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ABSTRACT

Recent measurements on radio spectrum usage have revealed the abundance of under-

utilized bands of spectrum that belong to licensed users. This necessitated the paradigm

shift from static to dynamic spectrum access (DSA) where secondary networks utilize un-

used spectrum holes in the licensed bands without causing interference to the licensed user.

However, wide scale deployment of these networks have been hindered due to lack of knowl-

edge of expected performance in realistic environments and lack of cost-effective solutions

for implementing spectrum database systems. In this dissertation, we address some of the

fundamental challenges on how to improve the performance of DSA networks in terms of con-

nectivity and capacity. Apart from showing performance gains via simulation experiments,

we designed, implemented, and deployed testbeds that achieve economics of scale.

We start by introducing network connectivity models and show that the well-established

disk model does not hold true for interference-limited networks. Thus, we characterize con-

nectivity based on signal to interference and noise ratio (SINR) and show that not all the

deployed secondary nodes necessarily contribute towards the network’s connectivity. We

identify such nodes and show that even-though a node might be communication-visible it

can still be connectivity-invisible. The invisibility of such nodes is modeled using the con-

cept of Poisson thinning. The connectivity-visible nodes are combined with the coverage
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shrinkage to develop the concept of effective density which is used to characterize the con-

nectivity. Further, we propose three techniques for connectivity maximization. We also show

how traditional flooding techniques are not applicable under the SINR model and analyze

the underlying causes for that. Moreover, we propose a modified version of probabilistic

flooding that uses lower message overhead while accounting for the node outreach and in-

terference. Next, we analyze the connectivity of multi-channel distributed networks and

show how the invisibility that arises among the secondary nodes results in thinning which

we characterize as channel abundance. We also capture the thinning that occurs due to

the nodes’ interference. We study the effects of interference and channel abundance using

Poisson thinning on the formation of a communication link between two nodes and also on

the overall connectivity of the secondary network.

As for the capacity, we derive the bounds on the maximum achievable capacity of a

randomly deployed secondary network with finite number of nodes in the presence of primary

users since finding the exact capacity involves solving an optimization problem that shows

in-scalability both in time and search space dimensionality. We speed up the optimization

by reducing the optimizer’s search space. Next, we characterize the QoS that secondary

users can expect. We do so by using vector quantization to partition the QoS space into

finite number of regions each of which is represented by one QoS index. We argue that any

operating condition of the system can be mapped to one of the pre-computed QoS indices

using a simple look-up in O log (N) time thus avoiding any cumbersome computation for
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QoS evaluation. We implement the QoS space on an 8-bit microcontroller and show how the

mathematically intensive operations can be computed in a shorter time.

To demonstrate that there could be low cost solutions that scale, we present and

implement an architecture that enables dynamic spectrum access for any type of network

ranging from IoT to cellular. The three main components of this architecture are the RSSI

sensing network, the DSA server, and the service engine. We use the concept of modular

design in these components which allows transparency between them, scalability, and ease

of maintenance and upgrade in a plug-n-play manner, without requiring any changes to the

other components. Moreover, we provide a blueprint on how to use off-the-shelf commercially

available software configurable RF chips to build low cost spectrum sensors. Using testbed

experiments, we demonstrate the efficiency of the proposed architecture by comparing its

performance to that of a legacy system. We show the benefits in terms of resilience to

jamming, channel relinquishment on primary arrival, and best channel determination and

allocation. We also show the performance gains in terms of frame error rater and spectral

efficiency.
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CHAPTER 1: INTRODUCTION

The most vital resource for any wireless application or service (i.e., mobile telephony, TV

and radio broadcasts, GPS, maritime navigation, tactical communications, etc.) is the radio

spectrum. These services operate on specific portions of the electromagnetic spectrum which

have been statically allocated for the said purpose. These long-term spectrum allocations and

management are usually done under the strict guidance of a governmental agency. In the US,

the Federal Communications Commission (FCC) sets the rules and regulations that govern

the access to spectrum. These rules have led to allocation of spectrum chunks for specific

purposes. Given the limited workable spectrum for any service, there is a fundamental

theoretical limit on the achievable capacity as originally shown by Shannon [1].

It can be noted that the spectrum allocation and management have traditionally fol-

lowed a ‘command-and-control’ approach and allocated spectrum to specific services under

restrictive licenses. The restrictions specify the technologies to be used and the services to

be provided, thereby constraining the ability to make use of new technologies and the ability

to redistribute the spectrum to higher valued users. In most countries, most frequencies

have been completely allocated to specific uses and spectrum appears to be a scarce resource

within the current regulatory framework. There have been experimental studies that reveal

that spectrum utilization is time and space dependent and that most parts of radio spectrum
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are highly underutilized [2]. These limitations along with dis-proportionate and time-varying

demand of radio services have motivated a paradigm shift from static spectrum allocation

towards a more ‘liberalized’ notion of dynamic spectrum management in which secondary

networks/users (non-licence holders) can ‘borrow’ idle spectrum from those who hold li-

censees (i.e., primary networks/users), without causing harmful interference to the latter –

a notion commonly referred to as the dynamic spectrum access (DSA) or open spectrum

access [3, 4]. Though currently available hardware have limited capability in harnessing

under-utilized spectrum, the breakthroughs in cognitive radio technologies [5, 6], empow-

ered by software defined radios (SDR) [7], are poised to promote efficient use of spectrum

by adopting this open spectrum approach.

A typical DSA network consists of secondary users who coexist with a network of

primary users (spectrum owners). With unregulated deployment of such DSA networks, it

is unclear how these networks will perform in terms of assuring quality-of-service (QoS) to

the end users. In that regard, we would at least like to know whether the network would

even remain connected or not, and if so, what would be the expected capacity. It is worth

mentioning that information dissemination, routing, locating resources, and advertisement

of services are highly dependent on the network’s connectivity. The more the network is

connected, the higher are the chances of having these services being available to the secondary

users.

Finding solutions to the aforementioned issues is non-trivial since there could be

several questions that might arise with regard to connectivity. Some pertinent questions are:
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When will the giant component that spans most of the nodes emerge? If it emerges, how big

is it? What are the network parameters (including primary density and secondary density)

under which such component emerges? For a given network, how can the connectivity

be maximized? For a given area, what is the optimal deployment density what would

achieve connectivity maximization? What are the effects of multi-channel on the network’s

connectivity?

While the above mentioned questions are challenges by themselves, what makes them

even more difficult is the additional constraints posed by the primary users. Constraints

such as the tolerable limits on the signal to interference and noise ratio (SINR) limit the

transmission capabilities of secondary users and thus affects their coverage and capacity.

For finite networks, finding that exact values for the expected capacity involves solving a

non-convex functional constrained optimization problem which can be infeasible to solve in

real-time. Several issues arise: How can we find a bound to the maximum capacity of a

deployed network in a finite time? Is there way to speed-up the optimization process? Can

dimensionality reduction be applied without compromising the solution? Is it possible to

achieve a sub-optimal solution in a shorter time? Though in theory, we can find reasonable

solutions to these problems, the question remains if such solutions are viable in practice.

Given the limited computational capability of power constrained DSA radios, can we get the

desired results within a time budget.

In addition to the aforementioned theoretical challenges, there is the considerable

sensing overhead in DSA networks which has hindered their deployment. The International
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Telecommunications Union (ITU) has shown that sensing is the most expensive part of the

DSA system [8]. Moreover, sensing for vacant channels has been a major component for most

detection techniques that have been proposed by the Federal Communications Commission

(FCC) (in the US) for the realization of DSA systems [9, 10].

To solve this issue and to provide a consistent assay on spectrum vacancies, as well

as to have less reliance on sensors for sensing, database driven spectrum allocation and

access policies have been mandated [11]. However, even with such approach, having enough

spectrum sensors to feed the database (and the derived services like the radio environment

map) remains a bottleneck from a scalability perspective as such approaches rely on expensive

hardware platforms for the sensing tasks [12]. Open questions remain to be answered are:

How can we find a solution to the sensing problem? Can we overcome the need for expensive

hardware sensing platforms? How can we address the cost-scalability issues? Is it possible

to come up with a new design paradigm for a low cost database DSA driven system? Is it

possible to incorporate the current available technologies from different vendors under one

system? If so, how? Although answers to these questions can be argued and debated, the

real challenge is to demonstrate the performance of a database assisted DSA system via real

implementation.
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1.1 Contributions of this Work

This dissertation addresses some of the fundamental challenges that DSA networks face

today. We not only propose novel ways for DSA networks to perform better, we quantify the

expected performance for a given network setting. The main contributions of this dissertation

are as follows.

1. We characterize the connectivity of a continuum secondary network under the SINR

model using percolation theory and stochastic geometry. We show how the well-

established condition for continuum percolation does not hold true in the SINR regime.

Thus, we find the condition which characterizes the connectivity of such networks. We

show how and why not all the deployed secondary nodes necessarily contribute towards

the network’s connectivity even though they might participate in the communication

process. We model the invisibility of such nodes using the concept of Poisson thin-

ning. We combine the thinning with the coverage shrinkage to develop the concept of

percolation visible nodes (effective density). Further, we propose three techniques for

connectivity maximization.

2. We show how traditional flooding techniques are not applicable under the SINR model

and analyze the underlying causes for that. Further more, we identify the source of

duplicate transmissions in such techniques. To increase node outreach in interference-

limited DSA networks, we propose a modified version of probabilistic flooding that

uses lower message overhead without compromising network connectivity.
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3. We analyze the connectivity of multi-channel distributed networks under the SINR

model. The invisibility that arises among the secondary nodes results in thinning which

we characterize as channel abundance. We also capture the thinning that arises due

to the nodes’ interference. We study the effects of interference and channel abundance

using Poisson thinning on the formation of a communication link between two nodes

and also on the overall connectivity of the secondary network.

4. We derive the bounds on the maximum achievable capacity of a randomly deployed

secondary network with finite number of nodes in the presence of primary users since

finding the exact capacity involves solving an optimization problem that shows in-

scalability both in time and search space dimensionality. We speed up the optimization

by reducing the optimizers search space. The derived bounds provide insights on the

networks maximum and minimum achievable capacities.

5. We characterize the QoS that secondary users can expect in a DSA network in the

presence of primaries. We use vector quantization to partition the QoS space into

finite number of regions each of which is represented by one QoS index. We argue that

any operating condition of the system can be mapped to one of the pre-computed QoS

indices using a simple look-up in O log (N), time thus avoiding any cumbersome com-

putation for QoS evaluation. We implement the QoS space on an 8-bit microcontroller

and show how the mathematically intensive operations can be computed in a short

time.
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6. We break the cost-scalability barrier of DSA systems by designing a low cost modu-

lar DSA system architecture consisting of multiple components. Each component has

clearly defined input-output functions that allow it to be independently and easily mod-

ified in a plug-n-play manner, without requiring any changes to the other components.

Moreover, we provide a blueprint on how to use the off-the-shelf commercially available

software configurable RF chips to build low cost spectrum sensors. We implement the

proposed DSA system architecture and show its performance. Finally, we quantify the

gains from having DSA based communications versus legacy communications.

1.2 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 presents the related work that is relevant

to this dissertation. In Chapter 3, the connectivity of DSA networks is analyzed and the

corresponding maximization techniques are explained. Chapter 4 discusses the capacity

bounds of finite DSA networks and ways to optimize them. Chapter 5 presents the design

and implementation of a low cost DSA system. In Chapter 6, the simulation model and

results are presented. Conclusions are drawn in Chapter 7.
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CHAPTER 2: RELATED WORK

In this chapter, we discuss the literature that is most relevant to this dissertation. We

divide the discussion into i) connectivity, ii) capacity of distributed wireless networks, and

iii) implementation of DSA Systems

2.1 Connectivity of Distributed Wireless Networks

There is a rich literature with classical results for connectivity of both homogeneous [13, 14,

15] and heterogeneous [16, 17, 18, 19] networks under both the Boolean model [20] and the

SINR model [21]. Meester and Roy in [22] were the first to show the percolation condition for

continuum networks under the Boolean model is λ > λc, where λ is the deployment density

and λc is some critical density. The authors in [13] studied percolation for scenarios where

the nodes interfere each other, where they showed that even under the SINR model, the

resulting connectivity is similar to that of a Boolean model given that the interference from

other nodes can be sufficiently reduced at each receiving node. Similarly, Vaze in [23] found

the receiver threshold for which the condition λ > λc indicates percolation under the SINR

model. In [14], continuum percolation was used to obtain the critical transmission range

of the asymptotic connectivity of independent identically distributed nodes in the limiting
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case. In [15], the k-connectivity of a random graph was linked with the minimum node

degree for graphs with high number of nodes. In [16], the k-connectivity of cognitive radio

network (CRN) was studied using percolation and asymptotic-connectivity where the critical

secondary density was found. In [17], the percolation degree of the secondary users and its

relation with the k-disjoint paths was studied in large scale CRNs. In [18], the activity of the

primary users was assumed to be dynamic; its effects on the available number of channels

for the secondary network was studied using percolation theory in which the critical primary

user densities were illustrated. In [19], percolation was used to study the connectivity of

heterogeneous networks via identifying connectivity regions which were characterized by a

set of primary and secondary networks in which percolation occurs. In [24], black-holes that

were caused by nodes failures and their spread properties in CRN was characterized using

percolation theory. In [25], it was found that cooperation among heterogeneous secondary

networks leads to better connectivity if the cooperating secondary networks percolate while

the non-cooperating ones do not percolate.

