENT) message 

with registration information to the mesh BS through its sponsor node. Upon receiving the registration 
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message, the mesh BS adds the new node as the child of the sponsor node and then broadcasts the updated 

network configuration to all the SSs in the network. Figure 2 depicts a WiMax-based WMN and the 

corresponding scheduling tree. 

BS

SS1

SS5

SS2

SS3

SS4

a) Mesh Network topology b) Scheduling Tree

BS

SS1 SS2

SS3 SS4 SS5

 

Figure 2. An example of WiMax WMN and its scheduling tree 

We consider a typical scenario of providing VOD service in residential or business networks with a 

wireless backhaul, where video servers are connected to a mesh BS with high speed wired link. Streaming 

requests are generated from end users of each SS. Each stream requires certain data rate for continuous 

video playback. Since the link between video servers and the mesh BS is not a bottleneck, the capacity of 

the server is dominated by the capacity of the wireless mesh network. Therefore, we consider the admission 

control on the video server and the admission control on the mesh BS as identical problems. In the rest of 

this paper, we refer to both of them as the admission control problem.  

The channel scheduling mechanisms of WiMax are as follows. WiMax uses Time Division 

Multiple Access (TDMA) for BSs and SSs to access radio channels. A channel is divided into frames. A 

frame consists of a control subframe and a data subframe. Each frame is further divided into mini-slots for 

transmission of user data and control message. The data subframe mini-slot allocation is carried in the last 

control subframe. The mesh mode has two types of channel scheduling schemes: distributed scheduling 

and centralized scheduling. In distributed scheduling, SSs are peers and they compete for transmission 
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opportunities based on pseudo-code random election algorithm. In the centralized scheduling, BSs 

determine the allocation of the minislots dedicated for centralized scheduling among all the stations. The 

centralized and distributed scheduling algorithms can work simultaneously and independently if both are 

assigned dedicated mini-slots. More details of the messages and signaling mechanism for transmission 

scheduling can be found in [50]. 
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Figure 3. Different ways to join a multicast 

Since end users access video servers through the mesh BS, we focus on centralized channel 

scheduling in BS. An open research problem of the centralized scheduling is that WiMax does not specify 

how to assign mini-slots to different stations. In this paper, we propose a technique that jointly solves the 

admission control problem and the channel scheduling problem. Our joint solution fully utilizes the 

bandwidth resource and can thus guarantee the required data rates of the admitted multimedia streams 

during the entire streaming period. The proposed algorithm is also compatible with the general centralized 

scheduling for other types of traffics (e.g., HTTP, FTP and VoIP) in the same network. 
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The number of simultaneously running video streams in the network is limited by the capacity of 

the network. We usually use multicast to extend the capacity of the video server. The idea is that different 

users share the same video stream if they request the same video.  

In order for multicast to fully utilize the bandwidth resource, an underlying routing scheme is 

critical, as illustrated in Figure 3.  In Figure 3(a), suppose two requests for a same video are received by 

SS2 and SS3, respectively.  Figure 3(b), Figure 3(c), and Figure 3(d) depict three possible ways to build a 

multicast tree.  Obviously, the third solution is more efficient in terms of overall bandwidth consumption. 

In this paper, we propose a technique to minimize the bandwidth consumption introduced by forming 

multicast trees. 

Finally, to form a multicast group, the server has to put earlier arrived requests on hold to 

accommodate requests that arrive later. If users making the earlier request are kept waiting too long, they 

are likely to renege. Moreover, since many requests are likely to be forced to wait, only near VOD can be 

achieved. To address this dilemma, we introduced a technique called Patching [26] in our previous work. 

The basic idea of Patching is as follows. A new service request can exploit an existing multicast by 

buffering the on-going stream from the multicast while playing a new “catch-up” flow from the server. 

Once the catch-up flow has been played back to the skew point, it is terminated and the original multicast 

can be shared. We choose Patching as the application level multicast technique because of its centralized 

flavor, which can be easily employed on top of the centralized admission control and the channel allocation 

scheme. There are many existing Patching techniques (e.g., [26], [51], [52]), in this chapter, we only 

demonstrate how to employ the basic Patching scheme, and demonstrate the potential performance gain. 

In summary, our contributions in this work are four parts: 

 We propose a solution that jointly solves the admission control and channel allocation 

problem. The proposed solution guarantees the required data rate of admitted video streams. 
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 We propose a multicast routing scheme in WiMax mesh networks. The routing scheme builds 

efficient multicast tree and introduces negligible control overhead. 

 We adopt the Patching technique to WiMax mesh networks by utilizing the proposed rate 

guarantee model and multicast routing scheme. We also use simulation to verify the efficiency 

of our proposed VOD solutions. 

 We propose two bandwidth sharing approaches for patching stream and regular video stream 

and conduct sophisticated simulations to study their performance 

3.2 System Model 

We consider a WiMax mesh network that consists of one mesh BS node and N mesh SS nodes. 

Nodes are labeled as 0,j  ... ,N= . Specifically, the BS node is labeled as node 0. There is a 

link ),( ji between node i and j when they are within the transmission range of each other. The mesh 

topology can be represented by a graph G = {N, L}, where N = {0,1, … ,N}, and L = {1,2, … ,L} labels all 

the links. Assume link l has a bandwidth of wl bps. We focus on the centralized scheduling of the IEEE 

802.16 mesh mode, where a scheduling tree rooted at the mesh BS is constructed for the routing path 

between each SS and the mesh BS, and the BS acts as the centralized scheduler that determines the 

transmission and reception of every SS in each minislot. Denote a scheduling tree by T = 

{n0(h0 ,p0), … ,nN(hN ,pN)}, where hi denotes the number of hops from node ni to the mesh BS n0, and pi is 

the parent node of ni. The mesh BS is indexed by (0, 0). We denote the path from ni to the mesh BS by Pi. 

Let LT be the set of links that belong to the scheduling tree T. 

Unlike the wired link, the wireless link has special characteristics. For example, an active link may 

interfere or conflict with other links using the same channel. There are two types of constraints in wireless 

mesh networks: 
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Primary constraint: If each node has a single radio transceiver, due to the half duplex nature of the 

transceiver, the node cannot transmit and receive simultaneously. 

Secondary constraint: Links do not share a common node will interfere with each other, if at least one of 

their corresponding transmitter or receiver nodes are within the range. 

The secondary constraint depends on physical layer parameters and capabilities. Note that in 

wireless mesh networks, we can adopt techniques like directional (e.g., beam forming) antennas to 

minimize the interference caused to neighboring links. By carefully planning the locations of BS and SS 

nodes, interference among neighboring links can be greatly reduced. Another way to mitigate the 

secondary constraint is to use different channels with orthogonal frequency band or spread spectrum coding 

all nodes within the two hop neighborhood. In this paper, we only consider the primary constraint for link 

activation. This means each node can only activate either an incoming or an outgoing link at any time.  Let 

N (i) denote the set of incoming and outgoing links of node ni. The required data rate of link l is denoted by 

rl, and we call r = {r1, …, rL} as the required traffic pattern of the network. The fraction of time that link l 

needs to be activated is denoted as 1 /l lf r w= . Let f = 1( ,  ... , )Lf f . The following constraints are the 

necessary condition for a feasible r, 

: ( ) 1ll l i f∈ ≤ ∀ ∈∑ N ,  i N                                   (3.1) 

It has been shown in [53] that (3.1) is also the sufficient condition for scheduling down link unicast 

streams from BS to each SS. We further point out that (3.1) is sufficient for any feasible traffic pattern r 

in a WiMax mesh network with tree topology. 

Theorem 3.1 Assuming that only primary constraints exist in WiMax mesh network, (3.1) is the necessary 

and sufficient condition for a feasible traffic pattern r. 

Proof:   The proof of necessary condition is from the definition of primary constraints.  
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Let K be the number of minislots in a channel scheduling period. Assume all minislots are 

dedicated for downlink centralized scheduling. We can choose a large enough K such that al = K fl is an 

integer for every l ∈ LT. We prove the sufficient condition by constructing the multi-graph scheduling tree 

Tm corresponding to a scheduling tree T. Tm has the same node set as T, with a link l∈LT represented by al 

edges in Tm between the same endpoint nodes. Figure 4 illustrates an example of a multi-graph scheduling 

tree.  

We note that the number of minislots that we need to satisfy the traffic pattern r is the chromatic 

index Γ of Tm, which is the minimum number of colors needed to color the edge in Tm, such that no two 

edges incident on the same node are assigned the same color. Notice that Tm is a bipartite graph where node 

i with an odd hi is in a set and node j with an even hj belongs to another set. From the graph theory we 

know that for bipartite graph, Γ = Δ , which is the maximum degree of a node. We have Δ = : ( )max i ll l i a∈ ∈∑K N . 

Note that (3.1) implies that : ( ) ll l i a∈∑ N = : ( ) ll l i f∈∑ N K ≤ K , from which we have Γ ≤ K . This means we can 

schedule the traffic pattern r in a scheduling period. Thus (3.1) is a sufficient condition for schedulability of 

r.  
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a) Scheduling Tree (weighted label) b) M ulti-graph scheduling tree  

Figure 4. Illustration of the construction of the multi-graph scheduling tree 
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3.3 Admission Control for Unicast 

We first consider the case that all the video streams are unicast streams. In this case, routing is 

done by the scheduling tree. In order to guarantee the data rate of all admitted streams, the admission 

control scheme should be jointly considered with the channel scheduling problem.  

The mesh BS has to support the profiled data rate of each requested video. Otherwise the video 

quality will be distorted. The data rates of the video streams are usually characterized as variable bit rate 

(VBR) [54]. We can analyze the distribution of the data rate r for a particular video stream and request a 

data rate r* such that Prob(r* ≥ r) = 0.9. This means that if the BS admits the request, it should guarantee 

the data rate of the stream at least 90% of time.  

We define a data rate request of the kth video stream of node ni as bi(k) bps, the number of data rate 

requests of ni as Ki, and bi = {bi(k) | k = 1, … ,Ki}. The mesh BS then collects the set of data rate request 

(i.e., bi) of each SS node. We define B = {bi | i = 1, … , M}. The mesh BS decides to admit or postpone 

each individual bi(k). The mesh BS also calculates the transmission schedule and distributes them to all the 

SSs.  

For SS ni, define xi as its admission vector, which is a binary vector with Ki elements, where the kth 

element is 

1 ,   if stream  of node  is admitted,
( )

0,    otherwise.i

k i
x k

⎧
= ⎨

⎩
 

Let x = (x1, … , xM) denote the admission matrix of all the SSs. Therefore, lf (i.e., the fraction of time that 

link l needs to be activated during a scheduling period) can be calculated as: 

:(1 ) ( ) ( )i l Pi k Kil l i if w x k b k∈ ∈= ⋅ ∑ ∑                               (3.2) 

Using (3.2) to substitute the fl in (3.1), yield, 
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: ( ) :(1 ) ( ) ( ) 1i il l i i l Pi k Ki x k b k∈ ∈ ∈⋅ ≤ ∀ ∈∑ ∑ ∑lN w ,  i N          (3.3) 

Based on Theorem 3.1, the necessary and sufficient condition that x is schedulable is (3.3). Each 

constrain in (3.3) can be seen as being applied to a particular node in the mesh network. We design the 

admission control scheme as follows. We store all the waiting requests into a queue called wqueue. The 

request in wqueue is severed in the FIFO manner. All the running streams are stored in another queue 

called rqueue. Therefore, x is decided by managing the requests in wqueue and rqueue. The detail process 

is described in Algorithm 3.1. 

Table 1  Algorithm 3.1 

Algorithm 3.1 Joint Admission Control and Channel Scheduling 

1.  For i = 0 to end of wqueue 

2.      if (accepting wqueue[i] violates (3.3)) 

3.           postpone wqueue[i] 

4.      else 

5.           rqueue.add(wqueue[i]) // admit request 

6.           wqueue.dequeue(i) 

7.           increase f          //consume bandwidth 

8.  For i = 0 to end of rqueue      

9.       if(rqueue[i] is done) 

10.          rqueue.dequeue(i) 

11.          reduce f       // release bandwidth 

12. Generate the schedule based on rqueue. 

 

Algorithm 3.1 guarantees that x satisfies all the constraints in (3.3). In line 2, we only need to 

check if adding a new stream violates the constraints associated to the nodes which are in the path of the 

corresponding stream. Thus line 2 has O(logN) comparisons. Line 7 and 11 increases and reduces the 

bandwidth by updating the corresponding f l in f, where l belongs to the path of the request stream. In line 

12, we generate the schedule by greedy-coloring the edges in the multi-graph scheduling tree constructed 

based on Theorem 3.1. In practice, since the stream data rate is VBR, at each scheduling period, the instant 
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data rate of the video stream may be larger or smaller than the required data rate. If the instant data rate is 

below or equal to the required data rate, it will be fully satisfied. If the instant required data rate is larger 

than the required data rate, the amount of data rate exceeding the required data rate may not be allocated by 

the scheduler. We call this amount of data rate as residual data rate of a video stream. The aforementioned 

scheme is applied to all admitted streams.  

It is worth mentioning that there may be other centralized channel scheduling algorithms running 

simultaneously in the WiMax network, supporting other types of traffics. Algorithm 3.1 is compatible with 

these algorithms. We can have certain number of dedicated minislots for the VOD application in each 

station. In this way, Algorithm 3.1 is independent of other types of traffics. Alternatively, several 

centralized algorithms could share certain amount of minislots in each station. They need to keep each 

other updated on the bandwidth consumption information. We omit the detail here since it is out of the 

scope of this work. 

3.4 Multicast Routing Scheme 

We propose an efficient and lightweight multicast routing scheme that serves as a generic solution 

for WiMax mesh networks. The scheme is based on top of the scheduling tree. The advantage is that we 

make use of the existing scheduling tree which is well maintained by the mesh BS. There is no extra 

maintenance overhead for the proposed multicast routing. Formally speaking, for any multicast tree Tmu 

and mul T∀ ∈ , we have l ∈ LT. Therefore, a multicast tree is a subtree of the scheduling tree. Since the 

multicast stream originates from the mesh BS, the corresponding multicast tree is rooted at the mesh BS.  

Consider a request generated from node i. Our multicast join algorithm finds the node nj that 

minimizes the cost of joining the multicast tree. The number of hops (i.e. wireless links) between two nodes 

i and j in the scheduling tree is denoted as h(i,j). We note that a stream consumes identical bandwidth in 

each link. As a result, the actual bandwidth cost of joining the multicast at node j is proportional to h(i,j). 

We refer to this bandwidth cost as the join cost. Thus, we can minimize the join cost by minimizing h(i,j). 
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Given a request generated from a SS node i, Algorithm 3.2 outputs the node nj at which the request should 

join the multicast. 

Table 2  Algorithm 3.2 

Algorithm 3.2 Join Multicast 

1.  if(node i belongs to Tmu) 

2.      return i 

3.  k = i 

4.  while ( k != 0) do 

5.      if(node k belongs to Tmu) 

6.           return k 

7.      k = pk             // trace to parent 

8.   return k           //  trace up to BS 

 

The basic idea of the algorithm is to find the nearest ancestor in the multicast tree. We have the 

following result for Algorithm 3.2. 

Theorem 3.2 Algorithm 3.2 minimizes the join cost for a request generated from SS ni. 

Proof:  If ni is in the multicast tree, then the join cost is zero, which is the first two lines of Algorithm 3.2. 

If ni is not in Tmu. Algorithm 3.2 finds ni’s nearest ancestor in the multicast tree. We prove it by 

contradictory. Assume the optimal nj ( j i≠ ) is not the ancestor of ni. Recall that Pj denotes the path from 

SS nj to the BS. If ni is in Pj, ni must be in the multicast tree, which is a contradictory. If ni is not in Pj, 

then there exists a node nk in the scheduling tree such that nk is the ancestor of both ni and nj (in the 

extreme case, k = 0) and nk is in the multicast tree. Since the routing only considers links in the scheduling 

tree, we have h(i,j) > h(i,k), which is contradictory to the assumption that nj is the optimal node. Therefore, 

the optimal node must be ni’s nearest ancestor in the multicast tree.  

We now consider how to leave a multicast group. Generally, a user can choose to leave a multicast 

group at anytime. Algorithm 3.3 handles that a user of SS ni leaves a multicast tree Tmu. The basic idea is if 

a link in the multicast tree only serves this user, we should remove the link from Tmu. The corresponding 
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bandwidth consumed in this link is also released. Otherwise, the user is removed without affecting the 

multicast tree.  

Table 3  Algorithm 3.3 

Algorithm 3.3  Leave Multicast 

1.  remove leaving user from the multicast group 

2.  k = i 

3.  while(k is a leaf of Tmu AND no user from k is in Tmu) 

4.      remove link(k, pk) from Tmu 

5.      k = pk 

6.   return 

 

3.5 Adopt Patching 

In this section, we employ the idea of Patching to let the later users join an earlier multicast group. 

We first extend the joint admission control and channel scheduling algorithm for unicast to support 

Patching and then explore the physical layer multicast to further improve the physical channel utility. Our 

solutions still guarantees the data rate for all the admitted users. 

3.5.1 Data Rate Guarantee for Patching 

In Section 3.3, we present the admission control for unicast video stream. Similarly, the multicast 

admission decision should consult the lower layer bandwidth consumption situation in order to guarantee 

the data rate for the multicast steams. Even if there is a multicast group available for a later request, we do 

not admit it if the network does not have enough residual bandwidth for the multicast and Patching streams. 