All the above mentioned works provide useful theoretical insights. However, they

did not take into consideration the availability of multi channels for DSA networks and the

physical limitation of DSA radios being not able to communicate over a maximum number of

channels due to hardware or scanning limitations; thus the connectivity under such scenarios

remain unsolved under both the Boolean and SINR models. The percolation conditions

under the SINR model is still unknown. Moreover, even the works that studied percolation

under the SINR model modified the percolation condition of the Boolean model to make
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it applicable to the SINR model (i.e., special cases) rather than explicitly identifying the

behavior of connectivity in the SINR regime.

2.1.1 Flooding

Flooding is a popular technique where information from a node is sent to all other nodes in the

network. Though easy to implement, flooding causes excessive messaging and communication

overhead. Oftentimes, flooding is used to analyze reachability in networks.

In [26], a dynamic source routing protocol for ad hoc networks that uses flooding is

presented. In [27], it was shown that the implicit redundancy built in conventional flooding

provides resistance against high degree of message losses and node failures as well [27]. In

order to reduce the number of re-transmissions, variations of conventional flooding have been

proposed [28] like, Time to Live in AODV [29], random walks [30], probabilistic flooding [31],

and teeming [32]. Haas et. al. [31] were one of the earliest to notice that flooding of a gossip

in a connected graph under the Boolean model exhibits a bimodal behavior, i.e., there was

a critical value of the re-boradcast probability (P ) above which the gossip spreads to almost

all the nodes in the network and below which the gossip dies out. The optimization for P

was solved via simulation in [31] and it was shown that the optimized P could reduce the

number of broadcasts by 35% when applied to AODV. Similarly, authors in [33] investigated

probabilistic flooding in mobile ad-hoc networks, while in [34] the authors bounded the

latency of information spread. Probabilistic flooding was also analyzed in [35] for random
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networks. A non-uniform value of P that is inversely proportional to the node degree was

proposed in [27].

All the previous work considered random wireless networks under the Boolean model.

However, flooding and probabilistic flooding were not investigated under the SINR model.

2.2 Capacity of Distributed Wireless Networks

Though the expected performance of traditional wireless networks networks have been well-

studied, such studies are still being pursued for DSA networks. In the recent past, there

have been several works that discussed the capacity of CRNs in overlay and underlay modes.

In [36], the transmission capacity of the hybrid CRN was studied where underlaid and over-

laid access approaches were combined to improve the transmission capacity of CRN and it

was shown that the hybrid mode yields higher capacity than the underlay or overlay es-

pecially when the primary network had light load. In [37], the capacity of the CRN was

enhanced using a special receiver and frame structure for spectrum sharing. In [38], the

transport capacity of single hop CRN that used Aloha for MAC and nearest neighbor pro-

tocol for routing was derived. In [39], the secrecy capacity of CRN was investigated and

secure communications in terms of primary and secondary users and the eavesdroppers were

highlighted. In [40], the asymptotic capacity of CRN was studied. In [41], the asymptotic

capacity of CRNs with static primary users and heterogeneous mobile secondary users were

studied. In [42], the capacity limits of cognitive radio (CR) networks with a hybrid relay
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scheme in which the primary nodes dominate the spectrum usage, while coordinating with

secondary or CR nodes in forwarding packets were investigated. In [43], the Erlang capacity

in coordinated cognitive radio networks with VoIP traffic was investigated where an analyti-

cal model was developed by employing time-scale decomposition technique and conventional

continuous and discrete time Markov chain tools. In [44], the Erlang capacity in coordinated

cognitive radio networks with real-time hard delay constraint traffic as function of the rented

resources was analytically calculated. In [45], the transmission capacity was increased by

using a spectrum sharing scheme with preservation regions to avoid excessive interference

from the secondary users to the primary users. In [46], an amplify-and-forward-based coop-

erative signaling scheme that employs power control to prevent harmful noise propagation

was presented and the capacity of the resulting MIMO link was derived. In [47], call ad-

mission control algorithms are proposed for slotted ALOHA channel access CRNs where the

capacity of the schemes was analyzed.

It is to be noted that the approaches in the above mentioned works are asymptotic

in nature and do not provide the capacity for an arbitrary network with finite number of

nodes. Moreover, they do not provide any mechanism to improve the optimizer’s scalability

and execution time which leaves the optimizer’s search space dimensionality reduction as an

open problem. In addition, they do not investigate the topological effects that result from

the node’s pairing and the corresponding capacity of the network.
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2.2.1 QoS Evaluation

There have been some power control algorithms that have been proposed that address QoS

issues in CRNs [48, 49, 40, 50, 51]. In [48], a two-phase mixed distributed/centralized con-

trol algorithm is developed for a point to multi point scenario, in which the objective was to

maximize the throughput of the CRN with minimal cooperation between the cognitive and

the primary devices. In [49], a distributed power control protocol was proposed to enable

effective spectrum sharing between primary and secondary users to maximize the aggregate

capacity. It also ensured that the interference incurred to the primary was within the in-

terference limit. In [40], the network performance was optimized via performing optimal

control on each node, and a formal mathematical model for joint power control, schedul-

ing, and routing was developed. In [50], the optimal power control in CRN was modeled

as a concave minimization problem. In [51], a power control algorithm is designed with

low implementation complexity through reinforcement learning, which did not require the

interference channel and power strategy information among users. From the above it can be

noted that all such algorithms are either centralized or distributed in nature, and capable

of handling both real time and non-real time traffic. Some also consider different classes of

traffic with various QoS requirements.

Although the above mentioned works study power control from different aspects;

however none addresses how to evaluate the QoS metrics for the corresponding optimized
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power vector. Thus the problem of evaluation on cognitive devices with limited processing

power remains open.

2.3 DSA System Implementations

Most prior DSA system implementations either used specialized components (mainly soft-

ware defined radios) or implemented sensing algorithms that improve the primaries’ detec-

tion probability [52, 53, 54, 55, 56]. In [52], a real time hardware for spectrum sensing

based energy detection with reception diversity was implemented using Stratix II EP2S180

and FPGA boards. In [53], a spectrum sensor for DVB-T signals was implemented using

dedicated FPGA and receiver boards with the emphasis being on the signal processing part

on the FPGA board. In [54], a cognitive radio device was designed and built with the

main focus being small form factor and flexible configurability. In [55], a spectrum sensor

was implemented on FPGA board with an adaptive threshold technique to increase the pri-

mary’s detection probability. In [57], a spectrum sensing network for the UHF TV band

from 470-870 MHz was built and its readings were used by a cognitive engine to increase

the operational reliability. In [56], a double thresholding primary detection algorithm was

implemented on an open wireless research platform (WARP) which showed improvements

in the primary’s detection probability. In [10], spectrum sensors were built for the 470-870

MHz TV band in which Ethernet enabled Spartan-6 FPGA boards, MicroBlaze boards, and

RXIC boards were used. However, none of the above mentioned implementations addressed:
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i) the issue for the cost of the deployment, ii) how scalable the systems were and at what

price point, and iii) the gains achieved compared to the legacy systems. A part of this disser-

tation addresses these questions by implementing a low-cost database assisted DSA system

that scales.
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CHAPTER 3: CONNECTIVITY OF DSA NETWORKS

This chapter studies and characterizes the connectivity of DSA networks under the Boolean

and SINR models. We start by deriving the percolation condition for DSA networks under

the SINR model and compare it with that under the Boolean model. Next, we use our find-

ings on connectivity and interference to study the node outreach problem in DSA networks.

We study the performance of traditional and probabilistic flooding techniques under the

SINR model where we show that some nodes are rendered in-usable due to interference. To

solve that problem, we developed a modified version of probabilistic flooding which accounts

for interference. We compare its performance with the two aforementioned flooding tech-

niques. Finally, we characterize the connectivity of multi-dimensional DSA networks under

the Boolean and SINR models. The contents of this chapter appeared in [58, 59, 60, 61, 62].

3.1 Connectivity in DSA Networks

Nodes of a connected network can communicate with each other over one or multiple hops,

whereas in a disconnected network there are two or more islands of subnetworks whose nodes

cannot communicate with other subnetworks. For any secondary DSA network to provide

sustained communication services, it is important that the network remains connected where
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radios (nodes) can communicate with each other directly or via intermediate nodes. Thus,

knowing the connectivity properties is of utmost importance as they play a major role in

determining the network’s expected QoS including throughput, reliability, routing, and com-

munication range. We point out that connectivity depends on a number of factors like node

density, radio transmission range of nodes, availability of channels, and a node’s ability to

decode signals in the presence of noise.

The concept of asymptotic connectivity is usually used for studying homogeneous net-

works where all nodes in the network are connected with high probability when the number

of nodes approaches infinity [16]. However, in the presence of primaries, it is not necessary

that the secondary nodes remain connected with high probability. even in the limiting case

because primary transmissions have a profound impact on secondary transmissions both in

time and space. Thus, under such circumstances it becomes necessary to investigate the

connectivity of the secondaries which is defined as the existence of an unbounded connected

component of its nodes [23].

3.1.1 Connection Models

For a continuum network (in R2), the connection model plays an important role in deter-

mining its connectivity since it defines the rules for establishing edges between the nodes.

The two most common connection models for wireless networks are the Boolean and the

SINR models.
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3.1.1.1 Boolean Model

In the Boolean model, also known as the disc model, the nodes have a fixed range and two

nodes are said to be connected if and only if they are within that range (Euclidean distance)

of each other [20].

We point out that, this is the most commonly used connection model in studying the

connectivity of wireless networks without interference [17, 18, 19]. Bypassing interference

can be attributed to interference cancellation or medium access control (MAC) protocol

techniques. Although the Boolean model is simple in nature, however it cannot answer

if two nodes can communicate (i.e., can decode each other’s signal) when there are other

transmitting nodes in the vicinity. This is why the SINR model becomes useful.

3.1.1.2 SINR Model

The SINR model is effective where nodes transmit on the same channel at the same time

causing interference to each other. An interferer is a transmitter that is in the vicinity of

a receiver and is transmitting on the same channel that the receiver is using. Even with

such interferers, correct decoding of the intended signal is still possible if the SINR is greater

than some pre-defined threshold. A bi-directional link requires the SINR at both receiver-

s/transceivers to be greater than the threshold. Thus, for interference-limited systems, the

condition for successful transmission, which also denotes connectivity, from Sj to Si on a
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given channel is:

SINRj,i =

P
xα
j,i

∑

xk,i≤rI ,∀k 6=i,j

γ × P

xαk,i

≥ β (3.1)

where P is the transmission power in Watts of each secondary transceiver, α is the path

loss exponent, xj,i is the Euclidean distance between Si and Sj , γ is the interference cancel-

lation parameter (also known as the processing gain which abstracts the gain from coding,

interference cancellation schemes, etc.). Note that, the parameter γ allows the receiver to de-

code transmissions from more than one transmitter, just like a code division multiple access

(CDMA) system.

3.2 Connectivity of Interference Limited DSA Networks

We study the connectivity of DSA networks under the SINR model using percolation theory

and investigate how can we maximize connectivity. Let us first discuss some preliminaries

of percolation theory.

3.2.1 Percolation Theory Preliminaries

Phenomena such as impact propagation, reachability, and formation of connected clusters

in a graph can be best studied using percolation theory as it provides the appropriate tools
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to study the connectivity of heterogeneous entities in i) the continuum space and ii) the

multi-dimensional lattice Ld, where d is the number of dimensions [22, 63].

Percolation theory deals with the existence and formation of an infinite connected

component in a graph [64]. The term percolation on the other hand, refers to the formation of

the infinite component which is usually referred to as the infinite cluster. The infinite cluster

is usually referred to as Cmax and is defined as: |Cmax| = ∞, where |.| is the cardinality

operator [64]. With no condition on any particular node inclusion, the formation probability

of the infinite cluster is given by ψp. By Kolmogorov zero-one law, ψp is either 0 or 1 [65].

Percolation probability, θp, refers to the probability of the formation of the infinite cluster

conditioned on including a particular node (which could be the origin). Thus, θp also refers

to the probability of any node being contained in Cmax. The terms super and sub-critical

are used to indicate whether the network is percolated or not, respectively

There are two types of percolation i) discrete percolation, and ii) continuum perco-

lation. The former studies phase transitions in the discrete grid (lattice), while the latter

studies phase transitions in the continuum space [63]. Discrete percolation has been exten-

sively studied [63, 66, 67, 68]. However due to the continuum nature of the wireless networks,

we use continuum percolation for our analysis. As for continuum percolation, Meester and

Roy in [22] were the first to characterize the percolation condition under the Boolean model

which is λ > λc, where λ is the deployment density and λc is the critical density which is

defined as the minimum deployment density for which the network percolates for the first

time.
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Finally, we point out that, in this work, we use the words ‘percolation’ and ‘connectiv-

ity’ synonymously to indicate the formation of the infinite component Cmax i.e., percolation

implies θp = P (|Cmax| =∞) > 0 and ψp = 1.

To summarize, in our context, we use percolation theory to characterize the network pa-

rameters (primary and secondary densities, coverage radius, percolation probability) that

achieve the phase transition i.e., formation of an infinite connected secondary network from

multiple isolated smaller networks.