We formulate the bandwidth capacity constraints for Patching as follows. For the ith multicast group, let 

Tmu(i) denote the multicast tree, ai denote the required data rate of  the video streams of this multicast group 

(i.e., the scheduler should reserve ai bandwidth for both the multicast stream and the patching streams in 

this multicast group) and Pch(i) denotes the set of the paths of the ongoing Patching streams. We use Mi = 

{Tmu(i), ai, Pch(i)} to represent a multicast group. For a mesh network with N simultaneous multicast 
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groups, denote the multicast solution M = {M1, …, MN} as the set of all the ongoing multicast groups in the 

network. Notice that M is built and maintained by Algorithm 3.2 and Algorithm 3.3.  

There are two basic ways for patching streams and regular video streams to share the bandwidth 

resources in the network. One solution is called unified approach. In the unified approach, the patching 

streams and regular video streams are equally treated, i.e., they are all treated as common data traffics and 

share the wl bandwidth in link l. The fraction of time that link l needs to be activated can be characterized 

as 

: ( ) : , ( )(1 ) ( )
mui l T i i l p p Pch il l i if w a a∈ ∈ ∈= ⋅ +∑ ∑                     (3.4) 

where ( )p Pch i∈ is the path of Patching stream in Mi . Substituting fl in (3.1) by (3.4) yields, 

: ( ) : ( ) : , ( )(1 ) ( ) 1
mu i il l i i l T i i l p p Pch ia a∈ ∈ ∈ ∈⋅ + ≤ ∀ ∈∑ ∑ ∑lN w , i N     (3.5)  

From Theorem 3.1, we can derive the following corollary: 

Corollary 3.1  If there is only the primary constraint in WiMax mesh networks, (3.5) is the necessary and 

sufficient condition for a feasible multicast solution M. under the unified bandwidth sharing approach. 

In contrast to the unified approach, there is a split approach where each link l commits 

p
lw ( p

l lw w< ) bandwidth for patching streams.  The residual bandwidth is dedicated for regular video 

streams. In this case, the feasibility of scheduling the patching streams and regular video streams are 

validated separately. Similarly to corollary 3.1, we have: 

Corollary 3.2 If there is only the primary constraint in WiMax mesh networks, the necessary and 

sufficient condition for a feasible multicast solution M. under the split bandwidth sharing approach is 
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We use simulation to compare the performance of these two bandwidth sharing approaches and 

present the result in Section 3.6. 

Table 4  Algorithm 3.4 

Algorithm 3.4 WiPatching 

1.  For i = 0 to end of wqueue 

2.      Use Algorithm 3.2 to update M for wqueue[i]. 

3.      if (new M violates (3.5) or (3.6)) 

4.           Undo the update of M.              //postpone request 

5.      else 

6.           rqueue.add(wqueue[i]) // admit request 

7.           wqueue.dequeue(i) 

8.  For i = 0 to end of rqueue  

9.    if(rqueue[i] is leaving) 

10.         rqueue.dequeue(i) 

11.         Update M by Algorithm 3.3 

12. Generate the schedule based on M. 

 

We refer to the WiMax version of Patching as WiPatching and sketch it in Algorithm 3.4 which is 

an extension of Algorithm 3.1. Besides maintaining the request waiting queue wqueue and running queue 

rqueue, we also need to update the current multicast solution M in the network. If a request in the waiting 

queue can join an ongoing multicast group in M, the corresponding multicast group is updated according to 

Algorithm 3.2. Otherwise, a new multicast group is added into M to a setup a video stream demanded by 

the waiting request. We shall further check if the corresponding new M after admitting this request violates 

the constraints in either (3.5) or (3.6), depending on which bandwidth sharing approach is adopted. After 

passing the validation, the request will be admitted, otherwise the request is postponed and M will be rolled 

back to the earlier version. If any ongoing user leaves, we use Algorithm 3.3 to update the multicast 
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solution for its multicast group. Similar to Algorithm 3.1, in line 12, we can generate the multi-graph based 

on M and assign the minislots accordingly. 

3.5.2 Physical Layer Multicast 

One more way to save bandwidth is taking advantage of the physical layer multicast. For example, 

node i, j, k are in the same multicast tree, node j, k are children of node i. If multicast streams from ni to nj 

and ni to nk share the same minislots, the bandwidth consumption of the multicast can be reduced by half. 

Generally speaking, if ni is the nearest ancestor of both nj and nk, nj and nk are not ancestors of each other, 

then ni can use physical layer multicast to save the bandwidth. Figure 5 illustrates a more complex example 

of using physical layer multicast. Assume SS5 joins a multicast group that involves SS4. In this case, even 

SS4 and SS5 are not children of SS1, because they get the stream from SS2 and SS3 respectively, SS1 can 

still multicast the video stream to its children, which are SS2 and SS3. 

BS

SS1

SS4 SS5

SS2 SS3

 

Figure 5. Illustration of using physical layer multicast 

WiMax supports this kind of multicast. The WiMax standard [50] defines the multicast connection 

in PMP mode in one hop range, and the Connection ID (CID) used for the multicast service is the same for 

all SSs that participate in the multicast. We can adopt this physical layer multicast feature in the mesh 

mode. In practice, the antenna beam of a station should only cover all its children in the scheduling tree, 
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which facilitates the physical multicast but does not introduce the secondary constraint into the networks. 

We call this enhanced technique as WiPatching+. 

3.6 Performance Study 

We conduct comprehensive simulations to compare the performance of the WiPatching (WP), 

WiPatching+ (WP+) and the joint admission control and channel scheduling for unicast (AC).  In the 

simulations, we considered a WiMax mesh network with one BS and 15 SSs. The simulation topology (i.e., 

the scheduling tree) is depicted in Figure 6. 

BS

 

Figure 6. Simulation Topology 

In WiMax mesh networks, the SSs typically are equipped with directional antenna fixed on top of 

buildings with LOS connections between each other. We thus assume the channel condition is static, with 

constant burst rate. The bandwidth capacity of links is set as w = wl = 59Mbps, l∈L.T according to [53]. 

The required streaming data rate is randomly distributed between 0.6 Mbps and 1 Mbps, which simulate 

streaming videos with different quality of resolutions. 

We implemented the AC, WP and WP+ in our simulation code. The performance metrics used in 

this study are the acceptance ratio θ and average waiting timeτ . The acceptance ratioθ  is defined as: 
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Number  of  admitted  requests
Number  of  submitted  requests

θ = . This metric represents the capacity of the video server. The waiting 

time of a request is the time that a request spends in the waiting queue. The requests not admitted at the end 

of simulation are still counted. The average waiting time evaluates whether the technique offers true VOD 

service. The ideal waiting time for the VOD service is zero.  

The time period after the admission of the first request in a multicast group, during which Patching 

is employed, is referred to as the Patching window. Therefore if the arrival time of a later request exceeds 

the Patching window of a multicast group, we do not assign the request to that multicast. A large Patching 

window favors the size of the multicast group; however, it increases both the number and duration of the 

Patching stream. The optimal Patching windows scheme is discussed in Chapter 4. 

Assume the service requests from all the SSs follow the same Poisson arrival with arrival rate λ . 

For simplicity, we round the arrival time of the requests arriving between the ith and i+1th minute to be i+1 

(i is an integer). Although this approximation loses some accuracy, we think it is adequate to qualitatively 

simulate the system. There are 20 different videos with the same length of 50 minutes. Each simulation 

runs 200 minutes. Each data point in the result figures is average value of 1000 simulation results. 

3.6.1 Compare Unified Approach and Split Approach 

We first study the performance of two different bandwidth sharing approaches, which are unified 

approach and split approach. These two approaches are implemented in WP. Let wp denote the bandwidth 

reserved for patching streams in each link. We first vary wp in the split approach from 3 Mbps to 45 Mbps. 

The average inter-arrival time of request is set to be 4, 5 or 6 minutes. Since there are 15 SSs in the network, 

the inter-arrival time of the request arrival process in the BS is 4/15, 5/15 or 6/15 minutes respectively. 
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Figure 7. θ  with different wp 

5 10 15 20 25 30 35 40 45

10

20

30

40

50

60

70

80
τ vs wp

wp(Reserved Bandwidth for Patching)(Mbps)

τ 
(A

ve
ra

ge
 W

at
in

g 
Ti

m
e)

 (m
in

ut
e)

1/λ = 4
1/λ = 5
1/λ = 6

 

Figure 8. τ with different wp 

We plot the average acceptance ratio and average waiting time in Figure 7 and Figure 8. It is 

clearly shown in the plots that all the performance curves have inflexion points, when wp is 24Mbps or 27 

Mbps. This result indicates that we should have a balanced bandwidth allocation for patching stream and 

regular video stream. If wp is too small, video streams have less chance to join a multicast group. In another 

hand, large wp results in small bandwidth for regular video streams, which means a video request has less 

chance to join a multicast, if this join will consume extra bandwidth. Therefore, it is necessary to find the 

optimal wp for split approach. 
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Figure 9. Compare θ  of Unified and Split Approaches 
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Figure 10. Compare τ of Unified and Split Approaches 

We then compare the performance of the unified approach with the split approach with optimal wp. 

We increase the arrival rate λ  to challenge the system. Figure 9 and Figure 10 depict the average request 

acceptance ration and waiting time with different inter-arrival time respectively. We find that the unified 

approach outperforms the split approach with optimal wp. This result shows that it is inefficient to fix the 

bandwidth reserved for patching streams. In the rest of the performance study, we adopt the unified 

approach in WP and WP+. 
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3.6.2 Compare AC, WP and WP+ 

The performances of AC, WP and WP+ are studied in this section. It is expected that WP and WP+ 

outperforms AC because of the using of multicast routing and patching scheme. The simulation parameters 

remain the same as the previous one. We vary the inter-arrival rate and record the average acceptance ratio 

and average waiting time of each technology. 
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Figure 11. Request acceptance ratio 
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Figure 12. Average waiting time 
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We plot the result in Figure 11 and Figure 12. Figure 11 depicts the curves of θ vs1/ λ , where 

1/ λ  is the request inter-arrival time in each SS. The request arrival rate at the BS is the sum of the arrival 

rate of each SS. The result in Figure 11 shows that the performance of AC is worse than WP and WP+. We 

also see that WP+ outperforms WP when the inter-arrival time getting small. When the acceptance ratios of 

WP and AC decrease to 0.1, WP+ can keep the acceptance ratio above 0.6. This is because WP+ better 

saves the bandwidth and is able to accept more requests. Figure 12 depicts the average waiting time under 

different request arrival rate. We observe that the result in Figure 12 perfectly matches the results in Figure 

11. As the acceptance ratio decreases, there are more waiting requests, thus the average waiting time 

becomes larger. Specifically, WP and WP+ provide an almost zeroτ with smaller inter-arrival time. WP+ 

performs even better than WP. Our conclusion from this test is that WP and WP+ extend the capacity of 

AC and offer true VOD service under heavier request demand than AC does, while WP+ is the best 

technique among the three. 

The multicast shares video streams among users requesting the same video, and can thus keep the 

workload of the server (i.e., the aggregate request arrival rate at the server) unchanged. If the requests for 

the same video appear less frequently, the server has less chance to use Patching. Assume the request is 

uniformly distributed among all the videos. It is expected that if the number of videos increases, the 

probability that two users request the same video becomes lower, and the performance gain of multicast 

will decrease. We conduct simulations to study this effect by changing the number of videos in the server. 

The number of videos is set to be 10, 20 and 30. Other settings remain the same as previous test. 

Figure 13 and Figure 14 depict the acceptance ratio and average waiting time of WP and WP+ with 

different number of videos respectively. From both figures, we observe that the performance of WP and 

WP+ decline as the number of videos increases, which verifies the expectation.  It is also interesting to see 

that the worst performance of WP+ (i.e., with 30 videos) performs better than the best performance of WP 

(i.e., with 10 videos). This further verifies the efficiency of WP+. 
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Figure 13. Acceptance ratio with different number of videos 
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Figure 14. Average waiting time with different number of videos 

3.7 Conclusion 

In this chapter, a cross-layer framework for VOD service in WiMax-based WMN is proposed. We 

aim at supporting true VOD service in residential or business networks with a WiMax based wireless 

backhaul. We first propose a model that can jointly solve the admission control and channel scheduling 

problem in WiMax mesh networks. The joint solution provides data rate guarantee for video streams. We 
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first demonstrate the model for unicast video stream. We then apply multicast techniques to extend the 

capacity of the video server. We propose techniques to build multicast routing trees on top of scheduling 

trees. The proposed routing algorithm makes use of the well-maintained scheduling tree and thus 

introduces less maintenance cost. The algorithm also minimizes the cost of joining a multicast tree. Based 

on the multicast routing algorithm, we apply the application layer Patching technique which can offer true 

VOD service. We also extend the joint admission control and channel scheduling scheme to guarantee the 

data rate for Patching. Simulation study verifies the benefit of using Patching in Wimax mesh networks. 

Two bandwidth sharing approaches are proposed for patching streams and regular video streams. 

Sophisticated simulation study shows that the unified approach outperforms the split approach. Our 

simulation results also validate that using physical layer multicast can further improve the performance of 

Patching. 
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4. OPTIMIZING PATHCING IN WMA 

In this chapter, we adopt a Patching-based multicast technique for video sharing in the general 

WMA environment. We optimize the Patching-based multicast by addressing two critical problems, 

namely, the Minimum Cost Multicast Tree (MCMT) problem and the Maximum Benefit Multicast Group 

(MBMG) problem. The MCMT problem is to find a minimum cost multicast tree in the network. We show 

that finding such a tree in the WMN can be formulated as a graph theory problem, which is to find the tree 

with minimum number of non-leaf nodes, and which spans all the nodes in the multicast group. We further 

prove the problem is NP-hard and propose a fast greedy algorithm to accommodate the real time feature of 

the VOD application. We solve the MBMG problem by minimizing the communication of a Patching 

group in the entire network. A Markov model is proposed to capture the growth of the multicast group in 

the WMN. Simulation study results validate the proposed solutions of the two problems. 

4.1 Introduction 

Multicast is an effective technique to reduce the demand on server bandwidth. Standard multicast, 

however, is not suited for VOD applications since the majority of the users would be forced to wait for 

more requests for the same video before the service can start. This is particularly unacceptable for less 

popular videos. To allow the users of a multicast group to start their own video playback at their arrival 

time instead of the multicast time, the Patching technique [26] is proposed. The basic idea of Patching is as 

follows. A new service request can exploit an existing multicast by buffering the on-going stream from the 

multicast while playing a new “catch-up” flow from the server. Once the catch-up flow, which is called 

Patching stream, has been played back to the skew point, it is terminated and the original multicast can be 

shared.  

Existing Patching techniques ([26], [51], [52]) rely on IP multicast, which is not available for 

WMN. Moreover, when they try to optimize the data sharing benefit of multicast, only bandwidth 

consumption in the server end is considered. This is inaccurate in WMN, where bandwidth consumed in 
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each link should be considered as the “cost” of the multicast group. Due to the aforementioned reasons, a 

naive adaptation of the Patching technique for WMN would achieve limited performance gain. 

In order to optimize the performance of Patching over WMN, two critical problems need to be 

taken into consideration. They are the Maximum Benefit Multicast Group (MBMG) problem and the 

Minimum Cost Multicast Tree (MCMT) problem. We briefly discuss these two problems and the related 

works in the rest of this section.  

From the networking point of view, Patching is to group multiple unicast sessions into a multicast 

session while introducing a unicast overhead (i.e., Patching stream) for each grouping operation. A later 

request requires a longer Patching stream. As the length of the Patching stream increases, the benefit of the 

grouping decreases. It is important to know when is the right time to start a new multicast instead of 

grouping the new request into an existing multicast. Is it possible to have a grouping strategy that 

maximizes the benefit of the Patching scheme? This question motivates the MBMG problem. Our solution 

of MBMG problem in this work is different from the prior optimizing Patching techniques ([51], [52]), 

since we take the network topology into consideration and minimize the communication cost in the entire 

network.  

Having an optimal grouping strategy is not good enough to convey Patching over WMN, because 

finding an efficient multicast tree is non-trivial. Finding a multicast tree with the minimum sum of edge 

weights in a random weighted graph is the famous Steiner Tree problem [37]. However, the authors of [38] 

have recently pointed out that the optimal multicast tree in wireless mesh networks is not a Steiner tree. 

The actual number of transmissions to multicast a packet is smaller than the number of links of the tree due 

to the broadcast nature of wireless transmissions. However, it is still interesting to study the complexity of 

general multicast in WMN.  

We will show that the required number of transmissions equals to the number of non-leaf nodes in 

the multicast tree. In this work, the tree with minimum number of non-leaf nodes and spanning the nodes in 

the multicast group is called a Minimum Cost Multicast Tree. Finding such a tree is the proposed MCMT 
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problem. We will demonstrate that the MCMT problem is NP-hard in a unit disk graph. Since the grouping 

is in real time, when the group membership changes, we may invoke the tree construction algorithm to 

build a new tree. We propose a fast greedy algorithm to accommodate the real time feature of the VOD 

application. 

4.2 MCMT Problem 

We model the wireless mesh network as a connected graph G = {V, E}, where V is the set of mesh 

nodes, and E is the set of edges. Each mesh node has the same communication range. There is an edge 

between two nodes, if they are in the communication range of each other. Let ( , )u v  and ( , )v u denote the 

same edge between node u and v. Unlike those papers analyzing the capacity of the wireless mesh network, 

we do not employ any network model in this work, since we focus on the tree construction problem. 

We assume the mesh node equipped with omni-directional antenna, therefore the signal transmitted 

by a node can be received by all its neighbors. Given a multicast tree T, the root and intermediate node of T 

just needs to transmit a packet once, and all its children can receive the packet. Since the leaf nodes do not 

forward packet, we have: 

Lemma 4.1 The number of transmissions to multicast a packet to all the nodes in a multicast tree T is the 

number of non-leaf nodes in T. 

Based on Lemma 4.1, we define the cost of a multicast tree T in a WMN as C(T), which is also the 

number of non-leaf nodes of T. The MCMT problem of a graph can be formally defined as follows. 

Definition of MCMT problem: Given a connected graph G = {V, E}, we have a set S ⊆ V, while 

S consists of the source and the receivers of a multicast. Let ST denote the set of tree that spanning all the 

nodes in S. Find a tree T*∈ST such that * arg min ( )
TT S

T C T
∈

= . T* is called the Minimum Cost Multicast Tree 

(MCMT) of G. 
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Since the source of the multicast always transmits the packet, the problem can be interpreted as 

finding a multicast tree with minimum number of intermediate nodes and spanning all the nodes in S. 

When S = V, we broadcast the packet in the network. In this case, we show that the MCMT is highly 

related to the Minimum Connected Dominating Set (MCDS) of this graph. The MCDS is a connected 

dominating Set with minimum cardinality. The MCDS problem has been thoroughly studied when people 

try to construct a virtual backbone for routing in the wireless ad hoc networks (e.g., [55], [56], [57]). 

Denote U as the MCDS of G and U V U= − . According to the definition of MCDS, there exists a function 

:f U U→ such that ,v U∀ ∈ there is an edge ( ( ), )f v v  . We can generate a tree T from U by Algorithm 4.1, 

which outputs a set of edges ET that represents T. 

Table 5  Algorithm 4.1 

Algorithm 4.1. Generate a tree from a MCDS 

Input: G, U, f.  

Output: ET 

1. GU = G’s subgraph induced by U 

2. TU = spanning tree of GU= 

3. ET = all edges in TU 

4. For every v U∈ Do 

5.     { }( ( ), )T TE E f v v= ∪  

 

In order to be the MCMT, T has to be the spanning tree of G. This is proved in the following 

lemma. 

Lemma 4.2  If the input U is a connected dominating set (CDS) of G, Algorithm 4.1 generates a spanning 

tree of G. 

Proof: Since the original T is TU which is the spanning tree of GU, and every node in U is added to T by 

introducing one extra edge, T is the spanning tree of G.  

The cost of the tree is investigated in the Lemma 4.3. 
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Lemma 4.3 If T is generated by Algorithm 4.1 and U is the input MCDS, we have 1 ( )U C T U+ ≥ ≥ . 

Proof: Since every node in U is added to T by attaching it to a node in U, every node in T with degree 

larger than one is also in U. A degree one node n in T can not be in U, otherwise { }U n− is a smaller 

connected dominating set of G. Consequently, the number of nodes in T with degree larger than one equals 

to U . If the source of the multicast (i.e., the root of T) is in U, ( )C T U= ; otherwise ( ) 1C T U= + . Thus 

we prove 1 ( )U C T U+ ≥ ≥ .  

Now we are able to proof that T is the MCMT when the input U of Algorithm 4.1 includes the 

multicast source or the source is not in any MCDS of G. 

Lemma 4.4 Let s denote the source of the multicast. When S = V, Algorithm 4.1 generates the MCMT for 

G if and only if either of the following two cases is true. 

CASE 1: s U∈ , 

CASE 2:  s is not in any MCDS of G, 

Where U is the input MCDS of Algorithm 4.1. 

Proof: Assume T is the tree generated by Algorithm 4.1. According to Lemma 4.2, we have TT S∈ . Assume 

there is another 1 TT S∈ , such that 1( ) ( )C T C T> . Since T1 is also a spanning tree of G, the set of node in T1 

with degree larger than one, denoted by U1, is a connected dominating set of G. Notice that s may not in U1, 

we have 1 1( )C T U≥  Let us analysis the two cases separately.  

In CASE 1, Since s U∈ , according to Lemma 4.3 we have 

U = ( )C T 1( )C T> 1U≥ . 

Since 1U U> , it is controversy that U is the MCDS of G. Therefore T has the minimum cost and 

is the MCMT of G. 
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In CASE 2, we have ( ) 1U C T= − and 1 1( ) 1U C T= − . Since 1( ) ( )C T C T> , we still get 1U U> . 

Similar to CASE 1, we proof T is the MCMT of G.  

If we are not in either CASE 1 or CASE 2, then s U∉  and there is another MCDS  U ′ such that 

s U ′∈ . In this case, we can use U ′  as input and generate a tree T ′ . According to Lemma 4.3, 

( )C T U′ ′= and ( ) 1C T U= + . Since U U′ = and ( ) ( )C T C T′ > , T is not the MCMT of G.  

Finally, we are able to show that the MCMT problem is NP-hard by showing that its special case is 

NP-hard. Since WMN is usually modeled as a unit disk graph (e.g., [38], [55]), we think the result is more 

interesting for a unit disk graph. 

Theorem 4.1 The MCMT problem is NP-hard in a unit disk graph. 

Proof: Lemma 4.4 shows that if we can solve the MCDS problem for a unit disk graph, there is a 

polynomial time algorithm (i.e., Algorithm 4.1) to solve a special case of the MCMT problem (i.e., when S 

= V). Since the MCDS problem in a unit disk graph is NP-hard [58], the MCMT problem in a unit disk 

graph is also NP-hard.  

Consider the VOD application in wireless mesh networks. If a request is generated by the user 

attaching to a particular mesh backbone node, we say this is the node of the user request. Similarly, when a 

new request is merged into a multicast group, we say its node joins the multicast. Since the requests are 

generated at random, in terms of its node id and arrival time, the multicast tree may be reconstructed when 

a new node joins the multicast. Consequently, we need a fast tree construction algorithm to handle the real 

time feature of our application.  

It is interesting to study the fast approximation algorithm for the MCMT problem. To the authors’ 

best knowledge, there is no such study in the literature. However, since the focus of this paper is to show 

the benefit of Patching-based multicast for VOD application over wireless mesh network, we propose a fast 

greedy algorithm for us to use in the simulation study. In Algorithm 4.2, we denote d(v) as the degree of 

node v. The function f has been defined previously. The insight of Algorithm 4.2 is to find the non-leaf 
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nodes from the MCDS. All the irrelevant nodes are removed in order to construct a tree spanning S. We 

proof the correctness of Algorithm 4.2 in the following theorem. 

Table 6  Algorithm 4.2 

Algorithm 4.2  Greedy algorithm for MCMT problem 

Input: G(V, E) , S 

Output: ET 

1. U = MCDS of G 

2. { }| ,X v v S v U= ∈ ∉   

3. { }| ,Y v v S v U= ∉ ∉  

4. While Y ≠ ∅ Do 

5.     V V Y= −  

6.      For v X∈ Do 

7.           
,( , )

( ) arg max ( )
u U u v E

f v d u
∈ ∈

=  

8.            {( , ) | ( )}E E v u u f v= − ≠ //end for loop 

9.      { }| , , ( ) 1Y u u U u S d u= ∈ ∉ =  

10.      { }| , , ( ) 1X X u u U u S d u= ∪ ∈ ∈ =  

11.      U U Y X= − −             //end while loop 

12.  Generate ET from Algorithm 4.1 with G(V, E), U,  f as  input. 

 

Theorem 4.2 Algorithm 4.2 constructs a tree that spans S.  

Proof: Since the major part of the algorithm is a while loop, we discuss the result of each iteration of the 

loop. Since we only remove nodes in Y from V in line 5, no node in S is deleted. It is obvious that both G 

and U are connected after the operation between line 6 and line 8. Since we only remove degree one nodes 

from U, U is still connected and dominates all the nodes in G. Therefore in line 12, the input U is a 

connected dominating set of G. According to Lemma 4.2, Algorithm 4.1 produces a spanning tree of G. 

Since Y is empty, all the leaf nodes of the spanning tree are in X. Thus we prove Algorithm 4.2 returns tree 

spanning S.  
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Algorithm 4.2 requires for an algorithm to produce the MCDS of the graph in the beginning. There 

are many existing algorithms for MCDS, we choose a fast and efficient algorithm proposed in [59].  For 

convenience, we call Algorithm 4.2 as Minimum Cost Tree (MCT) algorithm in the rest of the paper. 

4.3 MBMG Problem 

Define a multicast group as a group of user sharing the video stream in the network. Our goal is to 

guarantee the requested data rate of every VOD user while minimizing the traffic introduced into the 

network. In order to solve the optimal patching problem, we have to define some metrics to capture the 

gain as well as the cost of grouping several users into a multicast group. In this work, we employ per user 

workload introduced by the multicast group into the network as the metrics. It is the average amount of 

data that the VOD application requires the network to transmit in order to meet the requested data rate of 

each member in the group. This metrics is denoted as D. The goal of this work is to minimize D. The 

formal definition of D is presented in the following section. 

4.3.1 Definition of D 

Denote the first user of the multicast group as the regular user and the later user merged into this 

group as patching user. The ith user arrives at time ti second ( 0,1,...,i N= ). For simplicity, assume the video 

stream is constant bit rate (CBR) traffic and the rate is R bits/second. We also assume ideal admission 

control and scheduling schemes such that every non-leaf node in the multicast tree can transmit at R bps for 

an admitted video streaming session. 

We use the same graph model for WMN as the model used in the MCMT problem. Given a 

multicast group of users, define a multicast node set as the set of nodes that the users in a multicast group 

attach to. We assume the system adopt a tree-based multicast routing algorithm A. Given G, a multicast 

node setθ , and a source node s as input, A(G, s, θ ) returns a multicast tree rooted at s and spanning all the 

nodes inθ . The source s is the gateway node connecting to the video server. Note that since θ gradually 

grows as more users join the group, we assume that A is called when a new member joins intoθ and a new 
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multicast tree is generated accordingly. Without loss of generality, we assume there is no user request 

generated at the source s. In this work, we optimize grouping for a single server, therefore we only consider 

one source in the Graph. When there are multiple multicast sessions in the same WMN, the result of this 

work remains the same for each session, as long as the overall bandwidth consumption of these multicast 

sessions does not exceed the capacity of the network. Please refer to the admission control algorithm 

discussed in Chapter 3. We label the nodes in G as j = {0, 1,…., M}, where 0 is the label of source s. Table 

7 lists the major notations used in the analysis. 

Unlike the prior works ([51], [52]), we consider the workload in each mesh node in the calculation 

of D. Denote iθ  as the multicast node set after ith user arrives, where 0θ  includes the source and the mesh 

node of the regular user. Denote iT as the multicast tree corresponding to iθ , iT = A(G, s, iθ ). Denote ( )iC θ  

as the cost of a multicast node set. ( )iC θ equals to the number of transmissions required to multicast a 

packet in Ti. 

We denote i
mD as the required data transmission in the multicast tree between the arrival of the ith 

and (i+1)th user (i < N). We further denote N
mD as the required data transmission in the multicast tree after 

the arrival of the Nth user and tN+1 = tv + t0 , where tv is the length of the video. i
mD is calculated as: 

1( ) ( )i
m i i iD C t t Rθ += ⋅ − ⋅                 (4.1) 

Therefore, we have
0

/( 1)
N

i
m m

i
D D N

=

= +∑ . Similarly, the required data transmission in the ith Patching 

stream (i > 0) is calculated as: 

0( )i
p i iD L t t R= ⋅ − ⋅                   (4.2) 
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Since the regular user does not need Patching stream, we define 0 0pD = . The required data 

transmission for each user in the Patching streams is calculated as
1

/( 1)
N

i
p p

i
D D N

=

= +∑ . Finally we define: 

m pD D D= +  
1 0

0 1

( ) ( ) ( )

1

N N

i i i i i
i i

C t t L t t
R

N

θ +
= =

⋅ − + ⋅ −
= ⋅

+

∑ ∑
      (4.3) 

Table 7  Notations used in Section 4.3 

D Per user data transmitted 

mD  Per user data transmitted in multicast session 

pD  Per user data transmitted in Patching streams 

i
mD  

Data transmitted in the multicast tree between the arrival of 

the ith and (i+1)th user. 
i
pD  Data transmitted in ith Patching stream 

Li Path length of the ith Patching stream 

M Number of non-source mesh nodes  

N Number of patching user of a multicast group 

tv Length of the video 

ti Arrival time of the ith user  

τ  Patching window size 

R Video transmission rate 

iθ  Multicast node set after ith user arrives 

Ti Multicast tree spanning iθ  

C( iθ ) Cost of iθ , i.e., the number of data transmission in Ti 

jλ  Rate of the Poisson user arrival at mesh node j 

λ  Rate of the Poisson user arrival at server end 

PN Probability that N user requests arrive at s in τ seconds 

pj Probability that a request is generated at mesh node j 

 

Equation (4.3) is the closed formula of D. Clearly, D includes all of the data required to be 

successfully transmitted in the WMN by a gradually generated VOD multicast group. D could be 
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interpreted as the per user workload given by a particular VOD multicast group to the WMN. We 

understand that D does not equal to the actual data transmitted in the WMN in order to fulfill the 

requirement from the application, since lots of retransmissions are involved during the streaming due to the 

lossy wireless channel and contention in the WMN. Let us assume that if the over all workload of the 

multicast group is within the capacity of the WMN, then ( 1)D N⋅ +  is the lower bound of the actual amount 

data transmitted for a multicast group. Therefore we think D is a reasonable optimization goal to guide us 

making the grouping decision.  

If we know the value of all the variables in (4.3) during the run time, we can make the grouping 

decision as follows. After a new user request arrives, we calculate the Dnew using (4.3) and compare it with 

the Dold before this request. If Dnew ≤ Dold, this user request is merged into the multicast, because the 

merging favors the multicast group; otherwise, we start a new multicast group and set this user as the 

regular user of a new group. 

4.3.2 Optimal Patching Window 

In real world implementation, the grouping usually takes place on the server side. Therefore, it is 

hard for the server to get all the information to use equation (4.3), unless we design the mesh network and 

video server into a cross-layer framework. We use a metric called Patching Window (PW) to help the 

server decide when to start a new multicast. We denote PW asτ . If a user request arriving at time t is 

τ seconds later than the beginning of a multicast group (i.e., 0t t τ− > ), it can not be merged into this 

multicast group. By using PW, the server can convey the grouping without any information of the variables 

in the right side of (4.3). The optimal value of PW is calculated offline. 

Assume the user request is randomly generated at each mesh node of WMN, consequently D is a 

random variable. We derive the optimal size of PW denoted as *τ that minimizes expected value of D 

(i.e., [ ]E D ) . From equation (3), [ ] [ ] [ ]m pE D E D E D= + , we derive [ ]mE D and [ ]pE D respectively. 
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Let the user arrival at mesh node j (j = 1,…, M) follows a Poisson process of rate iλ . Therefore the 

user arrival at the server is a Poisson process of rate
1

M

j
j

λ λ
=

= ∑ . Denote the inter-arrival time of two use 

requests as a random variable t, which has PDF ( ) , ( 0)tf t e tλλ −= ≥ . Consequently, we have 1i it t t −= − . The 

distribution of two important events of this analysis can be calculated as follows: 

( )Pr(  requests arrive at  in  seconds)
!

N

N
eP N s

N

λτλττ
−

= =      (4.4)           

Pr(A request is generated at node ) j
jp j

λ
λ

= =            (4.5) 

These two events are independent. They indicate when and where a request is generated 

4.3.3 Derivation of [ ]mE D  

In this section, we study the expected size of data transmitted by the multicast session of the group. 

Recall that the user request has a Poisson arrival and the inter-arrival time of two use request as a random 

variable t. Consequently, we have 1, ( 1)i it t t i−= − > and 0NN t t t⋅ = − . Based on our definition, [ ]mE D can be 

presented as: 

1

0

( )
( ) ( )

[ ] [ ] [ ]
1 1

N

i
i N v

m

t C
C t N t

E D E R E R
N N

θ
θ

−

=

⋅
⋅ − ⋅

= ⋅ + ⋅
+ +

∑
      (4.6) 

Let us define: 

1

0

0,  if 0,

( )
,  if 0.

N

N i
i

N

C C
N

N

θ
−

=

=⎧
⎪⎪= ⎨
⎪ >⎪⎩

∑  

Since N tτ = ⋅ , (4.6) can be rewritten as: 
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( )
[ ] [ ] [ ] ( )

1 1
N N

m v
C C

E D E R E t R
N N

θ
τ τ= ⋅ ⋅ + ⋅ − ⋅

+ +
   (4.7) 

Given the value of N, both CN and ( )NC θ  are random variables related to the random user generation in a 

graph and the multicast tree construction algorithm. On the other hand, N itself is a random variable 

independent to ( )NC θ . Consequently we have: 

0

[ ]
[ ]

1 1
N N

N
N

C E C
E P

N N

∞

=

= ⋅
+ +∑                  (4.8) 

0

( ) [ ( )]
[ ]

1 1
N N

N
N

C E C
E P

N N
θ θ∞

=

= ⋅
+ +∑                (4.9) 

Since
1

0
[ ] [ ( )] / , ( 0)

N

N i
i

E C E C N Nθ
−

=

= >∑ , Equation (4.8) and (4.9) indicate that [ ]mE D can be 

represented as a function with two variables, N andτ , if we are able to calculate [ ( )]NE C θ for each N. To 

derive [ ( )]NE C θ , we use a homogeneous Markov model to capture the dynamics of the multicast node set 

as follows. 