3.2.2 System Model

We consider a secondary DSA network co-existing with primary users. The secondary users

(transceivers) are distributed according to a Poisson point process of density λs nodes per

unit area. Each secondary user has maximum coverage radius rs (achieved under minimal

interference) and interference radius rI , where rI > rs. rI is the maximum distance from

which the transceiver can detect an interference from another secondary transmitter. Each

receiver (transceiver) has a receive threshold β and noise cancellation factor γ. γ is also

known as the processing gain and it abstracts the gains from coding, interference cancellation

techniques etc. Note that, γ allows the transceiver to decode the transmissions from the

neighboring transceivers. A neighbor of a node is any other node that lies within a distance

of rs from itself.
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The primary users (transceivers) are also distributed following the Poisson point pro-

cess with density λp users per unit area. Each primary user has a protection radius of rp

and transmit power Pp. In this work as in [19, 69, 70] we use zero-interference tolerance

inside rp (i.e., secondaries within rp evict on primary presence). Also, as in the percolation

literature [16, 19, 69, 70] in order to keep the analysis and the derived results generic, no

power control is used for the secondary transceivers, i.e., all the secondary nodes transmit

with the power Ps as long as they are not within rp from any primary user(s). n denotes the

number of secondary users.

3.2.3 Percolation Under SINR Model

Till date, the condition of percolation for continuum networks under the Boolean model,

λ > λc, has been considered the closest approximation in characterizing percolation. We will

prove that this condition does not hold true under interference i.e., it does not necessarily

indicate percolation. The following lemma is not limited to DSA networks only as it governs

the percolation for any wireless network in the SINR regime by simply assuming no primary

presence.

Lemma 3.1. λ > λc does not apply for continuum networks under the SINR model for a

fixed γ ∈ R.

Proof: The proof is done by contradiction. To keep the proof generic, we assume that there

are no primaries.
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Assume λ > λc holds for a network with a given (fixed) γ under the SINR model. This

means for a constant k ≥ 1, a density of kλ also percolates. Now as k increases, so does

the number of neighbors each receiver has. Eventually for some value of k, the receiver’s

neighbors will generate more interference than what γ can tolerate. This makes the ratio

of the numerator of Eqn. (3.1) to the denominator less than β which renders the receiver

interfered. As k is increased, more receivers will be interfered. For k →∞ all the nodes are

interfered, thus there are no links in the network. However, the condition λc < kλ is still

satisfied, which indicates percolation, thus a contradiction.�

In search for the percolation condition of the secondary network in the SINR regime,

we observe that the percolation condition of the Boolean model (λs > λcs) considers all the

deployed nodes as possible candidates that aid the percolation process. In addition to that,

it also assumes all the nodes have coverage radius of rs. We point out that, under such model

and due to interference i) some nodes will be invisible to percolation, and ii) the nodes will

have their coverage radius reduced. This drives us to i) discount from the λs nodes per

unit area the ones that are invisible to the percolation process, ii) map the coverage area of

the percolation-visible nodes (along with their reduced coverage) to an equivalent density in

the Boolean model with a fixed coverage radius for each node. We refer to that equivalent

density as the percolation-effective density λeff . Only then, we can use λeff > λcs as the test

for percolation since λeff meets the criteria of the classical Boolean model.
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3.2.3.1 Reduced Coverage

Recall that, rs denotes the maximum coverage radius with no interference. However, due to

interference, the maximum coverage radius of each node shrinks as more interferes/neighbors

are added. For uniformly deployed neighbors, the probability of having an interferer within

a distance x from a deployed node is fX(x) = 2x/rI for 0 ≤ x ≤ rI with E[fX(x)] =
2
3
rI .

Thus the average coverage radius r̄s(N) for a node with N secondary interferes is:

r̄s(N) =
2
3
rI

(Nβγ)1/α
(3.2)

The above equation follows directly from Eqn (3.1).

From a single node’s perspective, this shrinkage will effect its coverage area. From

a percolation’s perspective, this will reduce the total coverage area, which is equivalent to

reducing the number of deployed nodes. We use the scaling property to reflect this effect on

the percolation process. Scaling property states that, percolation of a network with radius

r1 and density λs is equivalent to a network whose radius is r2 and density λs× (r1/r2)
2 [22].

3.2.3.2 Node Invisibility

Now, we develop the basis of classifying a node as invisible, which is defined as a physically

deployed node that is invisible (in-capable of participating) to the percolation process. We

characterize three classes of invisible nodes.
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1. Dominated Nodes: A 1-dominated node is a node which is prevented from estab-

lishing a successful communication with any other neighbor(s) due to the transmission

of its closest neighbor. For example, node i (shown in Fig. 3.1(a)) is 1-dominated by

j (i’s closest neighbor). This implies SINRj,i ≥ β, and SINRj′,i < β for any other

neighbor j′. SINRj′,i < β is because of the interference from j which is the dominant

interferer for any transmission destined to i.

The concept of dominated nodes exists only from percolation perspective. From a com-

munication perspective, a 1-dominated node is not interfered since it is communicating

with its closest neighbor successfully.

In the same manner, we define a 2-dominated node as a node which is dominated by

two of its closest neighbors i.e., i is 2-dominated by its closest neighbors j and ĵ if

SINRj,i ≥ β and SINRĵ,i ≥ β while SINRj′,i < β for all the other neighbors due to

the interference received from j and ĵ. Fig. 3.1(b) illustrates a 2-dominated node.

In [65], it was shown that in order for the network to percolate in the continuum

domain, each node needs strictly more than 2 connections i.e., K > 2, where K is the

number of connections. Computer simulations showed that the lowest value K can be

3 [65]. On this basis, we consider any node which is 1- or 2-dominated as invisible to

the percolation process.

2. Interfered Nodes: These are the nodes which cannot even sustain at least one

connection i.e., SINR < β (for all neighbors). This is due to i) interference by sur-

rounding secondary and primary users. or ii) the secondary node being located within
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the eviction region of the primary user thus cannot transmit due to the zero-interference

tolerance. Having SINR < β means that the node is obsolete from a communication

perspective which makes it invisible from a percolation’s perspective as well.

We point out that, from a communication perspective an interfered node is not the

same as a dominated node since the first has no connections while the latter has at least

one connection. However, from percolation’s perspective both of them are invisible to

the formation of the infinite cluster.

3. Nodes within Interference-Isolated Components: These are nodes that are con-

tained in an interference-isolated component i.e., within 3 or more nodes; however the

interference and dominance by the component’s nodes prevent them from connecting

with other components. Nodes contained in such components are rendered invisible

from a percolation’s perspective as well. Nodes k, l, m and n in Fig. 3.1(b) form an

interference-isolated component.

(a) (b)

Figure 3.1 (a) i is 1-dominated by j, (b) i is 2-dominated by j and ĵ. The figures also show
that j-i in (a) and m-n in (b) participate in the communication process but not in the

percolation process.
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From the above three cases, it is obvious that under the SINR model not all nodes

contribute towards the percolation process. This effectively lowers the deployment density

from λs to λs(1−P
wp
thin) where P

wp
thin is the thinning probability. We use the superscript wp to

explicitly denote the probabilities with the primaries (i.e., primaries are present). Later, we

find the same probabilities without the primaries where we drop the superscript. For now,

we have:

Pwp
thin = Pwp

d−1 + Pwp
d−2 + Pwp

inter + Pwp
iso (3.3)

where Pwp
d−1, P

wp
d−2, P

wp
inter and P

wp
iso denote respectively the probabilities of being 1-dominated,

2-dominated, interfered and isolated in presence of primaries. We point out that all the

probabilities in the equation above are functions of λs, λp, γ, β, rs, rI , rp, and α. Thus

we propose not to use λs > λcs when testing for percolation in the continuum domain under

the SINR model, but instead consider only the percolation-visible nodes with their coverage

radius scaled to rs. Thus:

λeff > λcs (3.4)

λeff = λs(1− P
wp
thin)×

(

r̄s(N)/rs
)2

(3.5)

Next, we proceed to analytically characterize all the aforementioned probabilities.
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3.2.4 Characterization of Thinning Probability

Due to the complexity involved in calculating Pwp
thin and in order to make the analysis and

the proposed concepts easier to follow, we start with λp = 0 i.e., no primaries. Such setting

exploits percolation in terms of secondary to secondary interference. Once illustrated, we

generalize our approach to account for λp > 0 i.e., with primaries.

3.2.4.1 Primaries Absent (λp = 0)

1) Pd−x is the probability of being dominated by x closest neighbor(s). To calculate such

probability for a node (say i), we iterate through all the possible combinations as follows:

P (node i is dominated by x closest neighbors) =

4λs
∑

K=x

∫ rI

r1=0

∫ rI

r2=0

· · ·

∫ rI

rK=0

F(x, r1, r2, ··, ·, rK) ×
K
∏

z=1

2dz,i
r2I
×

(Aλs)
K e−Aλs

K!
dr1 dr2 · · · drK

(3.6)

where A is πr2I , rj is a shortcut for dj,i. Note, theoretically the upper bound of λs is ∞ as

it is Poisson distributed. For better tractability, we bound its maximum value to 4λs which

ensures that at least 99.33% of the cases are accounted for as
∑4λs

k=0 λ
k
se

−λs/k! ≥ 0.9933 for

λs ≥ 5.

F (x, r1, r2, · · ·, rK) =















1 if
∑K

j=1Gj=x or K=x =0

0 otherwise

(3.7)
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Gj(r1, · · ·, rK) =



































1 if
Ps
rα
j

∑

∀j′ S.T.
rj′≤rI ,j

′ 6=j

γPs

rαj′

≥ β

0 otherwise

(3.8)

Eqn. (3.6) uses the law of total probability to iterate through all the possible combinations

of distances for node i and its neighbors. It tests when node i is dominated by x closest

neighbors out of all the available ones. This is why summation is from K = x to 4λs. The

individual integrations account for the locations of the neighbors one by one, while F (·) and

G(·) are the indicator functions.

By setting x = 1, we get Pd−1; setting x = 2 results in Pd−2. Continuing in the same

fashion, setting x =M results in Pd−M (i.e., dominated by M neighbors).

2) Pinter is the probability when a node is interfered at all times. Such a node can be viewed

as a node which is dominated by 0 neighbors. Since equivalent events have equivalent

probabilities, this results in Pinter = P (dominated by 0 nodes) thus:

Pinter = Pd−0. (3.9)

Fig. 3.2 illustrates Pd−0, Pd−1 and Pd−2 for a Poisson distributed secondary network in an

area of 300×300 with density λs and γ = 0.5 while Fig. 3.3 illustrates the resultant reduction

in coverage radius due to interference. All the analytical plots in this work are evaluated for

rs = 25, rI = 35, β = 1, and α = 2. All the equations in this work are numerically evaluated
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using the Monte-Carlo method. The results from Monte-Carlo can be smoothened by using

number of iterations with high confidence interval.
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Figure 3.2 Pd−0, Pd−1 and Pd−2 for γ = 0.5
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Figure 3.3 Shrinkage in coverage radius versus number of interferes for γ = 0.5.
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3) Piso is the probability that a node is contained in an interference-isolated component. The

calculation of this probability is more involved. Since combinatorial counting algorithms in

square lattice have been well-studied [71], we consider squares of side rs. For each such

square, we define 8 neighboring squares– 4 on each side and 4 along the corners (or, di-

agonals). We define the no-crossing probability as the probability of having no successful

communication between nodes in the neighboring squares due to interference. Two types of

no-crossing probabilities arise: pside for no side crossing and pdia for no diagonal crossing.

Fig 3.4(a) shows the no-crossing probabilities for an isolated component that is con-

fined in one square. Similarly, Fig 3.4(b) shows the no-crossing probabilities for an isolated

component that is confined in two adjoining squares. For three adjoining squares, there could

be two distinct different orientations as shown in Fig 3.5. We consider isolated components

that reside in up-to 4 squares. With four squares, there are 5 distinct orientations which are

shown in Fig. 3.6. Each distinct orientation can occur in multiple ways (i.e., with rotations)–

the exact number of which can be found by combinatorial enumeration.

(a) (b)

Figure 3.4 Illustration for pside and pdia. a) Isolated component within 1 square; b) Isolated
component within 2 squares.
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We find no-side cross probability as:

pside = 1−
4λs
∑

n1=0

4λs
∑

n2=0

∫ rI

x11=0

· · ·

∫ rI

x1n1=0

∫ rI

y11=0

· · ·

∫ rI

y1n1=0

×

∫ rI

x21=0

· · ·

∫ rI

x2n2=0

∫ 2rI

y21=rI

· · ·

∫ 2rI

y2n2=rI

I(x̄, ȳ)×
(Aλs)

n1+n2 e−2Aλs

n2!× n1!× r
n1+n2
I

dx11 dy11 · · · dx2n2 dy2n2

(3.10)

where x̄ = {x11, · · ·, x1n1, x21, · · ·, x2n2} ȳ = {y11, · · ·, y1n1, y21, · · ·, y2n2}

I(x̄, ȳ) =















1 G(x̄, ȳ) > 0

0 otherwise

(3.11)

G(x̄, ȳ) =

n1
∑

i=0

n2
∑

j=0

F (i, j, x̄, ȳ) (3.12)

Figure 3.5 Isolated component within 3 squares.