We define the state as subset of {0}V −  (recall that s is labeled by 0). We use a binary sequence 

{b1, b2,…, bM} to index the state. We have: 

1, node  is in the state,
0, node  is NOT in the state.i

i
b

i
⎧

= ⎨
⎩

 

The corresponding decimal number of the binary sequence is the index of the state. For example, 

S1 = {1}, S3 = {1,2}. We define the special case S0 = {0}, and the probability that a user request generates 

at node 0 is 0 0λ =  . There are 2M  states in total. Each state is a possible multicast node set. Denote the 

transition probability from Sj to Sk as pj,k, which means Sk could grow from Sj with probability pj,k. The 

transition probability is calculated by three rules: 

Rule 1:   If k = j, ,
k

k k i
i S

p p
∈

= ∑ , 
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Rule 2:   If ,{ }, ,k j j k iS S i i V p p− = ∈ = , 

Rule 3:  Otherwise, , 0j kp = . 

Rule 1 corresponds to the case that a user request generates from a mesh node in the current multicast node 

set. Rule 2 indicates the case that a user request generates from a mesh node outside the multicast node set. 

Rule 3 means there is no transition between any other two states after applying Rule 1 and Rule 2. The 

transition graph depicted in Figure 15 illustrates the growth of a multicast node set. The growth starts at S0. 

According to the rules, when the first request arrives, the state transits from S0 to all the states with 

cardinality of 2. Similar transitions happen when the Nth request joins the multicast group. 

The transition matrix of this model is , 2 2
: ( ) M Mj kp

×
Ρ = . Since Nθ  is the multicast node set after the 

arrival of one regular user and N patching users, the distribution of Nθ  can be obtained 

from
,

1 1
2 2

: ( ) M M
j k

N Np+ +
×

Ρ = . More specifically, we have 1
0,Pr( ) N

N k kS pθ += = . Therefore, [ ( )]NE C θ can be 

calculated as: 

2

1

[ ( )] Pr( ) ( )
M

N N k k
k

E C S C Sθ θ
=

= = ⋅∑
2

1
0,

1

( )
M

N
k k

k

p C S+

=

= ⋅∑     (4.10) 

Since the number of states in the model is exponential to the size of the graph, we can reduce the 

size of the model by merging all the states with the same cost i into one state Ki such 

that { | ( ) }i j jK S C S i= = . The transition probability from Ki to Kj, denoted by qi,j , is calculated as: 

, ,
,m i n j

i j m n
S K S K

q p
∀ ∈ ∈

= ∑  

Similar to the old model, a transition in the new model also represents the arrival of a user request. 

Assume the maximum cost of a multicast node set is W. The number of states of the new model is W + 1. W 

is the number of transmissions to broadcast a packet in the networks. Since broadcast can be done by a 

spanning tree, we have W ≤ M.  
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Denote the transition matrix as , ( 1) ( 1)Q : ( )j k W Wq + × += . Similar to equation (4.10), we can calculate 

[ ( )]NE C θ as: 

1
0,

0
[ ( )]

W
N

N i
i

E C q iθ +

=

= ⋅∑  

Although we are able to calculate the value of [ ( )]NE C θ for each N, equation (4.7) has infinite component 

which includes both N and τ . Since N and τ are dependent, it is hard to derive a closed formula of 

[ ]mE D with single variableτ . We discuss this issue after the derivation of [ ]pE D . 

 

Figure 15. Illustration of the transition graph 

4.3.4 Derivation of [ ]pE D  

In this section, we study the expected size of data transmitted by the Patching streams of a 

multicast group. From equation (4.3), [ ]pE D can be represented as: 

0
1

( )
[ ] [ ]

1

N

i i
i

p

L t t
E D E R

N
=

⋅ −
= ⋅

+

∑
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Consider a multicast group, without loss of generality, let 0 0t = . Assume the routing protocol 

guarantee that the path lengths of patching streams are i.i.d. Thus we let [ ] [ ], ( 0)iE L E L i= > , where L is the 

path length of a unicast session between the source and an arbitrary node. Since Li is independent regarding 

to N and ti, we have: 

1[ ] [ ] [ ]
1

N

i
i

p

t
E D E L E R

N
== ⋅ ⋅
+

∑
           (4.11). 

Recall that the user request has a Poisson arrival and the inter-arrival time of two use request as a random 

variable t. Consequently, we have ti = ti – 1 + t, (i > 1) and 

1

( 1)
2

N

i
i

N N tt
=

+ ⋅ ⋅
=∑ . 

Equation (4.11) can be rewritten as: 

[ ] [ ] [ ]
2p

N tE D E L E R⋅
= ⋅ ⋅            (4.12). 

Since N tτ = ⋅ , equation (4.12) can be simplified as: 

[ ][ ]
2p

E L RE D τ⋅ ⋅
=                 (4.13). 

Let Hj denote the shortest path between node j and the source ( 1, 2,...j M= ). If the networks adopt a short 

path routing for unicast patching stream, we have: 

1
[ ]

M

j j
j

E L H p
=

= ⋅∑ . 

The value of [ ]E L can be at least approximated with other routing strategy, we omit the detail discussion 

here. Therefore the value of [ ]pE D can be calculated by equation (4.13). 
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4.3.5 Calculate *τ  

Based on our derivations of [ ]mE D and [ ]pE D , [ ]E D can be calculated by the following equation. 

0 0

[ ] [ ( )] [ ][ ] ( )
1 1 2

N N
N N v

N N

E C E C E L RE D P R P t R
N N

θ ττ τ
∞ ∞

= =

⋅ ⋅
= ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅ +

+ +∑ ∑        (4.14) 

Due to the infinite summations in the upper equation, [ ]E D does not have a closed formula. We 

propose to derive the optimal *τ by a numerical approach. 

To study how the value of [ ]E D varies with respective toτ , we conduct numerical study and plot 

the curves of [ ]E D with different values ofτ . To eliminate the infinite summation in the computation, we 

only calculate the values of N which appear with high probability in the summations (i.e., in equation (4.8) 

and equation (4.9)). Consider the Chebyshev's inequality as follows: 

If a random variable x has a finite mean μ and finite variance 2σ , then for all real number k > 0, 

2

2Pr(| | )x k
k
σμ− ≥ ≤ . 

Since the mean and variance of N are both λ τ⋅ , according to the Chebyshev's inequality, for any 

real number k > 0, we have: 

2Pr(| | )N k
k

λ τλ τ ⋅
− ⋅ ≥ ≤ . 

For numerical study, we choose k such that 2 0.01
k

λ τ⋅
≤ . This means we have no less than 99% 

probability such that max(0, )k N kλ τ λ τ⋅ − ≤ ≤ ⋅ + . 

We consider a start topology with 6 nodes, where the source is the hub node. The source can 

broadcast data to each node by one transmission. We set R = 300 kbps and tv = 50 minutes. We set 5 mesh 

nodes have the same user arrival rate and set λ to four different values, i.e., 2.5, 5, 7.5 and 10 per minute. 
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We vary PW from 1 minute to 30 minute the plot [ ]E D using equation (4.14) in Figure 16. The curves show 

that the benefit of patching decreases when PW is small. As the size of PW increases, the additional cost of 

patching stream start to dominate the communication cost of the group. Therefore, we see that [ ]E D keeps 

increasing after it reaches a minimum value. However, *τ varies with different settings. Therefore, we need 

to conduct numerical study for each setting of the network. 
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Figure 16. Result of a simple numerial study of  E[D] 

4.4 Performance Study 

In this section, we use simulation to evaluate our solutions of the MBMG problem and MCMT 

problem. Specifically, we first validate our proposed analytical model for [ ]E D by comparison between the 

results of the simulation study and numerical study. We then compare the proposed MCT with a fast 

algorithm for the Steiner Tree problem in terms of their corresponding minimum [ ]E D . 

4.4.1 Model Validation 

In this section, we compare the result of simulation study and the numerical study to validate the 

proposed analytical models of [ ]E D . The simulation code is written in C++. We simulate the growth of a 

multicast group as follows. User requests are randomly generated from each mesh node staring at time zero. 

The first request is the regular user request of the multicast group. We then group the later user requests as 
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many as possible until the arrival time of the request exceeds the patching window. These requests are 

patching user requests. A multicast routing algorithm is called to build multicast tree for the node set of 

each new multicast group. The shortest path routing is used for unicast patching stream. The data 

transmitted in the network is calculated accordingly. We generate several connected random graphs and 

also vary the user arrival rate. The average number of D from large number of simulations is compared 

with the [ ]E D calculated by the model. Our study shows that the simulation results perfectly match the 

result derived from the model.  

We simulate the Poisson arrival by letting the inter-arrival time of the requests follow a negative 

exponential distribution. The proposed MCT algorithm is adopted as the multicast routing algorithm. To 

validate our model under different network topologies, we generate the connected random graph as follows. 

Given the number of nodes of the graph as input, we first randomly generate a spanning tree connecting all 

the nodes. We then randomly decide how many extra edges to add into this spanning tree. Both end nodes 

of the extra edge are randomly decided. We generate several random graphs with number of nodes 

equaling to 10, 30 and 50. We think this numbers reflect the size of a typical WMN for residential areas.  

The other settings of the simulation as well as the numerical approach are as follows. For the sack 

of the simplicity of the simulation, each node has the same user arrival rate. The aggregated rate on the 

server is set to be 10 or 4.5 per minute. The video data rate R is set to be 300 kbps and the video length is 

50 minutes. For each random graph, we plot four curves for [ ]E D . Two curves are the average number of D 

calculated from 500 simulation results (denoted as Sim in the plot) with user arrival rate λ = 10 and 4.5 

respectively. Similarly, other two curves are the actual [ ]E D generated from the numerical approach 

(denoted as Num in the plot).  

During the simulation, we observe that two graphs with different topologies may have similar plots. 

This is because the routing algorithm generates multicast trees with similar cost under those topologies. We 

only report the results of graphs with different plots.  
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We plot the results of 4 random graphs with 10, 30 and 50 nodes in Figure 17, Figure 18 and 

Figure 19 respectively. All the figures reveal three important facts: 

 The optimal patching window sizes under different topologies and same other settings are 

different. This indicates that topology is relevant to the optimization goal. This observation 

also validates that the optimization framework in this work is different from the framework of 

prior works. Prior work will output the same value of the optimal patching window size with 

different topologies, since they do not include the data transmission requirement in the 

network in the formula of the optimization goal. 

 The simulation result perfectly matches the result of the numerical approaches. This fact 

validates the correctness of our proposed model. 

 The curves of [ ]E D with different values of patching window have similar pattern. The curves 

decline when patching window is small. After [ ]E D reaches its minimum value, it increase 

monotonically. This fact shows that [ ]E D has a minimum value. 
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Figure 17. Results from 4 random graph with 10 nodes 
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Figure 18. Results from 4 random graph with 30 nodes 
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(b)  

Figure 19. Results form 4 random graph with 50 nodes 

4.4.2 Performance of MCT Algorithm 

In this section, we study the performance of the MCT algorithm.  A fast Steiner Tree algorithm, 

namely MST algorithm [60], is used as the benchmark. The MST algorithm is a 2(1 1/ )l−  approximation 

algorithm, where l is the number of leaves in the optimal tree. We assume the mesh network take advantage 

of the broadcast features of the wireless transmission, therefore the cost of the multicast tree equals to the 

non-leaf nodes in the tree. Since the interest of the paper is the data sharing for VOD application, both 

algorithms are used in the proposed numerical approach to derive the minimum [ ]E D , which is the 
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expected per user data transmission under the optimal Patching Window size. Let us denote the 

minimum [ ]E D derived from the MCT algorithm and MST algorithm as MDMCT and MDMST respectively. 

Table 8  Average on the minimum E[D] 
10 Nodes 30 Nodes 50 Nodes 

λ (per 
min) MDMST MDMCT 

Save 
(%) MDMST MDMCT 

Save 
(%) MDMST MDMCT 

Save 
(%) 

1 321.02 273.86 14.69 549.195 461.282 16.01 716.3325 612.882 14.44

2 233.19 197.39 15.35 385.301 319.219 17.15 520.9497 440.8674 15.37

3 192.19 162.32 15.54 317.68 265.544 16.41 429.7284 362.2545 15.7 

4 168.32 141.06 16.19 282.055 238.013 15.61 368.4165 314.7123 14.58

5 149.62 126.49 15.45 257.488 217.36 15.58 335.1417 282.2196 15.79

6 137.14 115.59 15.72 234.156 197.866 15.5 306.1092 257.7375 15.81

7 127.68 107.24 16.01 221.692 184.661 16.71 288.3579 239.1093 17.08

8 119.50 100.23 16.12 208.05 174.154 16.29 266.8146 223.5384 16.22

9 111.74 94.68 15.27 198.056 167.333 15.51 248.5419 211.0722 15.07

10 107.79 90.03 16.48 187.834 159.03 15.33 239.3226 200.739 16.12

11 100.41 85.64 14.72 175.522 148.295 15.51 226.5246 190.8798 15.74

12 97.63 81.96 16.05 172.767 146.167 15.39 214.6035 182.6322 14.9 

13 92.41 78.80 14.73 163.229 137.199 15.94 209.5317 175.617 16.18

14 89.75 75.49 15.88 160.645 134.577 16.22 200.7864 169.5024 15.57

15 85.21 71.31 16.32 153.349 128.421 16.27 194.3637 164.1699 15.54

16 82.64 69.23 16.23 145.616 122.512 15.87 189.3393 159.2166 15.91

17 79.83 67.35 15.64 139.555 116.698 16.37 184.7415 154.524 16.36

18 78.13 66.57 14.80 134.805 113.202 16.02 180.9495 149.8314 17.2 

19 76.12 63.56 16.49 131.043 110.048 16.02 174.1239 145.6128 16.37

20 72.57 60.78 16.24 124.963 105.298 15.73 167.7249 141.8208 15.44

 

We set the aggregated arrival rate at the server end from 1 to 20 per minute. The other settings are 

the same as those in the Section 4.4.1. Given the number of nodes in the graph, we randomly generate 100 

connected graphs and derive the MDMCT and MDMST under each graph topology. The average values of 

MDMCT and MDMST with these 100 graphs under different settings are reported in Table 8 . We conduct 

numerical studies for graphs with 10, 30 and 50 nodes. The result in Table 8 shows that MCT algorithm 

transmits about 15% less data than the MST algorithm under the various settings and topologies. This 

means MCT algorithm can save about 15% per user data transmission while providing the same quality of 
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VOD application as the MST algorithm. The reason that MCT algorithm can outperform MST algorithm 

under the same settings and topology is that MCT algorithm can construct less expensive multicast tree for 

most of the multicast node sets than the MST algorithm does.  

Overall, the performance study reveals that an algorithm specified for the MCMT problem could 

outperforms a good approximation algorithm for the Steiner Tree problem. Moreover, the study also shows 

that about 15% performance gain could be achieved for VOD application. 

4.5 Conclusion 

In this chapter, we study two crucial problems for adopting a Patching-based multicast in WMN, 

namely the minimum cost multicast tree problem and maximum benefit multicast group problem.  

We model the WMN as a connected graph and show that finding the minimum cost multicast tree 

in WMN is not only different from the similar problem in wired network, but also NP-hard. To adapt the 

real time feature of the VOD application, we propose a fast multicast routing algorithm, namely Minimum 

Cost Tree (MCT) algorithm, based on the existing minimum connected dominating set algorithms. We also 

show that the optimal grouping in the Patching technique is also different from the prior works, which only 

minimize the bandwidth usage in the server end.  We propose to minimize the communication cost of a 

Patching group in the entire network. A novel Markov model is proposed to capture the dynamics of the 

multicast session in the network. By using the numerical approach, we derive the optimal patching window 

that minimizes the per user workload introduced by the multicast group.  

Simulation results under different random graph topologies validate our proposed model. 

Moreover, we show that the MCT algorithm can save about 15% data transmission over the MST 

algorithm in our VOD scenario. 
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5. DYNAMIC STREAM MERGING 

In recent years, there has been a dramatic increase in the number of users who access online videos 

from wireless access networks.  It is highly desirable that such wireless networks are robust in handling 

sudden spurts in demand for various videos due to special events.  Such abrupt increase in the network 

usage should not significantly impact other normal access to regular videos.  A promising solution is to 

share the video streams in the wireless access network.  However, conventional video sharing techniques 

assume cooperation with the video server.  On the other hand, it is generally difficult, if at all possible, for 

wireless access networks to cooperate with online video sites.  In this chapter, we tackle this problem in 

wireless mesh access networks by proposing a distributed video sharing technique called Dynamic Stream 

Merging (DSM).  DSM improves the robustness of the access network without the need to involve the 

online video sites.  We provide analytical analysis to show that per-link sharing performance can be 

optimized with little time and message complexity. Simulation study using NS-2 simulator is conduced to 

study the performance of DSM with a large system setting. We also present a wireless mesh network 

prototype based on DSM.   This testbed allows different streaming sessions to share video data from the 

Mobile YouTube website.  To the best of our knowledge, this is the first work that shares video data from a 

commercial online video site in a wireless mesh network.  The results from the simulation and experiment 

validate the correctness of DSM and demonstrate the effectiveness of our prototype. 

5.1 Introduction 

In this chapter, we are interested in exploiting the possibility of video sharing in the WMA 

environment without the cooperation from the online video site. As discussed in Chapter 4, the video 

multicast technique consists of the multicast grouping process and the multicast routing process. These 

processes typically require that video provider collaborates with the network where the multicast takes 

place. This is generally not feasible in an online video access environment, since the video resource 

providers in the Internet do not own nor have control over the WMN. To address the aforementioned issue 
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associated with the loosely coupling between the Internet and WMA networks, we introduce a novel video 

sharing technique called Dynamic Stream Merging (DSM).  It does not require the cooperation of the VOD 

servers in the Internet.  Basically, DSM is a light-weight distributed solution that improves the robustness 

of the WMA environment without imposing much overhead on the network. To better evaluate the 

proposed technique, we built an 802.11g-based wireless mesh access network in our department building, 

using netbook computers as the mesh nodes.  Without loss of generality, we choose the mobile YouTube 

site as the Internet VOD resource, and successfully demonstrate the sharing of YouTube video streams in 

our mesh network.  An illustration of our WMA environment is given in Figure 20. 