Figure 3.6 Isolated component within 4 squares.
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F (i, j, x̄, ȳ) =















1 if SINRi,j ≥ β and SINRj,i ≥ β

0 otherwise

(3.13)

Similarly pdia can be found using Eqn. (3.10) with all the x2i terms integrated from rI to

2rI . Fig. 3.7 illustrates pdia.

With pside and pdia known, we use combinatorial counting arguments to find the

number and size of closed paths (which consist of non-crossable squares) required to sur-

round/isolate a component of size x-squares. We limit our treatment to isolated components

of size up to 4-squares since larger components require longer paths of closed squares to

surround them. This also concurs with the simulation results that show isolation of larger

components occur with much smaller probability as compared to the probability of surround-

ing components of 1 up to 4 squares.
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The isolation probability for the configuration shown in Fig. 3.4(a) (component within

a single square) is p4side× p
4
dia i.e., all the 8 neighbors (4 on side and 4 on diagonal) has to be

closed. For a configuration shown in Fig. 3.4(b) (component within two squares) the isolation

probability is p6side×p
4
dia (all the 6 side neighbors has to be closed as well as all the 4 diagonal

neighbors). Now, the 2 squares could have a different orientation (say, vertical). Accounting

for all possible orientations with 2 squares, the isolation probability is 2p6side × p
4
dia. With 3

squares, the isolation probability is 2p8side×p
4
dia+4p7side×p

5
dia. The two terms are due to the two

different configurations (one linear and one L-shaped). Similarly, the isolation probability

with 4 squares would contain 5 terms due to the 5 unique configurations. Accounting for

all the possible orientations for isolated components with 4 squares leads to an isolation

probability of p8side × p
4
dia+ p10side × p

4
dia+ 4p8side × p

6
dia+4p8side × p

6
dia+ 4p9side × p

5
dia. By adding

all the possible orientations with their corresponding probabilities for components of sizes 1,

2, 3, and 4, we get:

Piso =
i=4
∑

i=1

Prob{isolated component within i squares} (3.14)

We acknowledge this approach yields an approximative value for Piso since calculating the

exact value is very cumbersome. With pside, pdia, Pd−0, Pd−1, and Pd−2 known we can evaluate

Pthin using Eqn. (3.3) which is shown in Fig. 3.8.
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Figure 3.8 λs versus total thinning probability for γ = 0.5, λp = 0.

3.2.4.2 Primaries Present

As mentioned earlier, with primaries present, some secondary users will be evicted (due to

primary interference policy) while others will have their SINR lowered due to interference

from the primary user(s). Another implication is that, every secondary user has to be checked

whether it is evicted or not before being considered as an interferer to other secondary nodes

or even being considered as a possible candidate to the percolation process. Finally, inter-

ference from the primary users, has to be accounted for when calculating Pwp
d−0, P

wp
d−1, P

wp
d−2

and Pwp
iso . Capturing and reflecting those effects in Pwp

thin, P
wp
d−x, P

wp
inter, and Pwp

iso constitutes

the thinning effects of the primary users. Once again, we use the law of total probability to

iterate through all the possible combinations of distances, number of neighbors but this time

we also account for the distances and locations (between 0 and 2π) of all the M primary
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users as well. This results in:

P (node i is dominated by x closest neighbors)wp =

4λp
∑

M=1

∫ R1=rI+rp

R1=0

∫ 2π

θ1=0

· · ·

∫ R1=rI+rp

RM=0

∫ 2π

θM=0

4λs
∑

K=x

∫ rI

r1=0

∫ rI

r2=0

· · ·

∫ rI

rK=0

F(x, r1, ··, rK,R1, ··,RM, θ1, ··, θM)×

M
∏

z′=1

2dz′,i
(rI + rp)2

×
(Apλp)

M e−Aλp

M !
×

K
∏

z=1

2dz,i
r2I
×

(Aλs)
K e−Aλs

K!

dr1 dr2 · · · drKdR1 dR2 · · · drMdθ1 dθ2 · · · dθM (3.15)

where Ap = (rp + rI)
2π, F(x, r1, ··, rK,R1, ··,RM, θ1, ··, θM) is similar to Eqn. (3.24), and

G(x, r1, ··, rK,R1, ··,RM, θ1, ··, θM) is similar to Eqn. (3.25) with Eqn. (3.1) used to test for

successful communication. As for the no-cross probability:

pwp
side = 1−

4λp
∑

M=1

∫ 4rI+rp

R1=0

· · ·

∫ 4rI+rp

RM=0

· · ·

∫ 2π

θ1=0

∫ 2π

θM=0

4λs
∑

n1=0

4λs
∑

n2=0

∫ rI

x11=0

· · ·

∫ rI

x1n1=0

∫ rI

y11=0

· · ·

∫ rI

y1n1=0

∫ rI

x21=0

· · ·

∫ rI

x2n2=0

∫ 2rI

y21=rI

· · ·

∫ 2rI

y2n2=rI

I(x̄, ȳ, R̄, θ̄)
(Aλs)

n1+n2 e−2Aλs

n2!× n1!× r
n1+n2
I

×
(Apλp)

M e−Apλp

M !(rp)M(2π)M
dx11 dy11 dR1 dθ1 · · · dx2n2 dy2n2 dRM dθM

(3.16)

where R̄ = {R1, · · ·, RM}, θ̄ = {θ1, · · ·, θM}

I(x̄, ȳ, R̄, θ̄) =















1 G(x̄, ȳ, R̄, θ̄) > 0

0 otherwise

(3.17)
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G(x̄, ȳ, R̄, θ̄) =

n1
∑

i=0

n2
∑

j=0

F (i, j, x̄, ȳ, R̄, θ̄) (3.18)

F (i, j, x̄, ȳ, R̄, θ̄) =















1 ifSINRi,j ≥ β and SINRj,i ≥ β

0 otherwise

(3.19)

3.3 Maximizing Connectivity

In this section, we apply our findings on effective density to maximize connectivity of DSA

networks under the SINR model. To do so, we use three techniques: i) optimal deployment

density: we find λs that results in the maximum effective density, ii) optimal ‘receive-only’

ratio: we find the fraction of nodes that would be used in the ‘receive-only’ mode, and iii)

optimal TDMA slotting: we find the optimal number of TDMA slots that is required for

a subset of nodes to be active in each time slot. To the best of our knowledge, this is the

first work that uses these three techniques to maximize connectivity of interference-limited

DSA networks. Based on these three optimization techniques, we propose a medium access

control (MAC) protocol for un-coordinated secondary nodes in DSA networks.
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3.3.1 Optimal Deployment Density

Unlike the Boolean model where increasing λs always increases the connectivity; under the

SINR model, increasing λs can either increase or decrease the connectivity by virtue of the

thinning probabilities as was shown in Figs. 3.2, 3.7 and 3.8. It is to be emphasized that

under the SINR model, there is no single function that can characterize connectivity in terms

of the deployment density (λs). Thus, there is no straight forward objective function that

could be optimized.

We approach this problem of connectivity maximization from a different perspective,

i.e., from a percolation’s point of view. We follow the known results from the Boolean model

where connectivity increases with the number of deployed nodes per unit area, which is the

same as the density of the percolation visible nodes. In other words, instead of increasing λs

arbitrarily, we use such a λs that maximizes the number of percolation visible nodes ( i.e.,

we seek to maximize λeff). We take such an approach since λeff as represented in Eqn. (3.5)

can be easily optimized using standard optimization techniques. Thus, the connectivity

maximization problem boils down to finding the optimal deployment density, represented by

λopts as:

λopts = arg max
λs

λs(1− P
wp
thin)×

(

r̄s(N)/rs
)2

(3.20)
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3.3.2 Optimal ‘Receive-only’ Ratio

Under the SINR model, if the nodes were to transmit at the same time, the resulting inter-

ference might hamper the connectivity and reduce the network’s coverage. Thus, it makes

sense not to allow a certain fraction of nodes to transmit. Thus, we allow a fraction τ of the

nodes to remain in receive-only mode. Thus, there are λs× (1− τ) simultaneously transmit-

ting nodes and λs × τ nodes in receive-only mode. Choosing the subset of nodes that need

to be in receive-only-mode can be done in two ways.

1. Individual selection: In this approach, each node is inspected with respect to all

neighboring nodes and beyond if it could be allowed to transmit. This resembles the

NP-complete graph coloring problem which is beyond the scope of this work. Moreover,

this approach requires some form of communication between the nodes which makes it

more complex to implement.

2. Random selection: In this approach, a node independently and randomly decides

to be in the receive-only mode with probability τ . This distributed approach requires

no cooperation between the nodes which makes it easier to implement. We define the

optimal receive ratio, τ opt, as the optimal τ that leads to the highest connectivity for

a given λs.

Similar to finding the optimal deployment density where the connectivity was maxi-

mized at λopts , we propose to reduce the number of transmitting nodes from λs to λ
opt
s
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using:

τ opt =
λs − λ

opt
s

λs
∀ λs > λopts (3.21)

Thus, the expected number of receive-only and transmitting nodes are τ opt × λs and

λopts , respectively.

We point out that, the concept of putting nodes to receive-only or sleep is also en-

countered in wireless sensor networks [72]. In that context, τ refers to the fraction of the

nodes that are put to sleep with the goal to minimize energy consumption while retaining

maximum connectivity. Note that, using τ opt will yield the best connectivity for all values

of τ ; however it will not be optimal which can only be obtained via individual selection.

3.3.3 Optimal TDMA slotting

Although putting some of the nodes into receive-only mode sounds appealing for networks

with λ > λopts , the question remains when does each node gets a chance to transmit, given

the fact that only λopts nodes per unit area will transmit simultaneously.

Time Division Multiple Access (TDMA) is a popular allocation scheme where nodes

are granted channel access on periodic and timely basis [73, 74, 75]. Essentially, it seeks

to to find the number of subsets of nodes that can transmit simultaneously, each subset

transmits on a particular time slot. The subsets transmit in a round-robin fashion– thus,
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the number of time slots required is equal to the number of subsets. Again, there could be

two approaches.

1. Individual allocation: This is similar to the individual selection method as was

discussed in section 3.3.2 and is beyond the scope of this work.

(a) (b)

(c) (d)

Figure 3.9 (a) A network with a total of 80 nodes. (b) The network during first time slot.
(c) The network during second time slot. (d) The network during the third time slot.
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2. Random allocation: Here, the objective of a node is to independently and ran-

domly select a time slot to transmit. Nodes that select the same time slot will end up

transmitting simultaneously on the same time slots in every super-frame as shown in

Fig. 3.10.

Thus, the ones that transmit on slot 1 are subset 1 and so on. Hence, the subset

formation is a by-product of random time slot selection. This is similar to the Poisson

Blinking Model [34] where each node alternates between full duplex transmit-receive-

mode and receive-only mode. An illustrative example is shown in Fig. 3.9(a) where a

network with 80 nodes has been divided into 3 subsets of 25, 28, and 27. During time

slot 1, nodes belonging to subset 1 will transmit resulting in the connected network

shown by Fig. 3.9(b). Similarly, in slots 2 and 3, we get the networks as shown in

Figs. 3.9(c) and 3.9(d).

The question is: how many time slots make up a super-frame, i.e., topt? We recall

our finding from sections 3.3.1 and 3.3.2 where we found that connectivity can be

maximized by reducing the amount of interference which can be achieved by reducing

the number of transmitting nodes such that the average number of transmitting nodes

is λopts node per unit area. We extend the same concept as follows. Instead of having

λs nodes per unit area trying to transmit simultaneously, we will have on average λopts

of them transmitting on each time slot. This means to divide the total number of

deployed nodes into subsets where on average each group will have λopts nodes per unit
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area. This leads to:

topt =

⌊

λs

λopts

⌉

∀ λs > λopts (3.22)

where ⌊⌉ denotes the nearest integer.

We point out that, although the connectivity that results with topt is the best con-

nectivity compared to the ones obtained with the other values of t, the connectivity

obtained under topt is still suboptimal as the allocation is random and does not account

for the nodes’ locations. However it does not require any priori knowledge among the

nodes making this scheme easy to implement.

Figure 3.10 TDMA super-frame.

3.3.4 Distributed MAC for Connectivity Maximization of Un-Coordinated DSA

Networks

Although knowing topt is essential for connectivity maximization, however implementation

details like frame synchronization, frame and super-frame start and end times, node’s time
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to transmit, etc, need to be established. MAC protocols provide precise answers to these

aspects– a survey of MAC protocols can be found in [76].

Thus, to put our finding about topt into actual use, we build a MAC protocol around it

with the goal of maximizing the connectivity of un-coordinated secondary DSA networks. We

acknowledge that, our MAC is different from traditional MAC protocols in i) coordination,

where traditional MAC protocols require some level (local or global) of coordination be-

tween the nodes regarding neighbor-information exchange, ii) goal, where traditional MAC

protocols aim towards increasing the throughput by increasing the number of successful

transmissions i.e., increase the pair-wise connectivity. However, this does not increase the

network connectivity as the goal in the former is to create independent sets while the latter

aims to create one giant component (set) of connected nodes in the network.

3.3.4.1 U-MAC: Un-coordinated MAC

In our MAC, the super-frame is divided into topt time slots. The beginning of each time slot

is marked by a periodic synchronization beacon. We assume that the secondary nodes are

synchronized by these beacons. We also include in each super-frame a config-message. This is

a bursty-message that is transmitted once at the beginning of each super-frame just before

the first beacon. The config-message consists of an update-tone (signal) that is repeated

as many as topt times. The update-tones are placed in a contiguous fashion next to each

other as they form the config-message. An update-tone utilizes the same carrier-frequency
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of the beacon signal, however it uses an inverted version of the beacon signal i.e., the auto-

correlation of the beacon signal and the update-tone is −1. This facilitates the identification

of both signals by the secondary node. An illustration of the config-message, update-tone,

synchronization beacons, and the corresponding time slots are shown for two super-frames

where topt = 3 for the first and topt = 2 for the second in Fig. 3.11.

1 2

Super frame

Time slots

Super frame

3

Sync. Beacon

Update-Message

Update-Tone

Figure 3.11 Update-tone with topt = 3 followed by 3 synchronization beacons in the first
super-frame and topt = 2 followed by 2 synchronization beacons in the second super-frame.

The config-message (via the count of the update-tones) informs the secondary nodes

about the number of time slots in each super-frame. Thus, it provides a configuration

mechanism such that if any of the network parameters1 that affects λopts change, then topt

is made known to all nodes. The new value of topt can be calculated using Eqns. (3.20)

and (3.22). The nodes then are informed about the new setting via the config-message in

the next super-frame. Overall, the nodes go through 3 phases: sensing, contention and data

transmission.

Sensing Phase: In this phase, each node perfectly senses for the following:

1These include but not limited to arrival-departure rates, the primary and secondary networks’ densities.
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1. The config-message which enables the nodes to select its time slot.

2. The beacon which marks the beginning of the node’s time slot.

3. The primary user; sensing for the primary user starts after the node hears the beacon

that marks its time slot.

Contention/Allocation Phase: Upon hearing the config-message and knowing topt, the

secondary users randomly choose a number between 1 and topt. This number is the time

slot on which the node will transmit its data, i.e., if the chosen time slot is i, then the node

will sense for primaries after hearing the i-th beacon. Nodes which have randomly chosen to

transmit on the same time-slot will form their subset and their connected component.

Data Transmission Phase: A node which decides that the channel is empty during its

time slot, will i) transmit its data to its neighbors, and ii) relay the data of its neighbors.

This continues for the entire duration of the time slot.

3.3.4.2 U-MAC Analysis

We analyze the performance of our TDMA-based maximization scheme in terms of some of

the commonly used metrics. First, we provide their definitions in our context.

1. Blocking Probability (Pblock): grabbing a channel does not guarantee a successful com-

munication as the node might be interfered (SINR < β) by transmissions from other
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secondary nodes leading to a unsuccessful communication. With λs and λp known, we

get the blocking probability as:

Pblock =

4λp
∑

M=1

∫ R1=rI+rp

R1=0

∫ 2π

θ1=0

· · ·

∫ R1=rI+rp

RM=0

∫ 2π

θM=0

4λs/topt
∑

K=0

×

∫ rI

r1=0

∫ rI

r2=0

· · ·

∫ rI

rK=0

F(x, r1, ··, rK,R1, ··,RM, θ1, ··, θM)

×
M
∏

z′=1

2dz′,i
(rI + rp)2

×
(Apλp)

M e−Aλp

M !
×

K
∏

z=1

2dz,i
r2I
×

(Aλs)
K e−Aλs/topt

K!

dr1 dr2 · · · drKdR1 dR2 · · · drMdθ1 dθ2 · · · dθM (3.23)

where A (Ap) is πr
2
I (π(rI + rp)

2), rj is a shortcut for dj,i. The indicator function F (·)

is given by:

F(·) =















1 if
∑K

j=1Gj=0 or K=0

0 otherwise

(3.24)

where Gj(·) is also an indicator function and is given by:

Gj(·) =



































1 if
Ps
rα
j

∑

∀j′ S.T.
rj′≤rI ,j

′ 6=j

γPs

rαj′
+

∑

∀j′ S.T.
dz,i≤rI

Pp

dαzi

≥ β

0 otherwise

(3.25)

Note, theoretically, for each λs the upper bound on the number of secondary users

is ∞ as they are Poisson distributed. For better tractability, we bound them with a
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maximum value of 4λs which ensures that at least 99.33% of the cases are accounted for

as
∑4λs

k=0 λ
k
se

−λs/k! ≥ 0.9933 for λs ≥ 5. Eqn. (3.23) uses the law of total probability to

iterate through all the possible combinations of distances for node i and its k neighbors.

It tests when node i is interfered by its neighbors as well as when it does not have any

neighbor in range. This is why summation is from K = 0 to 4λs. The individual

integrations account for the locations of the neighbors one by one. Since Eqn. (3.23)

does not have a closed form solution, we resort to numerical analysis for its evaluation.

2. Network Throughput (R): measures the efficiency of the system and is defined as the

ratio of the number of packets delivered successfully to the total number of transmitted

packets in unit time (time-slot). Thus, for a network with density λs, the throughput

becomes:

R = Pgrab ×
(

1− Pblock(
λs
topt

)
)

(3.26)

Pgrab is the probability of the channel being grabbed by the secondary user i.e., the

channel is not utilized by a primary user hence, Pgrab = er
2
Iπλp.

3.4 Flooding in DSA Networks under the SINR model

In multi-hop wireless network, with no fixed infrastructure the node outreach which covers

locating resources, advertisement of services, dissemination of information as well as route
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and node discovery can be quite challenging. A common solution is flooding as it requires

no topological knowledge of the network [33]. The two most common forms of flooding are

conventional and probabilistic flooding.

3.4.1 Conventional Flooding

Apart from its simplicity, the main advantage of conventional flooding lies in its robustness

i.e., the implicit redundancy built in the algorithm provides resistance against high degree

of message losses and node failures [27]. The large number of re-transmitted packets is the

major drawback of this technique as each node will retransmit the received packet regardless

whether it will aid in the node outreach or not.

In order to reduce the number of re-transmissions, variations of conventional flooding

have been proposed [28] like, Time to Live in AODV [29], random walks [30], probabilistic

flooding [31], and teeming [32].

3.4.2 Probabilistic Flooding

Probabilistic flooding aims to reduce the total number of rebroadcasts in the network by

having a fraction P of each node’s neighbors rebroadcast while maintaining enough number

of participating nodes for the phase transition to occur. Haas et. al. [31] were one of the

earliest to notice that flooding of a gossip in a connected graph under the Boolean model
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exhibits bimodal behavior, i.e., there is a critical value of P above which the gossip spreads

to almost all the nodes in the network and below which the gossip just dies out. On deeper

examination, it turns out randomly choosing a neighbor with probability P corresponds to

Poisson thinning [77]. Thus, the network percolates as long as Pλs > λc. The optimiza-

tion for P were solved via simulation in [31]. A non uniform value of P that is inversely

proportional to the node degree is proposed in [27].

In general, flooding techniques rely heavily on network connectivity i.e., as the per-

centage of connected nodes increases, the broadcasted message propagates further into the

network and has a higher chance of being delivered to the destination node. As mentioned

earlier, the network’s connectivity depends on the network’s connection model, as it deter-

mines the rule for when/where an edge is established between neighboring nodes.

All the previous work on conventional and probabilistic flooding considered random

wireless networks under the Boolean model. However, due to interference tolerance of the

primary users, not all the nodes will be able to rebroadcast. This creates inhomogeneity in

the spatial distribution of a nodes neighbors, making some of its neighbor(s) more relevant

than the others in terms of achieving node outreach which can not be solved by traditional

probabilistic flooding.

As we mentioned earlier, in interference-limited networks, the Boolean model is not

applicable. However, conventional and probabilistic flooding were never investigated under

the SINR model and their performance was left as unanswered question.
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3.4.3 Neighbor Aware Probabilistic Flooding: NAPF

In this section, we propose Neighbor Aware Probabilistic Flooding (NAPF) which is our

modified version of probabilistic flooding. In doing so, we start by analyzing the mechanisms

of probabilistic flooding and its consequences on the node outreach first under the Boolean

model and then under the SINR model. Results from both will be used along with concepts

from percolation theory to build NAPF.

3.4.3.1 Analyzing Probabilistic Flooding

In a typical probabilistic flooding, each node independently decides whether to forward the

broadcast with probability P or not to with probability 1−P . This gives rise to the following

two issues:

1. Neighbors within Close Proximity: A node might have two or more neighbors in close

proximity; transmissions by all of those neighbors are redundant as just one of them

could have covered the same area. In other words, rebroadcasts by physically close

neighbors do not necessarily increase the covered area substantially.

To illustrate, neighbors A and B of node S (all shown in Fig. 3.12-A) are in close

proximity of each other. If both A and B decide to rebroadcast the same message

from S, one of the rebroadcasts is redundant. The situation will be aggravated even

more as the number of neighbors in proximity increases, as the number of redundant

51



rebroadcasts increase as well. On average, there will be Pλsπr
2
s rebroadcasts by the

node’s neighbors in response to its transmission. Although the redundant rebroadcasts

might seem harmless at a first glance but they have the following consequences under

both the Boolean and SINR models.

(a) Boolean Model: Here, interference free communication can be obtained by the use

of orthogonal codes which cost more bandwidth as the number of users increases;

another way (to realize the Boolean model) would be through the implementation

of a distributed MAC scheme which might suffer from increased waiting time,

increased complexity, and increased collisions as the number of users/simultaneous

transmissions in the system increases.

(b) SINR Model: Contrary to the popular belief that in probabilistic flooding the node

reach probability increases with the number of rebroadcasts (caused by increase

of P or increase of λs or both) [31, 33], we show a different result in Lemma 3.2.

Lemma 3.2. Under the SINR model, there exists a node density and a rebroadcast

probability P which when exceeded results in decreased node outreach.

Proof: The proof is done by contradiction. Assume that, the node outreach

increases with the number of rebroadcasts is true. To keep the proof generic, we

assume that there are no primary users. This results in:

SINRj,i =

Ps

dαi,j

Pλsπr2s−1
∑

j′=1

γPs

dαj′,i
+N0

≥ β (3.27)
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where N0 is the Gaussian noise.

Keep in mind, success in flooding under the SINR model, relies on having the

SINR ≥ β at the receiving node, so that the receiving node can rebroadcast it

to its neighbors and so on. As λs increases, so will the number of rebroadcasts

around each relying node. Due to propagation delay and asynchronous transmis-

sion by the nodes, the transmissions of those nodes will act as interference to each

other’s receiver nodes. For a receiving node, increase in λs will be reflected by the

amount of interference it receives, i.e., the summation term in the denominator of

Eqn. (3.27). For some λs, with high probability [59], the number of rebroadcasting

nodes will be enough to make:

Pλsπr2s−1
∑

j′=1

γPs

dαj′,i
+N0 > Ps/d

α
i,j

which means, the rebroadcasting neighbors will interfere with the receiving nodes.

At that point, the receiving nodes will not be able to decode the received signal

successfully and hence the message will not be relayed/rebroadcasted any further,

thus terminating the flooding process. Under high densities the signal will not

even spread to the 2-hop neighbors due to the high interference generated by

the transmissions (rebroadcasts) of the first-hop neighbors. This results in a

node outreach of zero. Thus a contradiction to the Boolean model. Increasing

P (rebroadcasting probability) in probabilistic flooding will increase the total

number of rebroadcasting nodes, thus increasing the interference which will also
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lead to the same result of zero outreach. �

Note that, P = 1 corresponds to conventional flooding.

2. Number of Neighbors and Their Spatial Distribution: When a node rebroadcasts, the

ideal case would be to have its neighbors relay that signal in all directions. However

due to nodes’ spatial distribution as well as the primaries’ activity (which prevents

any secondary within the coverage radius of the primary from rebroadcasting), the

neighbors of a node may be unequally spread around it as shown in Fig. 3.12-B. With

probabilistic flooding, a pivotal node (such as node F) might decide not to relay the

signal, thus terminating the flooding to the upper part of the network (i.e, node G and

others that connect through G). Furthermore, if nodes B and D decide to relay, then

there will be unnecessary duplicate broadcasts to the lower part of the network (i.e, to

nodes A and C).

Figure 3.12 A) Nodes A and B in close proximity. B) Inhomogeneous spatial distribution
of neighbors. C) Flooding via chain of single neighbors.
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3.4.3.2 Number of Neighbors and Percolation Theory

A key observation from percolation theory that contributed to the design of NAPF is that,

in order for percolation to occur a node needs a minimum of λcπr
2
s neighbors for the message

to flood the network with high probability. At a first glance, this observation urges us to

use:

P =















λcπr
2
s/Deg(ni) Deg(ni) > λcπr

2
s

1 otherwise

(3.28)

where Deg(ni) is the degree of node ni. Eqn. (3.28) checks the node’s degree and tries to keep

the number of rebroadcasting neighbors just enough for percolation to occur. This is done

by letting all the node’s neighbors to rebroadcast if the node has less than λcπr
2
s neighbors

or to have only a fraction of them rebroadcast otherwise. Although such an approach will

solve the issue of having a node with a single neighbor (i.e., node S in Fig. 3.12-C), it will

not solve the proximity and the in-homogeneity problems. Assume that the minimum degree

(λcπr
2
s) is 3, and node S in Fig. 3.12-B has a degree of 5. Thus with probability 1 − 3/5,

node F will not rebroadcast and the message will not be flooded to the upper part thus

facing the same problem again.