 

Figure 20. Illustration of the testing WMA environment 

5.2 Dynamic Stream Merging 

5.2.1 Stream Merging 

A mesh network can be modeled as a directed graph G(V, E) where V is the set of mesh nodes and 

E is the set of links.  A link is a pair of two mesh nodes who are in the communication range of each other.  

The nodes are labeled with i, where i = 1, 2, …, N, and N = | V |.  Let M be the total number of video 

streams in the network.  We also label the video streams as k, where k  = 1, 2, …. M.  If node i and node j 

are neighbors and there is a video stream k passing from i to j, we say stream k passes through link <i, j>. 

Nodes i and j are referred to as upstream and downstream nodes, respectively.  We model a video stream as 

a sequence of non-equal-sized segments. The segment could be the video frame, group of pictures (GOP), 



 59

or user-defined chunk in the video.  The granularity of the segment is flexible as long as it preserves the 

temporal order of the video. Without loss of generality, we assume that the segment ID of a video stream 

starts from 1 and grows in increasing order.  We denote as x
it  the highest of the segment IDs of all the 

video segments that have arrived at node i from stream x.  Typically, x
it is the latest segment arriving at 

node i from stream x. 

We give the sketch of our Merging Algorithm (i.e., Algorithm 5.1) in Table 9 .  The input of the 

algorithm consists of a link <i, j>, and a set of streams S passing through link <i, j>.  All the streams in S 

are for the same video.  The algorithm has two parts.  The first part, a loop, is for the upstream node i.  In 

each iteration of the loop, Step 3 identifies the stream x with the property that x
it ≤ z

it for any stream z∈S, 

where z≠x.  Similarly, the stream y with the second smallest such value is determined in Step 4.  That is, we 

have x
it ≤ y

it ≤ z
it for any z∈S, where z≠y and z≠x.  In Step 5, x

iτ is given the value of y
it .  x

iτ is referred to as 

the τ value of stream x in this paper.  In Step 6, node i informs node j i’s intension to merge stream x with 

stream y.  The stream merging notation “ y x→ ” signifies that stream x is merged by stream y, and node j 

should now use the data received from stream y for both streams x and y in the downstream.  We refer to 

stream y as the acquiring stream and stream x as the merged stream or mergee in this paper.  After Step 6, 

we say that the status of stream x at node i is in “merged” mode.  In Step 7, node i stops the transmission of 

the merged stream x after sending out segment x
iτ although stream x continues to arrive at node i.  We say 

that node i blocks stream x at link <i, j>.  In Step 8, the merged stream x is removed from the set S to 

prepare for the next iteration of the merge process.  Thus, we have one less stream after each round of 

merging.  This process is repeated until there is only one stream left in S.  The second part of Algorithm 5.1 

is for the downstream node j.  After j receives the merging notification of y x→ from node i (Step 10), 

node j understands that node i will soon block stream x (after sending segment x
iτ ).  In response, node j first 

forwards the remaining data segments arriving from stream x (Step 11).  It then continues to forward the 

subsequent segments for this stream by reusing the same segments node j received earlier for stream y 
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(Step 12).  Since stream x is behind stream y in the data streaming order, reuse of older data segments from 

stream y for stream x is possible.  Let n be the size of the input set S.  The message complexity of 

Algorithm 5.1 is O(n). The time complexity of the algorithm is also O(n) if the streams in S are sorted on 

their x
it value; otherwise we need to sort S first and the time complexity becomes O(nlogn). 

Table 9  Algorithm 5.1 

Algorithm 5.1 

Input:  set S,  link <i, j> 

1. Algorithm at node i 

2.     While 1S >  

3.        arg min k
i

k S
x t

∈
=  

4.        
{ }

arg min k
i

k S x
y t

∈ −
=  

5.        x y
i itτ =  

6.          i notifies j about y x→  

7.          i stops forwarding x after sending out  segment x
iτ on x  

8.        { }S S x= −  

9. Algorithm at node j 

10.     Receives notification about y x→ from i 

11.     Forward remaining data coming from stream x 

12.     Reuse data from stream y for stream x  

 

We explain the effect of Algorithm 5.1 with a simple merging example as depicted in Figure 21. It 

shows that two streams, s1 and s2, with the same video ID, are passing through link <1, 2>.  Since the 

stream merging s1 → s2 occurring at <1, 2> does not affect the behavior of stream s1, we focus our 

discussion on the impact on stream s2 during the merging operation.  In Figure 21(a), after node 1 receives 

segment 5 from stream s1 (i.e., 1
1
st = 5) and segment 2 from stream s2 (i.e., 2

1
st = 2), node 1 notices that both 

streams s1 and s2 have the same video ID (we will discuss video ID in Section 5.4) as well as the same node 

ID for the next hop (i.e., node 2).  Node 1 then notifies node 2 of node 1’s intension to merge these two 
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streams (i.e., s1 → s2), and soon block stream s2, at link <1, 2>, after segment 5 ( 2
xτ = 1

1
st = 5).  In response, 

node 2 treats data packets arriving from s1 as data for both streams s1 and s2 in the downstream.  That is, 

after node 2 finishes forwarding segments 2, 3, 4, and 5 from stream s2 to the next hop, node 2 continues to 

forward the subsequent segments (i.e., 6, 7, 8, etc.) by reusing these segments received earlier for stream s1.   

This can be achieved by spoofing the packet header with the header information of s2, (i.e., IP, Port, etc.).  

The desirable effect of this merger is that we have one less stream transmission between nodes 1 and 2 as 

illustrated in Figure 21(b). 

 

Figure 21. A simple merging example 

We further prove some desirable properties of Algorithm 5.1 as follows. 

Lemma 5.1 Algorithm 5.1 constructs an ordered set of merging relationships  

{ 2 1 3 2 1 2 1, ,..., ,n n n nk k k k k k k k− − −→ → → → }  

such that 3 11 2 .... n nk k kk k
i i i i it t t t t−≤ ≤ ≤ , | |n S= ; S and i are the input of Algorithm 5.1. 

Proof: According to Algorithm 5.1, ik and 1ik + are the stream x and stream y chosen in the ith iteration of the 

while loop (i = 1, …, n-1).  

Based on Lemma 5.1, Algorithm 5.1 eventually merges all the streams in the set S into a single 

stream.  We represent this series of stream merging as 1 2 1...n nk k k k−→ → → → , where 
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1 2 2 1....n n nk k k k k
i i i i it t t t t− −≥ ≥ ≥ .  1 2 1...n nk k k k−→ → → → is referred to as a merging chain in this paper.  The 

head of the chain, kn , is the only stream that remains after the sequence of mergers.   That is, the length of 

this merging chain is increased by one stream after each iteration of Algorithm 5.1 as illustrated below: 

Initial streams: 1 2 1, , ..., , .n nk k k k−  
After one iteration: 1 2, , ...,n nk k k− ;   2 1k k→  
After two iterations: 1 3, , ...,n nk k k− ;    3 2 1k k k→ →  
After n-1 iterations: nk ;   1 2 1...n nk k k k−→ → → →  

 

There are two factors that can affect the performance of video streaming, namely data loss and data 

delay.  If the video data is lost in the network or cannot arrive at its destination in time, the video player is 

not able to decode the corresponding video frame.  This affects the quality of the video playback.  Let us 

define the data integrity property of a stream merging technique as follows.  When stream merging is 

performed at any node i to reduce traffic on link <i , j> , the merging technique is said to ensure the data 

integrity if the upstream node i does not cause data loss or incur delay in preparing the data for forwarding 

to the downstream node j.  We note that the upstream node i may experience data loss and delay in 

receiving its data from the last hop, due to various conditions such as congestion in the wireless 

environment.  This impact on node i also affects the downstream node j.  The scope of our definition for 

data integrity is limited to the stream merging actions internal to the upstream node i.  In other words, we 

are primarily concerned with the correctness and efficiency of the proposed merging strategy. 

Lemma 5.2 Algorithm 5.1 ensures data integrity. 

Proof: Let us consider two nodes i and j, and the link <i, j> between them.  According to the definition of 

data integrity, we need to prove that the sequence of mergers at node i does not incur data loss or delay for 

the downstream node j. 

According to Lemma 5.1, Algorithm 5.1 constructs the n-1 mergers indicated in the merging chain 

1 2 1...n nk k k k−→ → → → , where 1 2 1....n nk k k k
i i i it t t t−≥ ≥ ≥ . We prove Lemma 5.2 using mathematical induction 
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on n, the number of streams being merged.  Since no merging occurs when n=1, we start the proof with n = 

2. 

Basis: If n = 2.  We have 2 1k k→ .  In this case, 1k ’s data, up to and including segment 1k
iτ , are forwarded 

from node i to node j in the normal fashion without any delay.  1k ’s subsequent segments (after segment 1k
iτ ) 

are always available ahead of time at node j for stream k2.  Thus, there is no data loss or delay due 

to 2 1k k→ . 

Inductive Step: Assume Lemma 5.2 holds when n = N (N > 2).  Consider the case when n = N + 1. 

Algorithm 5.1 needs to do 1 2 1...N Nk k k k+ → → → → , where 1 2 1....N Nk k k k
i i i it t t t+ ≥ ≥ ≥ .  Since Algorithm 5.1 

merges the N+1 streams in the merging chain from right to left, the N rightmost streams in the chain are 

merged first.  That is, Algorithm 5.1 first constructs 1 2 1...N Nk k k k−→ → → →  over the first N-1 iterations, 

and then performs 1N Nk k+ →  in the final iteration.  According to the induction hypothesis, 

1 2 1...N Nk k k k−→ → → →  can be done with the assurance of data integrity.  Furthermore, we already proved 

in the base case that any two streams can be merged without incurring data loss or delay.  Thus, 1N Nk k+ →  

can also be done without data loss or delay.  It follows that there is no data loss or delay due to 

1 2 1...N Nk k k k+ → → → → . 

Since both the basis and the inductive steps have been proved, this lemma holds for any number of  

streams merged by Algorithm 5.1.  

Lemma 5.2 shows that Algorithm 5.1 provides the data integrity of the video stream at a single link. 

If we apply Algorithm 5.1 to all the links in the network, it can be proved that the data integrity property is 

also true over the entire network. 

Theorem 5.1  Applying Algorithm 5.1 at every link ensures data integrity across the entire network. 

Proof: According to Lemma 5.2, the data integrity property is ensured for stream merging at any link <i, j> 

in the network.  Since merging of streams at the upstream node i has no effect on the ability of the 
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downstream node j in forwarding the data to the next hops in the streams, none of the nodes in the next hop 

can be affected by the mergers in <i, j>.  Therefore, Algorithm 5.1 can be applied independently at each 

link, and the data integrity property holds at all the links in the network.  

The property stated in Theorem 5.1 is desirable.  It says that the proposed optimization technique 

for wireless video dissemination is a distributed solution.  It employs a simple local algorithm with little 

overhead. 

Given a merger y x→ at link <i, j>, we define x x
i x iLα τ= − , where Lx is the total number of data 

segments in stream x.  In other words, x
iα is the amount of data transmission saved at link <i, j> due to the 

fact that the upstream node i does not need to continue to send the data segments on stream x, after segment 

x
iτ . 

Theorem 5.2 Algorithm 5.1 maximizes the value of x
iα for any merged stream x in a given merging chain. 

Proof: Given a video, the difference ( , ) y x
i i iD y x t t= − is called the data delivery distance between streams y 

and x at node i.  If ( , ) 0iD y x > , stream y is said to be ahead of stream x at node i.  Stream y is behind stream 

x if ( , ) 0iD y x < .  From Lemma 5.1, Algorithm 5.1 performs a sequence of merging operations k2→k1, 

k3→k2, …, kn-1→kn-2, and kn→kn-1 in that order, such that 3 11 2 .... n nk k kk k
i i i i it t t t t−≤ ≤ ≤ .  This merging order ensures 

that any of the mergers, say y→x, the merged stream x is merged with the acquiring stream y that is least 

ahead of x among all the streams being merged. x
iτ , therefore, is minimized (Steps 4 and 5 in Algorithm 

5.1).  This follows that x x
i x iLα τ= − is maximized.  

Theorem 5.2 shows that Algorithm 5.1 maximizes the performance of merging at each wireless 

link in the network. 
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5.2.2 Buffering Scheme 

To facilitate reuse of the data segments for another stream some time later, we need to cache the 

current segments to a buffer.  Let us recapitulate the merging operation.  Given a merger y x→ at link <i, j>, 

the upstream node i blocks stream x at <i, j> after it forwards segment x
iτ , where x y

i itτ = .  Before, stream x 

is blocked by node i, node j experiences data arriving for stream x from both incoming streams x and y 

simultaneously (i.e., segments x
it to x

iτ  from stream x, and concurrently subsequent segments from stream 

y).  To minimize out-of-order forwarding of stream x to the next hop, node j can buffer the early data from 

stream y while it finishes forwarding the remaining data (segments x
it to x

iτ ) from stream x.  We note that 

severe out-of-order delivery of data segments may complicate the reassembly of the video frames at the 

player.  DSM ensures that data packets are relayed in the same order they arrive at a mesh node. 

The buffering can be done as follows.  Node j caches x’s segments after segment x
iτ  (i.e., these 

segments are from stream y) into a buffer while it is relaying the segments between x
it and x

iτ from stream x 

to the next hop in the downstream.  When node j does not see any more data arriving in stream x from node 

i (i.e., i has blocked the stream), node j fixes the size of the buffer and starts to use it as a FIFO queue as 

follows.  Each subsequent data segment from stream y is appended to the end of the queue while node j 

removes the segment at the head of the queue and forwards it to the next hop.  By using this buffering 

scheme, node j maintains the order of stream x while it also reuses the data from y for x.  The buffer is 

released at the end of the video session. 

Since the buffering scheme consumes memory space in downstream node, an admission control 

scheme could be employed to avoid the potential buffer overflow when the required buffer size is not 

affordable. It is challenging to estimate the exact size the buffer given a merging, since both the size of 

each segment and the segment rate of the stream vary. Given merging y x→ , to approximate the upper 

bound of the buffer size, one can use the maximal segment size seen by the downstream node 

multiply y x
i it t− since if the If the segment rate of the stream is constant, we will have to buffer y x

i it t− segment 



 66

before x is terminated. The segment rate of stream could be constant.  For example, if the unit of the 

segment is frame, the segment rate is constant since a video stream typically has a constant frame rate. 

We give an example in Figure 22 to illustrate the buffer management strategy.  In this figure, the 

dark arrows to the left represent stream S1 and the light arrows to the right depict stream S2.  The initial 

state of this example is shown in Figure 22 (a).  It shows that two streams with a temporal distance of 3 

video segments are passing through node N2.  To merge these two streams, N2 dynamically allocate a 

FIFO buffer with a capacity of three chunks as seen in Figure 22(b).   In this figure, N2 continues to 

receive and forward the video segments for stream S1 and S2.  However, N2 also saves the incoming 

segment 7 arriving on S1 to the FIFO buffer.   The scenario in Figure 22 (c) illustrates the final step of the 

merging when the FIFO is full.  From this time on, N2 can forward video segments to S2 in the 

downstream, using data from the FIFO buffer. 

 

Figure 22. Example of the buffering scheme 



 67

5.2.3 Cancel the Merging 

Due to the dynamics of the network, we may have to cancel the merging in a link.  For example, 

consider the stream merging s1 → s2 occurring at link <1, 2> as illustrated in Figure 21. According to 

Algorithm 5.1, node 2 reuses data from stream s1 and relays them to the next hop in stream s2.  If stream s2 

is later terminated by the end user or the routing protocol diverts s2 from node 1, node 1 will experience the 

discontinuation of the stream s2.  In a different scenario, if the routing protocol changes the next hop of s2 at 

node 1, node 1 can recognize this change from the routing table. In any of these cases, node 1 needs to 

inform node 2 to stop caching data for stream s2 and release the FIFO buffer. 

To support the canceling operation described above, each mesh node must be able to differentiate 

between the actual termination of an incoming stream and the temporary pause of the stream due to the link 

condition such as congestion and interference.   This can be achieved as follows: 

 Each mesh node monitors the incoming data stream to estimate its data rate. 

 Each mesh node periodically broadcasts a beacon or hello message.  A node can detect the 

congestion and interference in a wireless link by measuring the RSSI (Received Signal Stream 

Indicator) and FLR (Frame Loss Rate) of the beacons from the mesh nodes in the proximity [77]. 

An incoming stream at a mesh node is considered as a dead stream if its estimated data rate is zero, but the 

link condition is good.  We note that a merged stream (e.g., stream s2 in link <1, 2> in Figure 21) is not 

considered as dead because the downstream node is able to reuse the data from the acquiring stream for the 

merged stream (e.g., stream s1 in link <1, 2> in Figure 21). 

The proposed merger cancellation technique is presented in Table 10 . Each mesh node 

periodically checks the data rate, link condition, as well as the local routing information of each stream.  

Given a stream x on link <i , j>, if stream x is dead or its next hop information changes at node i, node i and 

node j use Algorithm 5.2 (in Table 10 ) to cancel all the mergers relevant to stream x. 
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Table 10  Algorithm 5.2 

Algorithm 5.2 

Input: stream x on link <i, j>   // x is dead or its next hop changes at node i 

1. Algorithm at node i 

2.     If x is merged by y at link <i, j> then 

3.         Remove y x→  

4.     For any stream merged by x   // affected by the cancellation of x 

5.          Set the stream as unmerged 

6.     Notify j to cancel the mergers relevant to x  

7.     Wait for the acknowledgement from node j 

8.     Run Algorithm 5.1 to attempt to remerge the unmerged streams 

9.     Unblock and resume forwarding of remaining unmerged streams 

10. Algorithm at node j 

11.     Receive the notification  from i about the cancellation of stream x 

12.     If x is merged by y at link <i, j> then 

13.         Remove y x→  

14.         Stop caching data from y for x 

15.         Release the corresponding FIFO buffer for data from y 

16.     For any stream merged by x 

17.         Set the stream as unmerged 

18.         Release the corresponding FIFO buffer for data from x 

19.     Send an acknowledgement to node i about the cancellation 

20.     Wait for node i to activate the merging of the unmerged streams 

 

Similar to Algorithm 5.1, Algorithm 5.2 also has two parts.  The first part runs on node i, and the 

second part on node j.  In the first part of the algorithm, node i first updates all the mergers relevant to x. If 

x is merged by y (i.e., y x→ ), the merger y x→ is removed at node i. All the streams merged by x are set as 

unmerged. Node i then notifies node j to cancel the mergers relevant to x and waits for node j to 

acknowledge the cancellation. When node i receives the acknowledgement, it calls Algorithm 5.1, in Step 8, 

to find new acquiring streams to remerge the unmerged streams. There may be some streams remain 

unmerged after the execution of Algorithm 5.1. In this case (Step 9), node i needs to unblock and resume 

the forwarding of these streams (e.g., stream s2 are blocked by node 1 in Figure 21). 
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Let us define a stream k as a dead stream at node i if the sampling data rate of k at node i is below 

certain threshold. The sampling duration and the threshold are tunable parameters in the system. A mesh 

node periodically monitors the data rate of the ongoing streams. Note that the data copied from other 

streams is also counted on in the sampling, therefore a stream merged on link {i, j} will not be treated as 

dead in downstream node j. However, this may cause node j not being able to detect the death of a merged 

stream. 

We propose to use Algorithm 5.2 to handle the dynamics of the networks. We call this algorithm as 

the Cancel Algorithm.  The input of the algorithm is a stream k on link {i, j} which is found dead at node i.  

Similar to Algorithm 5.1, this algorithm has two parts. The first part runs on node i. When node i senses the 

death of stream k, it sets all the streams previously merged by k as unmerged.  These unmerged streams are 

illegible to be merged in Algorithm 5.1 again. If k is merged on link {i, j}, node j will not be able to detect 

k’s death. Therefore node i also needs to notify node j about the death of stream k. In the second part of the 

algorithm, when node j receives this notification from node i, it stops copying video data on stream k and 

sets all streams merged by k as unmerged. Consequently, stream k will not be forwarded by node j and all 

the streams merged by k are illegible to be merged by Algorithm 5.1 again. Finally both nodes will call 

Algorithm 5.1 to merge those unmerged streams. Node i will also resume the streams which were 

previously merged by k and remain unmerged after the call of Algorithm 5.1. 

In the second part of the algorithm, when node j receives the notification from node i about x, it 

cancels all the mergers relevant to x. If x is merged by y (i.e., y x→ ) at link <i, j>, node j removes the 

merger y x→ , stops caching data from y for x, and releases the FIFO buffer for data from y. For all streams 

merged by x, node j sets them as unmerged and releases the corresponding FIFO buffers. Node j then sends 

an acknowledgement to node i about the cancellation and waits for node i to invoke Algorithm 5.1 to 

merge the unmerged streams at link <i, j>.  The original version of Algorithm 5.1 uses unmerged stream as 

input, which means that only the unmerged stream can be the acquiring stream in the algorithm. Actually, 

the proof of Lemma 5.2 shows that any ongoing stream starts before stream x can be the acquiring stream 
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of x, no matter it is merged or not. Therefore, we add a set U as the input of Algorithm 5.1. U is the set of 

all ongoing streams in link <i, j>. We change step 4 in Algorithm 5.1 as 
{ },

arg min
k x
i i

k
i

k U x t t
y t

∈ − ≥
= . Since each stream 

is still merged to an old stream with smallest temporal difference, the modified Algorithm 5.1 still has the 

data integrity and maximizes the merging performance for each merged stream. In the rest of this chapter, 

we still refer to the new version of Algorithm 5.1 as Algorithm 5.1.  

 

Figure 23. Examples of handling network dynamics 

In Figure 23, we illustrate four examples of using Algorithm 5.1 and Algorithm 5.2 to handle the 

network dynamics. In this example, we consider 4 streams s1, s2, s3, and s4. We label the subscripts of the 

streams according to the order of their start time, in which s1 starts first.  At the beginning, we assume there 

are three streams s1, s2, and s4 on link <1, 2> and s3 is not passing through this link. Algorithm 5.1 produces 

the merging chain s1→ s2→ s4. As illustrated in Figure 23(a), node 1 only sends s1 to node 2 while node 2 

reuses the data from s1 for s2 and s4 based on the merging relationships.  Sometime later, s2 is dead at node 

1 (Figure 23(b)). According to Algorithm 5.2, the affected mergers s1→ s2 and s2→ s4 are cancelled at link 

<1, 2>.  Since s4 is now set as unmerged, it is re-merged by s1 (i.e., s1→ s4) as illustrated in Figure 23(b).  
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Suppose at this moment, s3 arrives at link <1, 2> as seen in Figure 23(c).  Algorithm 5.1 lets s1 merge s3. 

Since s4 is already merged by s1, there is no need to remerge s4 to s3, although s4 is closer to s3.  As a result, 

we have both s3 and s4 merged to s1 in Figure 23(c), i.e., merging relationships may have a tree topology.  

In the last example (Figure 23(d)), we assume s1 dies at link <1, 2> after s3 arrives. In this case, the nodes 

use Algorithm 5.2 to cancel the affected mergers s1→s3 and s1→s4. Algorithm 5.2 sets both s4 and s3 as 

unmerged and invokes Algorithm 5.1 which returns the merger  s3→s4.  Since s3 is currently blocked at 

node 1 (Figure 23(c)), node 1 needs to unblock the flow by resuming the forwarding of s3 at link <1, 2> as 

shown in Figure 23(d).  Finally, s4 reuses the data from s3 at node 2. 

Theorem 3. Algorithm 5.2 maintains the data integrity in the network. 

Proof:   According to Theorem 5.1, Algorithm 5.1 ensures the data integrity in the network.  Since 

Algorithm 5.2 uses Algorithm 5.1 to remerge the unmerged streams after the cancellation, Algorithm 5.2 

maintains the data integrity in the network.   

5.2.4 Merging Tree 

As shown in Figure 23(c), DSM constructs merging relationships as a tree topology. In general, a 

stream can only be merged by one stream at any time while it can be the acquiring stream in many mergers 

simultaneously. Motivated by this fact, we propose a Merge Tree (M-tree) structure to represent the 

merging relationship and facilitate the stream merging at each mesh node.  Each mesh node uses an 

incoming M-tree (iM-tree) and an outgoing M-tree (oM-tree) to record information about each incoming 

stream and each outgoing steam, respectively.  The root node of an M-tree represents the actual stream 

being received or transmitted.  In other words, only the root node of an M-tree is unmerged. An edge 

(including a parent node and a child node) in the M-tree represents a merger, where the acquiring stream 

and the mergee stream are the parent node and child node respectively. The tree structure informs the mesh 

node that the streams corresponding to the non-root nodes have been merged. These merged streams need 
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to reuse the video data from the stream corresponding to the root node.  That is, they share a “multicast” 

stream. 

 

Figure 24. Example of packet forwarding using M-tree 

Data forwarding at each mesh node is performed according to its oM-trees as follows.  Only the 

streams indicated in the root nodes of the oM-trees need to be forwarded.  An example is illustrated in 

Figure 24.  As shown in Figure 24(a), N1 has three incoming streams S1, S2 and S3 from three different 

upstream nodes.  These three streams share the same next hop, N2.  After passing through N2, S1 and S2 

go to N3, and S3 goes to N4.  In this scenario, the three video streams are merged at the link between N1 

and N2.  S1 and S2 continue to be merged at the link between N2 and N3, while stream S3 is diverted to 

N4.  These activities are accomplished with the help of the M-trees as follows.  As illustrated in Figure 24 

(b), both N1 and N2 have the DSM component running atop certain unicast routing protocol.  Pi ( i =1, 2, 3) 

denotes the packets of the video segment being forwarded for stream Si (i = 1, 2, 3).  The three iM-trees in 

N1 indicate that it has three incoming streams.  However, it has only one oM-tree, N1 needs to forward 

data only for S1 as indicated in the root note of this oM-tree.  We note that the iM-tree of N2 is the same as 
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the oM-tree of N1.  This allows N2 to interpret the incoming stream as a multicast stream for merger S1 

and also its mergees S2 and S3.  Since there are two oM-trees at N2, it needs to forward data for the two 

streams S1 and S3 indicated in the roots of these two oM-trees.  Packet P1 is forwarded on stream S1. The 

oM-tree indicates that this packet is also intended for the mergee S2.  N2 also forwards a copy of this 

packet, P3, on stream S3.  We do not show P2 as an outgoing packet in Figure 24 to make the distinction 

between a packet for an actual merger stream and a packet for a mergee stream. 

5.3 Design of DSM 

In this section, we investigate the design of DSM. We present the data structures, protocols, and 

algorithms that help realize the ideas discussed in Section 5.3.  

5.3.1 General Requirement and Data Structure 

DSM can be implemented either as a software module on top of the unicast routing protocol or as 

an extension (e.g., a software patch) of the unicast routing protocol in WMNs.  DSM requires the next hop 

id for each video stream from the routing layer. This information can be provided by most unicast routing 

protocols used in WMNs, no matter the protocol maintains a complete route in mesh nodes or it forwards 

packets in a hop by hop manner. Since DSM works in the network layer, it should be able to recognize the 

segment ID, stream ID, and video ID associated with each video packet in the network layer. However, in 

the current IP networks, it is even challenging to recognize the video packet in the network layer, not to 

mention to identify the IDs associated with this video packet.  In this section, we assume these 

requirements can be satisfied. Please refer to Section 5.4 for our solutions to fulfill these requirements in a 

real system implementation.  

The core data structure of DSM is a Session Table.  Each entry of the session table represents an 

stream passing through the mesh node.  Table 11 gives the important fields of the Session Table.  

Given y x→ on link <i, j>, after node i sends the merge notification “ y x→ ” to node j, the status of stream 

x at node i is set to “merged.”  The other possible values for the status of a stream are “unmerged” and 
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“dead” as we have discussed in Section 5.2.  Using the same example, the a_stream of stream x at node i is 

set to stream y, and the mergee_list records the list of streams merged by stream x.  Since we have y x→ , x 

is added to the mergee_list of stream y at node j.  In other words, the a_stream field and the mergee_list 

field are used to represent the iM-tree and oM-tree at the upstream node i and the downstream node j of 

each link <i, j>, respectively.  The stream_id field contains the stream ID which uniquely identifies a 

stream in the WMNs. The descriptions of the other fields are given in Table 11 .  They were already 

discussed in details previously. 

Table 11  Important Fields in the Session Table 

vid 

src 

dest 

stream_id 

cur_sid 

tau_sid 

status 

next_hop 

a_stream 

mergee_list 

seg_rate 

buffer 

video ID 

source address and source port number of the session 

destination address and destination port number 

the stream ID 

current (highest) segment ID observed in the mesh  node 

tau value used  is merging the streams 

status of this session (merged, unmerged, or dead) 

address of node in the next hop of the stream  

the acquiring stream of this stream 

list of streams merged by this stream 

data rate estimated for this stream  

FIFO queue used for caching data for this stream 

 

5.3.2 Control Operations 

We propose two operations, namely the Merge Operation and the Cancel Operation, to facilitate 

the control operations discussed in the merge algorithm (Algorithm 5.1) and cancel algorithm (Algorithm 

5.2).  

In the merge operation, the upstream node notifies the downstream nodes about the intension of 

merging two streams on the link. Similarly, the upstream node notifies the downstream node to cancel the 



 75

merging in a cancel operation. In both operations, the downstream node acknowledges the upstream node 

to confirm the success of the operation. The operation will timeout if the upstream node does not receive 

the acknowledgement before certain deadline.  Several merge operations and cancel operations can be 

batched into one control message to reduce the communication overhead.  

Consider a merge operation for a merger y x→ at link <i, j>.  When the merge operation succeeds, 

i and j update relevant fields in the session table as follows. Node i sets the a_stream field of stream x as y, 

changes x’s status as merged, and set the ter_sid of x as y’s cur_sid. The oM-tree rooted as x (x was not 

merged before the operation) is merged to the oM-tree that contains stream y (the status of y can be merged 

or unmerged). The downstream node j adds x into y’s mergee_list. This means the iM-tree rooted as x is 

merged into the iM-tree containing y. Similarly, consider a cancel operation applied to the same merger 

y x→ at link <i, j>. When the cancel operation succeeds, i and j update the relevant fields as follow. Node i 

sets the a_stream field of x to itself and the status of x as unmerged. Stream x becomes the root of an oM-

tree and is ready to be merged or resumed (depending on the result or Algorithm 5.1). Node j removes x 

from y’s mergee_list. This action updates the iM-tree containing stream j by removing the sub-tree rooted 

at stream x. 

5.3.3 Algorithm for Data Forwarding and Sharing 

We recall that DSM blocks the data forwarding of a merged stream at the upstream node of a link 

and enables data sharing through a FIFO buffer at the downstream node.  The Recursive_Forward function 

presented in Table 12  is the sketch of algorithm for data sharing and data forwarding in DSM. The input of 

this function is a stream y, a packet p of stream y, and the recursive level l.  For each packet p arriving at 

the mesh node for a stream y, this mesh node calls this function with the recursive level l set to 0.  For each 

stream x in y’s mergee_list, the function makes a copy of p (i.e., p_copy) for x and recursively calls itself 

with x and p_copy as the input. The level argument l of the recursive call equals to the current level plus 

one.  The recursive calls in the Recursive_Forward function ensure that the buffering and merging will be 
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carried out at all the streams involved in the M-tree.  For each stream y examined by this function, it checks, 

in Step 4, whether p is an incoming packet from the upstream node (i.e., l = 0) or a copied packet passed 

from the acquiring stream (i.e,. l > 0) through a recursive call.  If p is a copied packet for stream y, the 

function performs Steps 5 to 9.  It appends p to the end of y’s FIFO buffer (i.e., y.buffer) in Step 5.  In Step 

6, if the upstream mesh node has stopped forwarding stream y, the function assigns the packet at the head 

of the FIFO buffer to the packet p in Step 7; otherwise, the stream y is still arriving from the upstream node 

and the computation exits the function in Step 9.  This function now proceeds to Step 10 to check the status 

of stream y.  If its status is “merged,” the function stops forwarding the packet p to the next hop of stream y 

in Step 11 if p belongs to a segment with an ID greater than the τ value; otherwise, the mesh node should 

forward p to the next hop in Step 13.  We note that the packet forwarded is either the packet just dequeued 

from the FIFO buffer in Step 7 if l > 0, or the packet received from the upstream if l = 0. 

Table 12  Pseudo code of the Recursive_Forward function 
Recursive_Forward 

Input: stream y, packet p of stream y, recursive level l 

1. For each stream x in y.mergee_list Do 

2.     Make a copy of p as p_copy for x 

3.     Recursive_Forward(p_copy, x, l + 1) 

4. IF (l > 0)  // p is a copy 

5.      Enqueue_FIFO(y.buffer, p) 

6.      IF (y stops in upstream node)      

7.           p = Dequeue_FIFO(y.buffer)      // merging in effect 

8.      ELSE     // y has not stopped, no yet ready to reuse data from buffer     

9.           RETURN 

10. IF (y.status == merged && p.segment_id > y.tau_sid) 

11.      Drop  p    //  merging in effect in next hop, no need to forward p 

12. ELSE 

13.    Forward   p 

14. RETURN 
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5.4 System Design and Implementation 

We implemented a wireless mesh access network prototype based on the proposed DSM 

framework.  This system consists of a wireless mesh testbed, an online video site, and video players at the 

user end.  The mobile YouTube site is chosen as the online video site. We use the Linux version of 

RealPlayer [61] as the video player.  The videos at the mobile YouTube site are H.263 encoded. The video 

streams have an average data rate of about 60 kilobyte per second. Three protocols are used by Mobile 

YouTube to stream data to RealPlayer, namely Real Time Stream Protocol (RTSP) [62], Real-time 

Transport Protocol (RTP) [63], and RTP Control Protocol (RTCP) [63]. Specifically, the end user and the 

video server utilize RTSP to set up the RTP streaming session.  RTSP is an application-level protocol 

designed to work with the RTP protocol.  It provides means for choosing delivery channels (e.g., UDP, 

TCP) and delivery mechanism based upon RTP.  For an accepted video request, two RTP streams are sent 

from the video server to the user. One of the streams contains the video data and the other stream contains 

audio data.  DSM supports data sharing for both video RTP streams and audio RTP streams.  For the rest of 

this section, we refer to both video RTP streams and audio RTP streams simply as RTP streams.  During a 

video session, the end user periodically sends feedback on the quality of the RTP stream to the video server 

using RTCP. 

Since our wireless mesh network supports various types of communication applications besides 

video streaming, the network must be able to recognize video packets (i.e., RTP packets) and apply the 

DSM technique only to these packets.  This can be achieved as follows.  It is easy to intercept an RTSP 

packet during the initialization of a video session because RTSP packets typically use TCP port 554.  Such 

RTSP control messages, exchanged between the video server and the end users, contain the IP address and 

the port number of the upcoming RTP stream.  Thus, any future packet with this IP address and port 

number in the header can be recognized as an RTP packet of the video. 