3.4.3.3 Clustering Neighbors

Our distributed solution inherits and employs concepts from probabilistic flooding; however

it overcomes its deficiencies by accounting for the close proximity and spatial distribution.
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We try a different perspective where we focus on the number of groups of neighbors

a node has rather than focusing on its mere number of neighbors (i.e., node’s degree). The

core idea is that, each transmitting node (broadcasting/rebroadcasting) will classify/cluster

its neighbors in groups (using any clustering scheme). The node with the highest degree in

each group will be elected as the clusterhead of that group by the transmitting node. The

clusterhead will function on behalf its group. Once the node (ni) which is going to broadcast

or rebroadcast determines how many groups it has, denoted by g(ni), it computes P as:

P =















λcπr
2
s/g(ni) g(ni) > λcπr

2
s

1 g(ni) ≤ λcπr
2
s

(3.29)

Next, ni piggy-backs a field of data along the original message (the message to be re-

broadcasted). The piggy-backed field contains the value of P along with IDs of the elected

clusterheads. We point that ni’s neighbors need not be aware of the clustering that is being

done by node ni. The only way for them to know about the assignments of the cluster

heads is when they receive the rebroadcast and the piggy-backed data. In each group, only

the cluster head will rebroadcast with the specified probability P . Before it rebroadcasts, it

strips the received piggy-back and computes P for its neighbors as well, based on the number

of groups it has. Then it piggy-backs its data and rebroadcast to its neighbors. There is an

initialization phase where each node exchanges hello messages with its neighbors for the

purpose of building its neighbor list. If the received signal from a neighbor is higher than

some threshold the node marks that neighbor as in close proximity neighbor in its neighbor
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list. Then the nodes exchange with their first-hop neighbors their lists of neighbors along

with the close proximity relations. This information aids each node to cluster its neighbors

into groups and elect the cluster heads as it rebroadcasts to them.

In probabilistic flooding, the value P has to be recalculated and updated for all the

secondary nodes as λp changes. NAPF is designed such that P is calculated for each node

based on its number of groups. NAPF will respond automatically to the change in λp by

changing the value of P for each node according to its degree. Thus adapting for changes in

λp does not require a global update.

3.5 Connectivity of Multi-Channel DSA Networks

Up to this point, we have investigated and characterized the connectivity of DSA networks

under the SINR model on a single channel. However, there are scenarios in which there is

more than one channel. In other words, there can be abundance of channels. These scenarios

include but are not limited to IEEE 802.22 networks which have about 100 channels of 6

MHz each [78]. Also, the concept of channel fragmentation [79, 80], makes it possible to

fragment a single channel into larger number of smaller channels.

Connectivity of DSA networks in the presence of multiple (abundant) channels has

not been investigated neither under the Boolean nor the SINR models. Traditionally, the

abundance of channels is handled via rendezvous protocols however, it suppresses the effects

of such abundance. This is why we use the most naive rendezvous protocol when studying
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the effects of such abundance on the connectivity. Such setup corresponds to studying the

connectivity of multi-channel random/un-coordinated DSA networks. The study will be

done under the Boolean model first so as to isolate the effects of interference, then the SINR

model will be considered where the effects of interference and multi-channel availability are

considered jointly.

3.5.1 System Model

We consider a network were each secondary user can simultaneously use at most M different

channels due to i) each node being equipped with M transceivers (communication mod-

ules) [81], [82] or ii) the maximum number of channels that the node can scan per scanning

period is M . The scanning limitation has been pointed out in [83] and [84].

The primary network is also generated by a Poisson point process X ′ with a deploy-

ment density of λp and coverage radius rp. The two networks are embedded in R2 with a

total of N channels (vacant and non-vacant), each of which could be accessed by primary

users with equal probability i.e., 1/N . We assume that each primary user is equipped with

one transceiver; thus can use only one channel. We point out that, λp with 1 channel per

user is similar to λp/2 with 2 channels per user. Due to primary activity and spatial diver-

sity, all secondaries do not necessarily observe the same number of vacant channels. The

number of vacant/available channels perceived by secondary user i is ni, 0 ≤ ni ≤ N . Note,
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a secondary user Si can communicate on with a maximum of M of its ni available channels

when ni ≥M . When ni < M , the node can communicate on maximum of ni channels.

3.5.1.1 Connectivity Conditions

Though there are sophisticated rendezvous protocols [85, 86], we consider a very naive pro-

tocol where nodes randomly select a subset of channels from the set of available channels

i.e., there is no node-to-node coordination for channel selection. This is to isolate the effects

of channel abundance, since choosing an advanced rendezvous scheme lessens its effects.

Under the SINR model, two nodes Si and Sj are considered to be connected (two-way

communication link exists) iff the following two conditions are satisfied.

1. SINR Condition: SINRj,i ≥ β, where β is the receiver threshold. We consider a

symmetric two-way communication link between Si and Sj , therefore SINRi,j must

also be greater than or equal to β. Such bi-directional links eliminate the possibility

of having an infinite component that it is traversable in one direction only. A pair

which has either or both nodes with SINR < β for all their common channel(s) will

be referred to as an interfered pair. The nodes of such pair are invisible to each other.

2. Common Channel(s) Condition: There must be at least one common channel between

Si and Sj, i.e., Ch(Si) ∩ Ch(Sj) 6= ∅, where Ch(Si) is the set of randomly selected

channels by node Si from ni, 0 ≤ |Ch(Si)| ≤ M .
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3.5.1.2 Channel Abundance

Due to sensing at different locations, secondary nodes perceive different number of vacant

channels, e.g., ni by Si and nj by Sj . It is the subset of the selected channels that determine

whether a common channel is guaranteed or not. Thus, we define ni,j as:

ni,j =















0 ni or nj = 0

ni + nj − ni ∩ nj otherwise

(3.30)

For 1 ≤ ni,j ≤ 2M − 1, Ch(Si) ∩ Ch(Sj) 6= ∅ with probability 1. For example, with

M = 3 (i.e., two nodes choosing 3 channels independently) there is bound to be a common

channel when 1 ≤ N ≤ 5 since it leads to 1 ≤ ni,j ≤ 5. Examples of N = 1, N = 3,

N = 5, and N = 9 are illustrated in Fig. 3.13. However, for ni,j > 2M − 1 (i.e., ni,j > 5

when M = 3), there is no guarantee on a common channel. For example, consider the case

when N = 9 with channels numbered from f1 through f9. Suppose Si chooses f1, f2, and

f3 as shown in Fig. 3.13. It might so happen that Sj chooses channels f6, f8, and f9 which

results in no common channel between the two nodes. This availability of a large number of

channels is referred to as ‘channel abundance’. Thus, the condition for channel abundance

between two nodes Si and Sj is M +M ≤ ni,j .

Under channel abundance, it is to be noted that though there could be a number of

available channels over which communication link(s) could be established; it is the agreement

on the common channel that would establish the link between two nodes. In fact, there are
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(

ni,j−M
M

)

different ways for nodes Si ad Sj to choose M channels each without having any

common channel, assuming ni, nj ≥ M ; else the number of ways is
(

ni,j−ni

nj

)

for Sj and

(

ni,j−nj

ni

)

for Si. As a consequence, two nodes might remain invisible even if they satisfy the

range condition. We want to emphasize that invisibility is not due to lack of channels but

due to excess of them.

3.5.1.3 Multi-Layered Graph (MLG)

Two neighboring nodes Si and Sj with SINRi,j ≥ β and SINRj,i ≥ β on more than

one common channel can be connected in more than one dimension, where each channel is

considered a dimension.

Figure 3.13 Worst case scenarios for two nodes choosing a common channel when M = 3.
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When N = 1, we obtain a traditional graph with a set of secondary nodes and a

set of edges (communication links). The edges are established over that single channel/di-

mension. When N > 1, the dimensions can be visualized as independent layers as shown

in Figure 3.14. This opens the possibility for the secondary nodes to establish edges in M

of the N layers. Clearly, this gives a rise to a Multi-Layered Graph (MLG). Layer i (Li) of

the MLG corresponds to a graph whose edges are established over channel/frequency fi i.e.,

G(V,EL1) is the graph with edge connectivity in L1 (f1) only.

Since connectivity can be achieved in any of the N layers, we are interested in the

Projected-MLG (PMLG) on R2, which is G(V,E). An edge between two nodes Si and Sj in

the PMLG indicates that: 1) they have a common edge in at least one of the N layers of the

MLG and 2) the SINR at both Si and Sj is greater than β. From a connectivity perspective,

it does not matter which layer(s) provide connectivity as long as there is an edge between

the two nodes. The reduction of the N -dimensional graph to 1-dimensional PMLG helps us

use the concepts of percolation in R2.

3.5.2 Connectivity Analysis

Now, we proceed to analyze the connectivity and study the effects of changing N , navg and

M and γ. First, we analyze percolation when there is abundance of channels and then we

consider percolation with interference.
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3.5.2.1 Percolation with Channel Abundance Only (2M≤N , γ = 0)

Here, we characterize the adverse effects of channel abundance on the network’s connectivity.

With 2M ≤ N and γ = 0, the network’s connectivity follows a Boolean model. For two

neighboring nodes Sj and Si, the probability (P0) of having no common channel between

them is:

P0= P
(

(M channels of Si) ∩ (M channels of Sj) = ∅
)

L1/f1

L2/f2

L3/f3

PMLG

G(V,E1)

G(V,E2)

G(V,E3)

G(V,E)

s1

s1

s1

s2

s2

s2

s2s1
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P1 P2

P3
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G(V,E1+E2+E3)s1
s2
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s4s5
P5 P7

P6
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P1 P2

si Pj : Secondary User  : Primary User

Figure 3.14 MLG with N=3 and its corresponding projection (PMLG)
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Further, we partition the range of N into two regions: [1, 2M) and [2M, ∞]. For

1 ≤ N < 2M , neighboring nodes are guaranteed to have at least one common channel i.e.,

P0 = 0. For N ≥ 2M , a common channel is no longer guaranteed, rather it is probabilistic

i.e., P0 > 0. Thus P0 represents the probability of two neighboring nodes being invisible to

each other and can be written as:

P0 =















0 2M > N

(ni,j−M

M
)

(ni,j
M
)

2M ≤ N

(3.31)

Due to this invisibility, the effective density of the Poisson point process is no longer

λs. Instead it is thinned (Poisson thinning theorem [77]) with probability P0, resulting in a

new density of λs × (1−P0). This thinning effect is adverse when viewed from a continuum

percolation point of view, because percolation occurs when the deployment density exceeds

λcs. Thus any reduction in the value of λs will adversely affect connectivity and can render

a percolated network to a non-percolated one. The thinned secondary network remains

percolated as long as:

λcs < λs(1− P0). (3.32)

Note that for a fixed M , as N increases, so does P0 (more thinning) which reduces

λs(1 − P0). In Fig. 3.15, we illustrate the thinning effect due to channel abundance on the

relative size of the biggest component of a secondary network with M = 3 and 250 nodes in

an area of 400× 400 (i.e., λs = 0.0015625 nodes per unit area). Notably, for N ∈ [1, 5] the

relative size of the biggest component has the same values. For N > 5, invisibility occurs
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which thins λs reducing its connectivity. We define the relative size of the biggest component

(|C|/S) as the number of nodes in the largest component (|C|) to the total number of nodes

in the network (S).
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Figure 3.15 Relative size of biggest component for M = 3.

3.5.2.2 Percolation with Interference Only (M = N , γ ≥ 0)

Here, we characterize the adverse effects of interference only and the rule of γ. WithM = N

(i.e., no channel abundance) and γ ≥ 0, the network boils down to an equivalent network

with N =M = 1 because every node is using all the N channels at once.

Suppose K is the average number of interferers a receiver can tolerate before it is

interfered. For a single common channel, we define the probability of interference that
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violates the SINR condition on that common channel as:

P (no. of interferers > K) = 1− P (no. of interferes ≤ K)

= 1−
K
∑

i=0

(

S

i

)

(πr2I
Da

M

N

)
i
(

1−
(πr2I
Da

M

N

))
S−i

(3.33)

where Da is the deployment area, and S is the total number of deployed nodes.

For a pair with z common channels, we define their probability of being interfered as:

Pint = P (Interference on all z common channels)

Pint =
(

1−
K
∑

i=0

(

S

i

)

(πr2I
Da

M

N

)
i
(

1−
(πr2I
Da

M

N

))
S−i
)

z

(3.34)

Thus interference introduces pair-invisibility which is again modeled as Poisson thin-

ning with probability Pint. As a result, the density of the communication-capable nodes

becomes λs(1− Pint) instead of λs.

In Fig. 3.16 we illustrate the thinning effect due to interference (via controlling γ)

on the relative size of the biggest component of a secondary network with M = N = 1 and

λs = 0.0015625 nodes per unit area. We start with γ = 0 which is just a pure Boolean model

(resulting in maximum connectivity). As γ > 0, effects of interference start to decrease

the SINR values for the pairs, increasing the number of thinned/interfered/invisible pairs.

Eventually, the biggest component vanishes.
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Figure 3.16 Effects of interference on relative size of biggest component.

From Eqn (3.34) it can be noted that for a fixedM , the effect of interference decreases

as N increases. The reason is that, the interferers will use diverse channels that decreases

the probability of using the same channel being used by the pair. Channel-abundance and

interference have opposite reaction to N . For a fixed M , increase in N increases channel-

abundance thinning effects (Eqn. 3.31), while interference thinning decreases (Eqn. 3.34).