In order to share the RTP packet among different video sessions (due to stream merging), the mesh 

node also needs to know the Segment ID, the Stream ID, and the video ID of an RTP packet. The RTP 
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header contains fields such as sequence number, frame marker, and timestamp that can identify the payload 

of an RTP packet. In this work, we choose to use the 16-bit sequence number as the segment ID. However, 

the sequence number and the timestamp each begin with a randomly initialized value set by the RTP 

protocol at the video server.  This makes it difficult to compare and recognize that two RTP packets from 

different streams are actually the same (i.e., they carry the same video/audio content). We solve this 

problem by modifying the sequence number and the timestamp as they pass through the gateway of the 

mesh network so that both start from zero.  There is a 32-bit field in the RTP header called Synchronization 

Source Identifier (SSRC) which uniquely identifies the source of this RTP stream from an online video 

server.  Since streams from different servers may have the same SSRC, we use the source IP address 

together with the SSRC as the stream ID.  Notice that the video and audio streams of a video session have 

different SSRC.  Therefore, they have different stream ID’s.  In particular, the RTP streams of the different 

video sessions of a given video also have different stream ID’s.  We need to label these streams with the 

same video ID (vid) in order to facilitate stream merging.  This is done as follows.  We maintain a URL 

Table in the gateway to store the URL of each ongoing video session in the network.  We note that a URL 

uniquely identifies a video.  In the URL Table, each URL is associated with a unique 32-bit vid.  The fixed 

length makes it convenient for including the vid in the header to label each RTP packet.  When a video is 

no longer present in the network, its vid can be recycled and used for another video in the future.  Given a 

new RTP stream, we discover its vid as follows.  The corresponding RTSP control messages contain the 

correlation between the URL of the video and the stream ID (i.e, source IP address and SSRC) of this RTP 

stream.  More specifically, we can find such information by parsing the RTSP “SETUP” packet and the 

RTSP “SETUP reply” packet.  Thus, we can determine the URL for a given RTP stream.  Since we can 

map this URL to the vid using the URL Table, we can also determine the vid of the RTP stream.  Once the 

vid has been identified for the RTP stream, its stream ID (i.e., source IP address and SSRC), source port 

number, and the vid is stored in another table called Stream Table. 
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The proposed idea is implemented in Linux kernel version 2.6.27. The implementation consists of 

a DSM gateway (DSMGW) module and a DSM module. The DSMGW module is a kernel module running 

on the gateway. The DSM module is installed at all the mesh nodes (including the gateway node). 

 

Figure 25. Example of DSMGW 

The operation of the DSMGW module is illustrated in Figure 25.  It manages the connections 

between the outside network (i.e., the Internet) and the interior network (i.e., the mesh testbed).  In 

particular, the DSMGW manages the Stream Table as shown in Figure 25.   During the initialization of a 

video session, the DSMGW intercepts and parses the RTSP messages to determine the IP address and the 

source port number of the source as we have already discussed.  Such information is broadcast to all the 

mesh nodes in the network to help them recognize the upcoming RTP packets.  It is also the responsibility 

of the DSMGW to create a new entry in the Stream Table for this new RTP stream, plus a new entry in the 

URL Table as necessary.  When any packet of this stream arrives at the mesh gateway sometime later, the 

DSMGW uses the source IP address and the source port number, extracted from the header, to look up the 

Stream Table.  If a matching entry is found in this table, the packet is recognized as an RTP packet.  The 

DSMGW, then looks up the Stream Table using the source IP address and the SSRC (i.e., stream ID), also 

available from the header of the RTP packet, to find out the vid for this packet.  This vid is appended to the 
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end of the header before this RTP packet is relayed to the mesh node in the next hop according to the 

routing protocol.  We use AODV routing in our implementation.  Other responsibilities of the DSMGW 

include modifying the sequence number and timestamp of each RTP packet to facilitate video sharing as 

we have discussed. 

 

Figure 26. Architecture of the DSM module 

The DSM module operates atop of the routing protocol. It consists of two sub-modules, namely the 

KDSM module and the UDSM module. The KDSM module works in the kernel space and the UDSM 

module resides in the user space. As depicted in Figure 26, each module maintains a copy of the session 

table. We denote the session table in the kernel space and user space as K-Session Table and U-Session 

Table, respectively. 

The KDSM module uses the Netfilter framework [64] to intercept the RTP packet from the Linux 

network stack.  KDSM discovers a new stream if the SSRC and the source IP address (i.e., stream ID) of 

the RTP packet are not found in the K-Session Table. The KDSM module utilizes the Recursive_Forward 

function to process the packet. The UDSM module monitors the streams in the U-Session Table.  It is 

responsible for triggering stream merging and cancellation.  The UDSM module also queries the 

underlying routing protocol for the next hop of each stream and stores the information into the U-Session 
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Table. We periodically synchronize the content of the U-Session Table and the K-Session Table. Therefore, 

both the user space and kernel space have the latest version the session table. 

5.5 Simulation Study 

We conducted intensive performance study on DSM by simulation using NS-2.31 [66]. The 

purpose of the simulation study is to show that DSM can achieve the effect of multicast without any 

multicast grouping and routing support with a complicated network topology and random settings. All the 

mesh nodes in the simulation were configured with an omni-directional antenna. The carrier sensing range 

and transmission range were both set to be 250 meters. The MAC parameters of the wireless nodes were set 

according to the specifications of in IEEE 802.11b protocol, where the data rate was set to be 11 Mbps. We 

chose AODV as the unicast routing protocol. The CIF format (352x288 pixels) akiyo video clip was used 

in the simulation. The video was encoded using the MPEG4 encoder provided by ffmpeg [67]. The 

encoding parameters were the same as those used to encode the videos in the experimental study. Since the 

video sequence lasts only 10 seconds, we combined several identical video sequences to create a longer 

video. The video length in the simulation is 100 seconds. DSM was set to allow the merging of two streams 

with temporal difference less than 10 seconds. Since we repeated simulation for each setting for hundreds 

of times, the simulation uses shorter video than the experiment does for the sake of a reasonable simulation 

time. 

Figure 27 illustrates the network topology of the simulation. We use a 700x700 meters square to 

simulate a residential area. The mesh network deployed in this residential area has 13 nodes. Each node is 

represented by a black circle in the figure. There is a line between two nodes if they are in the transmission 

range of each other. A 7x7 grid is used to present the square area and label the coordinators of the mesh 

nodes. N0 is the gateway and is the only source of the video traffics in the simulation. Since we are only 

interested in the video streaming over the mesh backbone, we let a video request generate at any one of the 

12 non-gateway mesh nodes with equal probability. The arriving time of the video request follows the 
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Poisson arrival. In the simulation, we varied the average inter-arrival time of the Poisson arrival to 

investigate the different degrees of stress on the network. 

 

Figure 27. Simulation Topology 

In each simulation run, six video streams were initiated at the gateway node N0. We varied the 

average inter-arrival time of the video stream requests (denoted byτ ) from 1 second to 9 second. The 

larger the inter-arrival time, the larger the temporal difference between streams is. We report the simulation 

results under the scenario with DSM loaded as well as the scenario without DSM (denoted as Non-DSM). 

The performance data is the average over 500 simulation runs under the same setting.  As discussed before, 

the starting time and destination of each stream are randomly decided for each simulation run. 

Our performance metrics are the average PSNR value of the video, the work load and the 

throughput. The PSNR is used to measure the quality of the video streams. We denote the work load of 

node Ni (i = 1,..,12) in a simulation run as iα . iα is defined as the amount of video data which is supposed 

to be transmitted from other mesh nodes to Ni. We denote the throughput of node Ni in a simulation run 

as iβ . iβ is defined as the amount of video data which is successfully transmitted to Ni. We have i iα β≥ . 

The values of iα and iβ are calculated from the routing level trace generated by the NS2 simulator.  We use 
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these three metrics to show that DSM can achieve better performance (i.e., higher video quality) and 

introduce fewer burdens (i.e., smaller work load) to the network than Non-DSM. 
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Figure 28. Average PSNR of the sex streams 
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Figure 28 depicts the average PSNR values of the video streams under different values ofτ . 

Stream i in the figures denotes the stream of the ith video request. DSM outperforms Non-DSM in terms of 

the video qualities of all the streams in the simulation. As τ increases, the PSNR values of DSM and Non-

DSM have different trends. The PSNR value of DSM decreases as τ  increases. This is because the streams 

have larger temporal difference under largerτ . There is less chance for DSM to merge the streams with 

large temporal difference due to the buffer limit. Hence the network becomes more congested and the 

quality of the video decreases. On the other hand, The PSNR value of Non-DSM increases as τ  increases. 

This is due to a less congested network under largerτ . 
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Figure 29. Work load and throughput at N2 and N3 

We then measure how much data the network has to send in order to achieve the reported video 

quality under DSM and Non-DSM. Since all the streams have to go through either N2 or N3, we report the 

workloads and the throughputs of these two nodes to show the stress on the network. We plot the data of 
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N2 and N3 in Figure 29(a) and Figure 29(b) respectively. The plots show that DSM has smaller work load 

and throughput than Non-DSM. The curves in Figure 29 show that the work load and the throughput under 

Non-DSM does not change too much with different values ofτ since there is no stream merging. The work 

load and throughput under DSM soars asτ increases. This shows that the network becomes more congested 

when there is less change for merging with largerτ . We define the loss ratio at node Ni as ( ) /i i iα β α− . 

Table 13  lists the loss ratio of N2 under the scenarios of DSM and Non-DSM. We also report the 

percentage of savings on the work load and the throughout by choosing DSM over Non-DSM in Table 13 . 

DSM has lower loss ratio than Non-DSM in all the simulations. The data also shows that DSM can save 

more than 31% of work load and more than 25.95% of throughput in the bottleneck node N2 while 

achieving better video quality for all the video streams. 

Table 13  Comparison of data in bottleneck node N2 

τ (sec) Loss ratio 
(Non-DSM) 

Loss ratio 
(DSM) 

DSM Saves
( 2α ) 

DSM Saves 
( 2β  ) 

1 42.55% 2.51% 66.72% 43.52% 

2 38.15% 4.28% 59.33% 37.06% 

3 36.07% 12.22% 50.81% 32.46% 

4 34.42% 14.11% 43.35% 25.82% 

5 31.48% 15.41% 40.06% 26.01% 

6 33.30% 14.21% 39.27% 21.88% 

7 28.38% 14.51% 37.51% 25.40% 

8 26.92% 15.93% 33.86% 23.91% 

9 22.08% 16.08% 31.23% 25.94% 
 

5.6 Experimental Study 

We implemented our mesh router using the Asus Eee PC 1005HA netbook computer which 

consists of an Atom 1.6GHz processor, 2GB RAM, and the Atheros 802.11n wireless card (AR928X 

chipset).  We installed the Fedora 10 operating system (Linux kernel version 2.6.27) and our DSM module 

in each netbook.  One of the netbooks, installed with the DSMGW module, was used as the gateway node.  
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In the experiment, the gateway was connected to the campus networks through Ethernet cable.  The mesh 

nodes were assigned with static IP addresses and utilized the domain name system (DNS) server in the 

campus network to resolve the URL.  The gateway node had the network address translation (NAT) 

service enabled. The AODV-UU (version 0.9.5) [68] was used as the routing software in our experiment.  

For video clients, we installed RealPlayer video player in the netbooks.  The network traffic was recorded 

using the WireShark [69] packet analyzer. 

 

Figure 30. The line topology in the validation test 

We performed experiments, under various scenarios, in order to validate the correctness of the 

DSM technique and to test the correct operation of the system prototype.  We discuss two representative 

scenarios in this paper.  They are based on a line topology as illustrated in Figure 30, which consists of four 

mesh nodes, where node n0 is the gateway. The Mobile YouTube is used as the online video source, with a 

unique URL for each video.  We started the playback of the same video at nodes n1, n2, and n3 at different 

times.  Since the video RTP stream carries majority of the data for each video session, we report the 

amount of accumulative data transmitted (ADT) of the video RTP stream of each video session over time 

to show the effect of stream merging. 

We use si to denote the video stream played back at node ni (i = 1, 2, 3).  In the first scenario, the 

three video streams start and stop in the same order, i.e., both starting and ending orders are s1, s2, and s3.  

The ADT’s of the three video streams at links <n0, n1> and <n1, n2> are plotted in Figure 31 and Figure 32, 

respectively.  In this scenario, s1 starts first at 81st second, followed by s2 25 seconds later, and finally s3 

after another 25 seconds.  Since we have 1 2 3s s s→ →  at link <n0, n1>, n0 blocks s2 and s3 after they reach 

their τ values. As shown in Figure 31, the ADT values of both s2 and s3 stop growing after the streams start 

for 25 seconds.  In contrast, the ADT of s1 continue to increase. When we terminate the playback of s1 at 
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166th second, n0 senses the death of s1,   cancels the merger 1 2s s→ , and unblock s2 at link <n0, n1>.  The 

ADT of s2 now grows again.  Similarly, when we terminate the playback of s2 at 192nd second, the ADT of 

s3 also starts to increase again.  The ADT’s at link <n1, n2> for this scenario are plotted in Figure 32.  It 

shows that the ADT of s3 stops growing 25 seconds after it started.  This is due to the merger 2 3s s→ at link 

<n1, n2>.  Figure 32 also shows that the ADT of s3 starts growing again when the playback of s2 is 

terminated and n1 unblocks s3 at link <n1, n2>.   We note that we do not report the ADT’s at link <n2, n3> 

because there is no stream merging at this link. 
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Figure 31. Streams from n0 to n1 in scenario 1 
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Figure 32. Streams from n1 to n2 in scenario 1 
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The second scenario is more complicated.  In this case, the stream s2 starts first, followed by s1, and 

then s3.  After both s1 and s3 are merged with s2 (i.e., 2 1 3s s s→ → ), we first pause the playback of s2 and 

then resume its playback sometime later.  Finally, the playback of s1 is terminated, followed by s3, and then 

s2.  We note that the starting order and ending order are different.  The ADT’s of the streams at links <n0, 

n1> and <n1, n2> are plotted in Figure 33 and Figure 34, respectively.  In Figure 33, the ADT’s of s1 and s3 

stop increasing at 68th second and 93rd second, respectively.  This is due to the two mergers,  2 1s s→  at 68th 

second and 1 3s s→ at 93rd second.  These two mergers result in the merging chain 2 1 3s s s→ → constructed 

at link <n0, n1>.  At 115th second, the playback of s2 is paused and the video server stops sending data on s2.  

When n0 senses the death of s2, it cancels the merger 2 1s s→ and unblocks s1.  As a result, the ADT of s1 

starts growing again.  At 186th second, we resume the playback of s2, and it falls behind s1 and s3 in the 

playback of the video.  Since s2 is closer to s3 then s1, s2 is merged by s3.  The merging relationships at link 

<n0, n1> become 1 3 2s s s→ → .  In Figure 33, the ADT of s2 continues to increase for a small duration (from 

186th second to 192nd second) and then stops growing.  When the playback of s1 is terminated at 276th 

second; the ADT of s3 starts to increase again due to the cancellation of 1 3s s→ .  Similarly, when the 

playback of s3 is terminated at 304th second; the ADT of s2 starts growing again due to the cancellation of 

3 2s s→ .  The ADT’s associated with link <n1, n2> are presented in Figure 34.  Similar to Figure 33, the 

ADT of s2 stops growing when we pause this stream.  When the playback of s2 is resumed at 186th second, 

its ADT starts to grow again.  Within several seconds, s2 is blocked again by node n1 because it is merged 

by s3, and it remains blocked until s3 is terminated near the end of this experiment, as seen in Figure 34.  

The ADT of s3 stops increasing at time 93rd second, in Figure 34, because it is merged to s2 (i.e., 2 3s s→ ).  

After s2 is paused, the ADT of s3 starts growing again which indicates that s3 is unblocked at link <n1, n2>.  

When the playback of s3 is terminated near the end of this experiment, s2 is unblocked and the ADT of s2 

grows again. 
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In summary, we observed in both scenarios the correctness of the merging algorithm and the cancel 

algorithm. The result also shows that stream merging takes place in a distributed manner using only local 

information.  All the video sessions in our tests showed excellent video playback quality.  This is discussed 

next in terms of frame loss ratio. 
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Figure 33. Streams from n0 to n1 in scenario 2 
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Figure 34. Streams from n1 to n2 in scenario 2 

Besides the validation test, we also performed stress test to show the efficiency of DSM in saving 

wireless bandwidth. The network for this test is deployed in the second floor of our department building as 
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depicted in Figure 35.  The black node is the gateway node.  The other five white nodes are non-gateway 

mesh nodes.  The performance metric is the average frame loss ratio of the video streams (again, we only 

report the results for the video RTP streams).  This ratio represents the quality of the video playback at the 

user end.  RealPlayer reports the frame loss ratio during streaming. If the network is heavily congested, the 

RealPlayer may assume the network is down and terminates the playback.  In this case, we consider the 

remaining frames in the video as lost and calculate the frame loss ratio accordingly.  To avoid other WiFi 

traffic in the building that can vary for the different test cases, we conducted our experiments after 

midnight. 

In each test setting, a request for the same video, at the Mobile YouTube Website, is initiated every 

one minute at any one of the five mesh nodes with equal probability.  This random process is repeated until 

the total number of video streams in the wireless network reaches a set number.  In our study, we varied 

this number between 1 and 25, as seen in Figure 36, to investigate the different degrees of stress on the 

network.  For a given number of concurrent video streams, a more robust design should place less stress on 

the network.  We compare the proposed DSM network with a non-DSM environment in this study.  Each 

data point, shown in Figure 36, is the average over ten runs of the corresponding experiment. 