3.5.3 Percolation in Absence and Presence of Primaries

In this section, we characterize the combined effects of channel abundance and interference

on the connectivity of the secondary network, First, we consider that there are no primary

users i.e., the DSA network functions as a traditional ad hoc network. To do so, we simply set
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λp = 0. Then, we consider λp > 0 with zero tolerance for interference; hence the secondary

users cannot use any channel that is being used by the primary user(s).

3.5.3.1 Primaries Absent (λp = 0)

When primaries are absent, all the N channels are available to the secondary users resulting

in ni = ni,j = navg = N . Two cases arise: i) 2M > N and ii) 2M ≤ N .

1. Case 1: 2M > N

We present two Lemmas that govern the connectivity of the secondary network for

2M > N .

Lemma 3.3. For 2M > N a user is bound to have at least one common channel with

his in-range neighbor, however the probability of the common channel being interfered

by another in range (within rI) interferer is bounded by (0.5, 1].

Proof: With 2M > N , |Ch(Si) ∩ Ch(Sj)| ≥ 1 for neighboring nodes Si and Sj which

guarantees a common channel. Since an interferer chooses its M channels out of N

randomly, its probability (Ptx) of transmitting on that common channel is M/N . For

M = N , Ptx = 1. As N increases, Ptx decreases. In the limiting case, we have:

lim
M→+∞

M

2M − 1
= 0.5 (3.35)
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However for finite values of M , Eqn. (3.35) is strictly greater than 0.5. �

Fig. 3.17 shows the probability of interfering the common channel by an in-range

neighbor for M = 10 as N is varied from 1 to 19 (i.e., 2M − 1).
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Figure 3.17 Probability of interfering the common channel by an in range neighbor for
M = 4 and variable N .

Lemma 3.4. Under the SINR model, the connectivity of a network with density λs,

monotonically increases with the number of channels (N) as long as N < 2M .

Proof: From Lemma 3.3 it was shown that for N > 2M , the probability of having

an interferer on a common channel decreases as N increases. In other words, fewer

nodes will be interfered as N increases resulting in higher connectivity. The increase

is monotonic rather than strict because for sparse λs, the nodes might not even be in
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the vicinity of each other to cause mutual interference. Thus increasing N does not

lessen the effects of the interference which results in the same connectivity. �

The above lemma guarantees monotonic increase in connectivity with increase in N as

long as N < 2M .

2. Case 2: 2M ≤ N

For 2M ≤ N , a pair will be thinned due to two reasons: interference and channel

abundance. Thus a pair can communicate, if it has at least one common channel and

the pair is not interfered. Combining these effects, the percolation condition becomes:

λcs ≤ λs(1− Pint)(1− P0) (3.36)

We use F(·) to denote the term (1 − Pint)(1 − P0) i.e., the combined thinning value.

Clearly, F(·) is a function of N , M , K, rs, rI , λs and γ, which we write as:

F(·) =















(1− Pint)(1− P0) 2M ≤ N

(1− Pint) 2M > N

(3.37)

Proposition 3.1. Under the SINR model, there exists 3 crucial values for N: Nopt (optimal

N), NL (critical lower N) and NU (critical upper N). Nopt yields the maximum connectivity

while NU (NL) denotes the value of N which when exceeded (not exceeded) leads to the

probability of existence of the infinite cluster being 0, i.e.,ψp = 0 and percolation probability,

θp = 0.
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To maximize connectivity, thinning has to be minimized. This can be achieved by

maximizing the value of F(·). Suppose F(·) is maximized for some value of N , say Nopt. We

can find Nopt by solving for the optimization problem:

Maximize (1− Pint)× (1− P0)

Nopt = arg max
N

(

1 −

(

N\M
M

)

(

N
M

)

)

×
(

K
∑

i=0

(

S

i

)

(πr2I
Da

M

N

)
i

×
(

1−
(πr2I
Da

M

N

))
S−i
)

(3.38)

Nopt represents the boundary between the dominated by interference region and channel

abundance region. For N < Nopt, thinning due to interference will dominate the combined

thinning. For N > Nopt, thinning due to channel-abundance will dominate the combined

thinning.

Now, we define NU (critical N) as inf(N : θp = 0 and N > 1) and NL as sup(N :

θp = 0 and N > 1). NL and NU are found by solving the equation:

λcs = λs × F(N
c)

Solving the above equation we obtain:

N c = F−1(λcs/λs) (3.39)
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where NL ≤ Nopt ≤ NU . Note that the resultant value from Eqn. (3.39) has to be tested

against Nopt to determine whether it is NL or NU . Fig. 3.18 shows theoretical plot for F(·).

Proposition 3.2. For a given network with γ, λs, rs and rI , if the network does not percolate

under N = Nopt, then the network will not percolate for any other value of N .

Proof: Since Nopt results in minimal thinning for λs (maximum F), the network will have

the largest number of nodes with SINR ≥ β. Then, any other value of N , smaller or larger,

results in a smaller value for F and accordingly less number of nodes. Since the network did

not percolate with the maximum number of communication-capable nodes, then it will not

percolate under any smaller number of communication-capable nodes. �
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3.5.3.2 Primaries Present (λp > 0)

Here, the primary users are present with density λp each of whom have radius rp. We assume

each primary user can only use one of the N channels at a time, as a result navg 6= N . Each

channel is chosen randomly by the primaries with probability 1/N . From a channel utilization

perspective, this results in thinning the density of X ′ from λp to λp/N . In this work, we use

zero-interference tolerance form the secondary users (i.e., evict on primary presence).

Contrary to the popular belief that primary users always degrade the connectivity of

the secondary users, we present a counter-intuitive observation in Lemma 3.5.

Lemma 3.5. In the SINR model when λp > 0 and navg > Nopt, increase in λp increases

the connectivity of the secondary network as long as λp ≤ λoptp and the connectivity of the

secondary network is maximized at λp = λoptp . For any value of navg, the secondary network

remains percolated as long as λLp ≤ λp ≤ λUp , where λ
U
p (λLp ) is the upper (lower) bound of

the primary density, λoptp is the optimal primary density.

λLp , λ
opt and λUp are given by:

λLp =
−N

A
log

(

NU

N

)

λoptp =
−N

A
log

(

Nopt

N

)

λUp =
−N

A
log

(

NL

N

)

Of course λLp ≤ λoptp ≤ λUp .
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Proof: Before the arrival of the first primary user, navg = N . When the first primary

user arrives, it randomly selects one of the N available channels making navg < N . As

more primary users become active, navg decreases. This decrease is good as long as the

secondary network is in the channel-abundance-thinning region (Nopt < navg) since it lowers

P0 (as shown in Eqn. (3.31)). This results in minimizing the thinning of λs increasing the

connectivity. As λp increases, more channels are used by the primaries until navg = Nopt

resulting in the maximum connectivity. We denote such value of the primary density with

λoptp and derive it as follows.

Figure 3.19 Area A in terms of the secondary and primary coverage zones.

Consider two secondary nodes Si and Sj which are in range of each other and using some

channel k as shown in Fig. 3.19. Any primary user using channel k that comes within rp of Si

or Sj will disrupt communications between Si and Sj. Thus, the shaded region in Fig. 3.19,

referred to as area A, must be void of primary users using channel k.

Let Ep>0
A,k denote the event that channel k is utilized in area A. The event Ep=0

A,k is the

complement of the event Ep>0
A,k ; hence the sum of their probabilities is 1, i.e.,

P (Ep>0
A,k ) + P (Ep=0

A,k ) = 1 (3.40)
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Following an exponential distribution, the probability of no primary arrival, is given by

P (Ep=0
A,k ) = exp

(

−Aλp
N

)

(3.41)

From Eqns. (3.40) and (3.41), we get

P (Ep>0
A,k ) = 1− exp

(

−Aλp
N

)

(3.42)

With more primary users, the number of available channels gets thinned (from a

secondary user’s perspective) with probability Pthin which is nothing but the probability of

the event Ep>0
A,k . Hence, Pthin = P (Ep>0

A,k ). To find λoptp , we seek the value of λp which thins

the available number of channels from navg = N to navg = Nopt, thus:

(1− Pthin)×N = Nopt (3.43)

Substituting for Pthin from Eqn. (3.42) results in

exp

(

−Aλoptp

N

)

×N = Nopt (3.44)

Solving the above equation for λoptp results in:

λoptp =
−N

A
log

(

Nopt

N

)

(3.45)

75



As we make λp greater than λoptp , the average number of available channels drops to

less than Nopt. That pushes the connectivity to the interference-thinning region. Further

increase in λp reduces navg even more until navg < NL at which percolation disappears. We

denote such primary density with λUp . In characterizing λUp , we follow similar analysis for

λoptp . This results in:

λUp =
−N

A
log

(

NL

N

)

(3.46)

Starting from λoptp , if λp is gradually decreased, navg increases with respect to Nopt

which pushes the connectivity in the channel-abundance-thinning region. Further decrease

in λp increases navg even more until navg > NU at which percolation disappears. We denote

such primary density with λLp which is found to be:

λLp =
−N

A
log

(

NU

N

)

(3.47)

This completes the proof. �

To summarize, the range of λp has 2 distinct ranges separated by an optimal point.

1. Channel Abundance Region (0 ≤ λp < λoptp )

This region results in Nopt < navg ≤ ∞. With such values for navg , the secondary

network is in a channel-abundance dominated thinning mode. Thus, increase in λp

increases θp. This happens because more vacant channels are used by the increasing

number of primary users, which in turn decreases navg. This decreases P0 thus improv-

ing the connectivity θp. When λp is more than λLp , navg becomes smaller than NU at
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that primary density, the secondary network percolates. In fact |C|/S keeps increasing

until λp = λoptp .

2. Optimal Point (λp = λoptp )

There is an optimal number of primary users in terms of eliminating the excess channels

resulting in navg = Nopt. Thus maximizing the connectivity of the secondary network.

3. Channel Deprivation Region (λp > λoptp )

This region results in 0 ≤ navg < Nopt. With such values for navg, increase in λp de-

creases θp. This happens because the secondary network is already in the interference-

dominant-thinning region (navg < Nopt). In other words, with each channel being

taken by the primary user, the probability of having the interferer on a pair’s com-

mon channel increases. This increases the interference on each channel resulting in a

thinned pair. Eventually as λp increases greater than λUp it results in navg < NL. At

that primary density the network is no longer percolated.

3.5.4 Percolation in Discrete and Continuum spaces

The analyses in the previous section were derived based on concepts of percolation in the

SINR model. The MLG is not the typical one-channel SINR model where two nodes are

said to be connected if the SINR at both are greater than the threshold. In this section,

we show that despite the multi-channels of the MLG, the concepts of percolation still hold
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true when applied to the MLG and its projection (PMLG) and it matches those of a typical

SINR model.

The domain of the secondary network (represented by the PMLG) is the continuous

space R2. Proving percolation in the continuum model is difficult given the additional

constraints of the CRN. However, if we could somehow map the continuum model to a

discrete model, we will be able to use the well-known percolation results of the discrete

model. Our objective is to couple the continuum percolation model with a two-dimensional

discrete lattice L and show percolation in the lattice implies percolation in R2. Let us first

formally define the discrete lattice and then show the coupling between the two.

• Discrete Grid (L): With γ = 0, we construct a discrete square lattice L, with distance

between neighboring vertices d > 0. The center of each edge q ∈ L will be denoted

xq, yq. Let Eq be the event that the edge q is open. Thus Eq occurs iff:

1. The rectangle [xq − 3d/4, xq + 3d/4]× [yq − d/4, yq + d/4] is crossed from left to

right by a sequence of neighboring secondary users as shown in Figure 3.20.

2. The squares [xq − 3d/4, xq − d/4]× [yq − d/4, yq + d/4] and [xq + d/4, xq +3d/4]×

[yq − d/4, yq + d/4] are crossed from top to bottom by a sequence of neighboring

secondary users as shown in Figure 3.20.

3. For each pair of consecutive/neighboring secondary nodes in the component men-

tioned above, the range and channel conditions are met i.e., a communication link
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is established. The range condition simply means that the nodes are within rs of

each other.

Note that the open vertical edges of L can be defined by simply rotating the rectangles

by 90 degrees. We shift L by (d/2, d/2) resulting in the dual lattice L′. At this

point, the center of a rectangle in L lies on the side of another rectangle in L′. Thus

bond-percolation in L′ results in infinite open path in L.

Figure 3.20 Illustration of crossing of the connected component (sequence of neighboring
nodes) from left to right and from top to bottom.

• Coupling Percolation of L and R2: We use the results from Lemma 1 in [18] which

couples percolation in the continuous and discrete models. When percolation occurs in

L, an infinite open path appears. The edges in this path correspond to the centers of

the rectangles in L′; thus, there exists infinite open path of rectangles. Connectivity of

rectangles means satisfaction of conditions 1, 2, and 3 in Section 3.5.4. We emphasize:

condition 3 indicates range and channel satisfaction for secondary users that are covered

by two adjacent squares along the open edges. For any two adjacent edges, their

associated rectangles intersect in the same square of L′. Since both the edges are
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open (by assumption of the infiniteness of the open path), there exists a connected

component crossing the two rectangles of the edges. The squares of all open edges

on L′ are also infinite. Thus, the infinite connected components in L and L′ imply

percolation (infinite path) in the PMLG.