 

Figure 35. Network topology in the stress test 

As depicted in Figure 36, the frame loss ratios for both DSM and Non-DSM techniques are less 

than 0.1 when the number of streams in the network is below 6.  As this number increases, the frame loss 
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ratio soars all the way up to almost 1 for Non-DSM. This is mainly due to severe congestion in the network. 

We also observed increases in the number of video sessions terminated by RealPlayer as the number of 

streams increases.  These limitations motivated us to investigate a more robust wireless mesh access 

network.  In contrast, we observe in Figure 36 that the stress on the DSM network is much less (i.e., the 

frame loss ratio is much lower).  In fact, the performance curve of DSM is almost flat.  This can be 

explained as follows.  When the number of concurrent streams for a given video is higher than a certain 

number (8 in Figure 36), there are many opportunities for stream merging, and the additional demand for 

the same video does not impose more stress on the network.  This experimental result validates the 

robustness of DSM in handling sudden spurts of interest for certain videos due to special events.  Under 

this circumstance, there are still plenty of bandwidth remained for the normal access to regular videos. 

 

Figure 36. Result of the stress test 

5.7 Conclusion 

Video streaming has been the subject of intensive research for many years due to its wide range of 

applications ranging from social networks, electronic commerce, distance learning, to news and 

entertainment.  For a wired environment, reducing the demand on server bandwidth is important to ensure 

the scalability of the applications.  In recent years, we have witnessed a growing demand on online video 
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resources from wireless access networks.  It is highly desirable that such wireless networks are robust in 

handling sudden spurts in demand for specific videos due to various reasons such as current events.   Such 

situations should not have a significant impact on the normal access to regular videos.  Furthermore, a 

robust wireless access network should be able to sustain applications, such as movies on demand, known to 

follow the so called 80:20 rule.  That is 80 percent of the accesses are for 20% of the videos.  The 

aforementioned requirements can be achieved through video-stream sharing.  However, existing video 

sharing techniques require the cooperation from the video server.  On the other hand, it is generally not 

possible for the online video site to cooperate with the local access networks. In this chapter, we tackle this 

problem in wireless mesh access networks by proposing a distributed technique called Dynamic Stream 

Merging (DSM). We provided theoretical analysis to show that DSM can achieve optimality locally at each 

link in terms of video sharing performance, and have low computational and message complexity.  The 

simulation study based on NS2 is conducted to study the performance of DSM under large network settings. 

We also implemented the proposed technique in a wireless mesh access network prototype, and 

successfully demonstrated the effectiveness of DSM in supporting wireless resource sharing in accessing 

videos at Mobile YouTube.  To the best of our knowledge, this is the first work that shares video data from 

a commercial online video site in a wireless mesh network.  Our experimental results validate the 

correctness of DSM and indicate the efficiency of our prototype. 
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6.  HANDOFF FOR VIDEO STREAMING 

In this chapter, we study the handoff problem for video streaming in the WMA environment. 

Traditional handoff approaches focus on maintaining connectivity for mobile users. The connectivity 

remains a problem for mobile users in the WMA environment. Since the mesh router has limited coverage, 

user has to update the mesh router it attaches to when immigrating to the coverage of a new mesh router. 

A good connectivity is usually sufficient for the requirement of non-real-time best effort traffic. However, 

it is not adequate for data intensive real-time application such as video streaming. Video streaming 

requires not only the connectivity guarantee but also the quality of service (QoS) guarantee. Therefore, 

the design goal of a robust handoff technique for video streaming is to not only provide connectivity to 

the user, but also preserve the quality of the video during the handoff.  Triggers relevant to the QoS 

should be utilized in the handoff decision making process. Conventional handoff techniques in the WMA 

environment only consider localized information, i.e, the link quality between the mobile user and the 

mesh router in the vicinity. The localized information may lead to the selection of a bad mesh router 

which is not able to provide the QoS guarantee to the mobile user due to the congestion in routes 

associated with the mesh router. Therefore, when the mobile user evaluates the mesh router, it should take 

the value of the routing metrics of the route associated with the mesh router into account. Last but not the 

least, the mesh router should guarantee that there is no video data loss during the handoff. After the 

mobile user disconnects to its previous mesh router, this mesh router should not drop the data for the 

mobile user. A redirection scheme is needed to forward the data arriving at the previous mesh router to the 

new mesh router which the mobile user connects to.  

6.1 Introduction 

Handoff is one of the critical issues in mobile communication. The most common scenario of 

handoff happens in the cellular communication system where subscriber station moves from the cell of one 

base station to the cell of another base station. This scenario is called the inter-cell handoff. Another 



 94

handoff scenario in cellular communication system is called intra-cell handoff where the subscriber station 

changes it channel in a cell.  There are two classes of handoff, namely the hard hand-off and the soft hand-

off. In hard hand-off, the connectivity to the original base station is broken and only then the connection to 

the target base station is established. This kind of strategy is called break-before-make. The intention of the 

hard handoff is to switch the cells instantaneously in order to minimize the disruption to the 

communication sessions of the users (i.e., phone call or data session). On the other hand, during the soft 

hand-off, the connection to the original cell is retained for a while after the connection to the target cell is 

made. This strategy is called make-before-break. In this case both connections are maintained in the 

networks during the handoff.  The subscriber station chooses to use the one with best signal quality for 

communication. The advantages of hard handoff are the short processing time and easy hardware 

implementation. However this approach is not as reliable as soft handoff since if the handoff to the target 

cell fails, some interruption will occur even if the subscriber station is able to reconnect to the original cell. 

The soft handoff trades the usage of multiple connections and the complexity of the hardware design for a 

more reliable handoff experience.  

The researches ([70], [71]) on fast handoff in 802.11-based WMN have been conducted in recent 

years. The handoff is supported in many commercialized mesh products offered by companies such as [72], 

[73], [74]. Existing works tackle the handoff problem in two different layers, namely the link layer handoff 

and the network layer handoff. When a mobile user is moving out of the communication range of a mesh 

router, a link layer handoff is triggered that tries to associate the user to another mesh router, if there is any. 

Authors in [70] propose a fast link layer handoff scheme in their SMesh framework. The whole network 

acts as a virtual WLAN for the users. The mesh router monitors the DHCP (Dynamic Host Configuration 

Protocl) request message periodically broadcasted by the user to measure the link quality to the user.  The 

users in SMesh have the same IP address for default gateway. When handoff takes place, the target mesh 

router uses the gratuitous ARP (Address Resolution Protocol) to force the user to access its default gateway 

through the target mesh router. Since SMesh utilizes standard protocols, existing 802.11-enabled portable 
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devices (e.g., notebook) can use the network without installing any new software and hardware. The 

network layer handoff reroutes the packet for the mobile user after it associates to a new mesh router. 

Authors in [71] compare two network layer handoff schemes using TMIP [75] and OLSR [76] respectively. 

In TMIP, a simple version of mobile IP in the WMN, user has a “home” mesh router. When the user 

immigrates to other mesh routers (called “foreign” mesh routers), the traffic is redirected from the “home” 

mesh router to the “foreign” mesh router. OLSR is a “flat” link state routing protocol. In the OLSR-based 

scheme, the routing table of each mesh router is updated when handoff takes place. Experiment shows that 

the OLSR-based scheme outperforms the TMIP-based scheme since it avoids the inefficient “triangular 

routing”.  

Different methods and metrics are used to evaluate the quality of the link in 802.11 networks. For 

example, routers in [70] monitor the periodic DHCP request from mobile users for link quality 

measurement. This approach requires all the routers use the same channel. In [71], since the routers work in 

the infrastructure mode, the traditional channel scanning approach for WLAN is used. This approach 

usually utilizes metrics such as Signal to Noise Ratio (SNR) and Received Signal Strength Indicator (RSSI) 

to trigger the handoff. Authors in [77] propose that the user continuously monitors the beacons from all the 

access points using the same channel or the overlapping channels in the neighborhood. They also suggest 

the handoff should be triggered proactively.  The orthogonal channels are only scanned when there is no 

opportunity to find a good candidate in the same or overlapping channel. Authors in [78] propose to take 

the qualities of both uplink and downlink into account in order to avoid an asymmetric link.  

The existing handoff techniques in WMN focus on connectivity between the mobile users and the 

mesh routers. The triggers for scanning and the handoff are based on the quality of the connectivity. 

However, the lower layer triggers such as RSSI and FLR (MAC layer frame loss ratio) can not directly 

imply the quality of the ongoing video stream at the users end. For example, the video playback may not be 

affected by a sudden burst of packet loss due to the video buffered at the video player. Moreover since the 

streaming traffic has variable bit rate, the variance of the data rate may not reflect the variance of the 
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streaming quality.  Therefore, it is desirable to have QoS-related handoff triggers that directly measure the 

quality of video streaming for mobile user.  

The handoff in the 802.11 WLAN networks only takes the link quality between the mobile user 

and the neighboring access points into account. Since the access points are typically connected to the high-

speed wired networks, the handoff techniques assume that the bottleneck is the wireless link. Therefore, as 

long as an access point provides good connectivity to the mobile user, it is a good candidate to switch to.  

However this assumption does not hold in WMN. By switching to a new mesh router, the user also chooses 

to utilize the routes associated with this mesh router. We argue that the handoff in the WMN should utilize 

the routing level information to evaluate the mesh router. 

Existing link state routing based network layer handoff is triggered when the mobile node 

associates to a new mesh router. The new mesh router then starts the link-state update process which 

propagates the update to the entire network and triggers router recalculation at each mesh router. The old 

mesh router also sends out the link-state update which indicates the broken link between itself and the 

mobile user. Since the link-state update is not instantaneous, video data might be dropped at certain mesh 

router where the route to the mobile user is not available. For example, a mesh node closer to the old mesh 

node than the new mesh node may get only the link-state update initiated from the old mesh node at certain 

point of time. This mesh node is not able to forward the video data to its destination. We propose a novel 

redirection scheme to avoid the data loss during the handoff.   

Our contribution in this chapter is threefold. First, we propose to utilize the quality of video at the 

user as one of the triggers in the handoff. Second, the routing metrics at the mesh routers are considered in 

the handoff decision making. Third, a redirection scheme is proposed to enhance the network layer handoff 

for video streaming.  The design of the propose handoff technique is presented in Section 6.2. 
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6.2 QoS Oriented Handoff  

Let us model a video stream as a sequence of frames labeled as i = 1, 2, …, L, where L is the total 

number of frames in the video. Each frame has a sampling timestamp which is calculated during the 

encoding of the video. Denote Si as the sampling timestamp of the ith frame in the video stream. When 

frame i arrives at the video user, its arrival time is denoted as Ri. If frame i has not arrived at the video user, 

we set iR = ∞ . In order to avoid the jittering due to the packet delay, a video player usually buffers certain 

amount of frames before playing back the video. Without loss of generality, assume frame 1 arrives at the 

end user in time and the video starts at time T (T > R1), the playback deadline of the ith frame is denoted 

as 1( )i iD T S S= + − . The values of T and Di are reset if there is VCR-like operation which changes the 

playback time of the video. 

Frame i is said a valid frame to the end user if i iD R≥ . Advanced frame encoding techniques use 

inter-frame information to facilitate the video frame compression. The frames in the same group of pictures 

have dependency relation. For example, the decoding of a P or a B frame relies on the data in the I frame of 

the same group of pictures. Therefore, if frame i is invalid, all the frames depends on frame i is also invalid. 

Given a time window between Tx and Ty, the video frame loss ratio (VFLR) is defined as: 
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Equation (6.1) shows that the value of VFLR in a time window is the total number of frames whose 

deadline are within the time window divided by the number of invalid frames whose deadline are within 

the time widow. VFLR is a metric that represents the quality of the video stream during a given time 

window. The larger the VFLR, the worse the video quality is. We propose to measure the value of VFLR 

with a small time window and smooth this value using a time sliding window moving average (TSWMA) 

filter. The sliding window used in the TSWMA is larger then the time window used to calculate VFLR. 
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Assume the size of the TSWMA window is w, i.e., it keeps w recent smoothed values as 1 2, ,..., wα α α , 

where 1α is the latest sample . The slope k of the smoothed VFLR is 

/ 2

/ 2 1
1

( ) /
w

i i w
i

k α α α+
=

= −∑      (6.2) 

The scanning is triggered if the slope is negative than a predefined threshold. During the scanning phase, 

the mobile users get the RSSI value to the neighboring mesh nodes as well as the routing metrics in each 

mesh node. The mesh router includes its routing metrics into the periodic beacon message. The handoff is 

triggered when the latest smoothed VFLR value is below a predefined threshold. The mobile node selects a 

candidate set of neighboring mesh routers with good connectivity based on the value of RSSI. It then 

chooses the mesh router with the best routing metric to the video source as the target mesh router. For 

example, if the video source is outside the networks, the mobile user chooses the router with best routing 

metric to its gateway. The link layer handoff and the network layer handoff are taken place after the mobile 

user makes the handoff decision. 

We choose to use the link state routing protocol in the mesh networks. As mentioned in [71], this 

class of protocol has better performance than mobile IP approach during the handoff. Assume the network 

layer uses IP-based routing protocol. Consider the case that a mobile user is switching from mesh router A 

to mesh router B. As mentioned in the in Section 6.1, in a link state routing protocol, it takes time to flood 

the link-state update from mesh router B to the entire networks. The data for the mobile user might be 

dropped at mesh router who has not received the new link-state update regarding to the handoff. To tackle 

this problem, we propose a novel redirection scheme at mesh router A as follows. Before the mobile user 

associates to the mesh router B, it notifies mesh router A the IP address of the target mesh router (i.e, the IP 

address of mesh router B). The network layer handoff is triggered after the mobile user switches to mesh 

router B. During the handoff, mesh router B updates the routing entry to the mobile user and sends the link-

state update. Assume the larger the link state value is, the worse the link is. Define the link state between 

mesh router A and the mobile user before the handoff as l , the value of the shortest path from mesh router 
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A to mesh router B as p. Instead of reporting its broken link with the mobile user, mesh router A sets the 

link state to the mobile user as ( ), 1l pα α⋅ + > and sends the faked link-state update to the networks. The 

purpose of this mechanism is to solicit video data which will be dropped at the mesh routers without a route 

to the mobile router. Since we intentionally make the faked link between mesh router A and the mobile 

user as a bad link, this faked link-state update does not affect the mesh routers who have already received 

the link-state update from the router B (i.e., the real link state). To forward these solicited data to the 

mobile user, mesh router A also configures an IP tunnel that redirects all the data for the mobile user to 

mesh router B. Mesh router B forwards the data received from the tunnel to the mobile user. Mesh router A 

stops sending the faked link-state update and cancel the tunnel when it receives the link-state update about 

the mobile user and mesh router B. This is because when the link-state update from mesh router B arrives 

at mesh router A, a route from mesh router A to the mobile user has been established in the network. 

Therefore, the duration of redirection scheme at mesh router A depends on the propagation delay of the 

link-state update from mesh router B to mesh router A.  

An example of the proposed redirection scheme is illustrated in Figure 37. In Figure 37 (a), a 

mobile user associates to mesh router n3. The video stream is from the gateway and traverses mesh router 

n1, n2, and n3 before it reaches the mobile user. The topology in the figure indicates that n3 and n4 need to 

communicate with each other through n1, n2. Suppose the mobile user switches from n1 to n4, and the link 

state routing is adopted in the networks. When the network layer handoff starts, both n1 and n4 send out the 

link-state update. Suppose at a certain moment of time, the link-state update from n4 reaches n1 and the 

link-state update from n3 reaches n2. Figure 37 (b) illustrates the scenario when the proposed redirection 

scheme is not employed. Since n1 receives the update from n4, it starts forwarding the data from the 

gateway to n4. However, certain data has been incorrectly routed to n2 by n1 due to the delay occurred by 

the link layer handoff and network layer handoff. Since both n3 and n2 have not received the new update 

from n4, the incorrectly routed data will be dropped at these two nodes. In Figure 37 (c), the redirection 

scheme is adopted. In this case, n3 sends a faked link-state update to n2. Since n2 has not received the new 
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update from n4, it forwards all the incorrectly routed data to n3. n3 sets up a IP tunnel to n4 and redirects the 

incorrectly routed data to n4 through the tunnel. When n4 receives the data from the tunnel, it forwards the 

data to the mobile user.  

 

Figure 37. Example of traffic redirection during handoff 
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7. CONCLUDING REMARKS 

In this dissertation, we propose protocols and theoretical insights that lead to a robust wireless 

mesh access (WMA) environment for mobile video users. The video sharing methodology has been 

employed throughout this dissertation to help the access network sustain a sudden spurt of requests on 

popular video in peak time. By considering together channel scheduling, admission control, as well as 

multicast routing in the WiMax-based WMA environment, we have shown that the cross layer framework 

can be leveraged to achieve reliable and scalable video-on-demand services in the access networks. 

Theoretical models have been proposed to formulate the video multicast problem in a general wireless 

mesh networks. Based on these models, we have proposed algorithms towards to the optimal performance 

of the Patching-based video multicast in WMA environment.  Practical issues are also examined in this 

work. We propose a Dynamic Stream Merging (DSM) technique to enable sharing of wireless resources 

without the cooperation from the online video server. As a light-weighted distributed technique, DSM 

maximizes the per link video sharing performance with small time complexity and message complexity. 

We implement DSM under Linux system and validate its efficiency in a wireless mesh testbed. We also 

study the handoff issue for mobile video user and propose a novel QoS oriented handoff technique. We 

point out that the quality of the video as well as the routing information associate with the mesh router are 

overlooked in existing handoff technique. Our cross-layer handoff takes the video frame loss ratio, the 

routing metrics of the mesh routerss, and the link quality to each mesh router into account. A novel 

redirection scheme is also employed to avoid the data loss in continuous video stream during the handoff.  
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