The argument above shows the required conditions for a Boolean model to percolate in

multi-dimensions. Relaxing γ = 0 (i.e., γ > 0) leads to the SINR model. To show that

our multi-dimension SINR model still percolates, we couple the finding about the multi-

dimensional Boolean model with the result of [21]. Such coupling shows that percolation

can still occur in our model because our argument above showed that, the multi-dimensional

Boolean model percolates for some N and M , while [21] shows that, for any λs it is always

possible to percolate in SINR model with the right selection of γ. Combining both yields

percolation in the PMLG. Interested readers can refer to [18] and to [21] for complete proofs.

3.6 Summary

In this chapter, we showed how the traditional percolation condition for continuum networks

does not apply to continuum DSA networks under the SINR model. We developed the

concept of effective density to account for the percolation visible nodes. We introduced a

percolation condition for continuum wireless networks under the SINR model. We elaborated

on the concept of the effective density and used it for connectivity maximization via using

three different approaches.
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Next, we identified the deficiencies of traditional and probabilistic flooding techniques

in interference-limited wireless networks. Then, we proposed a modified probabilistic flooding

technique that accounts for interference while reduces the duplicate transmissions.

Finally, we studied the connectivity of distributed un-coordinated multi-channel DSA

networks under the SINR model. We analyzed the resulting connectivity while accounting

for the hardware limitation of the secondary nodes. We showed the resulting connectivity

regions and the effects of the primary density on the resulting connectivity of the secondary

users.
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CHAPTER 4: CAPACITY OF FINITE DSA NETWORKS

In the first part of this chapter, we start by reviewing the capacity maximization problem of

DSA networks in the underlay mode and the complexity associated with achieving it. To that

end, we derive bounds for that maximum capacity. The in-scalability of the optimization

problem motivates us to propose methods which reduce the optimizer’s search space. Further,

we propose a metric which highlights the importance of considering transmitter-receiver pairs

for the optimization. In the second part, we develop a QoS evaluation scheme for the DSA

devices. We use vector quantization to identify sub-spaces of the QoS space that yield good

QoS. The contents of this chapter appeared in [87, 88, 89]

4.1 Capacity Bounds and Optimizations of Finite DSA Networks

Capacity of a DSA network, in our context, is defined as the sum of data rates that can be

achieved by the secondary transmitters. Traditionally capacity maximization of finite DSA

networks is solved as a constrained optimization problem1. The objective function is:

C =

n/2
∑

j=1

log2

(

1 +
ajPj

bj +
∑n/2

i 6=j ciPi

) (4.1)

1 The constraint is due to the primary interference tolerance.
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where aj is the channel gain between the transmitter-receiver pair j, bj is the sum of in-

terference from all primary users to receiver j, ci is the channel gain between the other

transmitters and receiver j, and Px (1 ≤ x ≤ n/2) are the variables to be optimized. With

the constraint being:
n/2
∑

j=1

djPj ≤ γ (4.2)

dj is the distance between transmitter j and the primary user.

The equation above shows that the optimization is non-convex and is functionally constrained

which makes it hard to solve. Moreover, even if the power levels Pj are discretized, the

problem is shown to be NP-hard [40, 90] thus scalability and optimization time are two major

concerns. Since getting the exact values of the maximum capacity (which involves getting the

exact value of Pj’s) is a cumbersome process, we revert to bounding the maximum capacity.

The bounds provide an insight about the network’s maximum and minimum achievable

capacities. These can be used as guidelines to predict the network’s performance, i.e., if

the upper bound of the network’s maximum capacity is less than the required operational

capacity then there is no point of performing any optimization as the network will never

meet the requirement.

Moreover, regarding the optimization in Eqn. (4.1) any reduction in the optimizer’s

search space helps decrease the optimization time and allows for better scalability.
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4.1.1 System Model

We consider a DSA network where n secondary transmitters and receivers are scattered

randomly over the region of interest in the presence of m primary transmitters. All the

primary transmitters tolerate the same level of interference. Half of the secondary nodes

(i.e., n/2) are transmitters and the other half is receivers. The secondary transmitters are

assumed to use the simplest modulation scheme i.e., uncoded binary phase shift keying

(BPSK). The secondary receivers employ no noise cancellation technique (i.e., traditional

BPSK receiver). The channel between any two nodes is Gaussian with a certain path loss

exponent. We consider only one channel with a bandwidth of B Hz. The channel is owned by

the primary users and the secondary transmitters access the channel in the underlay mode.

Our objective is to bound the maximum number of bits/sec that can be transmitted by the

secondary network (i.e., network’s capacity) in the underlay mode.

We use Pk, 1 ≤ k ≤ m, to refer to the kth primary transceiver. Its location is denoted

by XPk
and power is denoted by PPk

. Ri is the ith secondary receiver and Tj is the jth

secondary transmitter, 1 ≤ i, j ≤ n/2. The location of Ri (Tj) is denoted by XRi
(XTj). PTj

is the transmit power of Tj .

The Euclidean distance between the secondary transmitter Tj and primary Pk is given

by dTj ,Pk
. The corresponding channel gain between them is denoted by GTj ,Pk

= 1/dαTj ,Pk
,

where α is the path loss exponent. Similarly dTj ,Ri
denotes the distance between secondary
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transmitter Tj and secondary receiver Ri. Likewise, dPk,Ri
denotes the distance between the

primary transceiver Pk and secondary receiver Ri.

4.1.1.1 Primary Interference Tolerance (γ)

Each primary transceiver/receiver is allowed to tolerate some interference from the secondary

transmitters as long as the combined interference is below a certain threshold γ [91]. That

is, the total power from all the secondary transmitters that arrives to any primary on a

channel of B Hz should not exceed γ. Thus, for primary user Pk we formalize the threshold

condition as:
n/2
∑

j=1

PTj ×GTj ,Pk
≤ γ (4.3)

This threshold condition dictates the maximum power that a secondary transmitters Tj can

use in terms of its closest primary user. For example, if all the power is allocated to only

one secondary transmitter, say T1, Eqn. (4.3) reduces to:

PT1 ×GT1,PT1 ≤ γ (4.4)

where PTj denotes the primary transceiver that is the closest to Tj . Similarly, PRi denotes

the primary transceiver that is the closest to Ri.

Thus, the maximum transmit power (Pmax
T1

) by secondary transmitter T1 is given by:
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Pmax
T1 =

γ

GT1,PT1

= γ × dαT1,PT1 (4.5)

Note, when a secondary transmitter Tj transmits with Pmax
Tj

, it implies that there is

no leftover power for the other nodes, thus they are turned off.

4.1.1.2 SINR in the Underlay Mode

In the underlay mode, the same channel is used by the primary and the secondary transmit-

ters. This affects the SINR of any secondary transmitter-receiver (Tj,Ri) pair as follows:

SINR(Tj ,Ri) =

PTj

dα
Tj ,Ri

n/2
∑

j
′
=1,j

′
6=j

PTj′

dαTj′ ,Ri

+N0 +
m
∑

k=1

PPk

dαPk,Ri

(4.6)

where N0 is the additive white Gaussian noise.

Shannon’s theorem tells us that the capacity of a transmitter-receiver pair increases

with their SINR. Therefore, the maximum capacity for any pair Tj-Ri is achieved with the

maximum SINR, denoted by SINRmax
(Tj ,Ri)

. SINRmax
(Tj ,Ri)

is achieved when Tj transmits with

Pmax
Tj

i.e., Tj is allocated the entire power budget. This leads to:

SINRmax
(Tj ,Ri)

=

Pmax
Tj

dα
Tj ,Ri

N0 +

m
∑

k=1

PPk

dαPk,Ri

(4.7)

86



Substituting Pmax
Tj

from Eqn. (4.5), we get:

SINRmax
(Tj ,Ri)

=

γ×dα
Tj ,P

Tj

dα
Tj ,Ri

N0 +
m
∑

k=1

PPk

dαPk,Ri

(4.8)

For
m
∑

k=1

PPk

dαPk,Ri

≫ No, Eqn. (4.8) becomes:

SINRmax
(Tj ,Ri)

=

γ×dα
Tj ,P

Tj

dα
Tj ,Ri

m
∑

k=1

PPk

dαPk,Ri

(4.9)

4.1.2 Capacity Bounds

With the concept of SINRmax
(Tj ,Ri)

introduced, one of the first questions that comes to the

mind is: how to find the bounds on the maximum capacity of a secondary network? One

approach could be, to find SINRmax
(Tj ,Ri)

for all pairs and assign the entire power budget

(within the threshold condition) to the pair Tj′-Ri′ that has the highest SINR
max
(Tj′ ,Ri′)

among

all the others; the highest SINRmax
Tj ,Ri

is denoted by SINRmax.

Although the approach sounds appealing, unfortunately it is not always true. To

fully understand, let us consider three transmitter-receiver pairs and assume SINRmax
(T3,R3)

< SINRmax
(T2,R2)

< SINRmax
(T1,R1)

. When all the power is assigned to T1-R1, it results in
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PT1 = γ × dα
T1,PT1

= Pmax
T1

and SINRT1,R1 = SINRmax
(T1,R1)

. The resultant capacity is:

C(T1-R1,Pmax
T1

) = B log2 (1 + SINRmax
(T1,R1)

)

≈ B log2 (SINR
max
(T1,R1))

for SINRmax
(Tj ,Ri)

≫ 1. If the pair T1-R1 is assigned half the interference tolerance (i.e.,

0.5×γ), it results in PT1 = 0.5×γ×dα
T1,PT1

= 0.5×Pmax
T1

which in turn leads to SINRT1,R1 =

0.5× SINRmax
(T1,R1)

which affects the capacity as:

C(T1-R1,Pmax
T1

/2) = B log2 (0.5× SINR
max
(T1,R1)

)

= B log2 (SINR
max
(T1,R1)

)−B bit/sec

This means, when the power of a pair Tj-Ri is halved, its SINR
max
(Tj ,Ri)

is also halved which

reduces the pair’s maximum capacity by B bit/sec. Keep in mind, a penalty of B bit/sec is

incurred to save half the interference tolerance (0.5 × γ). Now the question is: Is it worth

to lose B bit/sec to save 0.5× γ?

We argue: if the saved 0.5× γ can be invested into another pair Tj′-Ri′ such that it

produces more than B bits/sec, then distributing the power among two pairs is worth. A

question immediately arises which is: why halve the power budget; why not split using some

other ratio ǫ?
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This can be solved as a maximization problem. If we were to maximize log2(ǫ×A)+log2((1−

ǫ)× B) where A and B are any two real numbers, then the maximum occurs at ǫ = 0.5.

4.1.2.1 Upper Bound on Maximum Capacity

In a network with one primary (P1) and 2 secondary pairs, T1-R1 and T2-R2, with SINR
max

= SINRmax
T1,R1

≥SINRmax
T2,R2

, if investing 0.5 × γ in T2 yields more than the split cost (B

bit/sec as discussed above), then the split maximizes the capacity for the two pairs.

We argue that, the capacity of such a network is upper bounded by twice the capacity

of T1-R1 i.e., as if T2-R2 is being replaced by another pair of T1-R1. Practically speaking,

this scenario occurs when two identical pairs constitute the network. The question is: where

would these two identical pairs lie with respect to each other such that the resultant capacity

is maximized? Obviously, placing them diametrically opposite the primary (separated by

π) will minimize the received interference from each other, thus achieving highest capacity.

This is shown in Figure 4.1(a) where T2-R2 is being replaced by a copy of T1-R1 as shown in

Figure 4.1(b) with the same distance from the primary. Notably, this capacity is an upper

bound for the maximum capacity of all the networks that is formed by placing the same two

pairs at various locations, given that SINRmax is maintained i.e., dT1,R1 , dT1,P1, dP1,R1 are all

maintained.

To upper bound the maximum capacity of a network with n/2 pairs and m primary

users, we divide the pairs in groups according to their nearest primary user, i.e., according
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to the closest primary from the pair’s transmitter. A group (of secondary pairs) will be

denoted by gk where 1 ≤ k ≤ m. Thus the nodes of gk are the closet to Pk. We denote the

number of non-empty groups by ĝ. For each group (gk) we arrange its pairs in descending

order according to their SINRmax
Tj ,Ri

yielding the ordered set Hk = [Hk1 , · · · , Hkn′
], where n′

is the last element of the k-th group. Note that in each ordered set Hk, Hk1 holds the pair

with SINRmax value (in gk).

Similar to the 2-pair network, in each non-empty group, we check whether the capacity

can be increased by splitting γ/ĝ over more than one pair of that group; if so, how many

pairs?

P
1

1
T

1
R

T
2R

2

(a)

1
T

1
R

T

R
1

1

P1

(b)

Figure 4.1 A) Network with two pairs; B) T2-R2 replaced by a copy of T1-R1

Suppose, in each of the gk groups there are sk such pairs. Then the sk pairs of each group

will split γ/ĝ. We find sk in section 4.1.2.1 below. With the number of qualified-for-splitting

pairs of each group (sk) known, we argue that the maximum capacity of the original network

is upper bounded by the capacity of a network that contains ĝ non-empty groups. In which
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each group (gk) contains sk copies of its Hk1 pair placed with an equi-angular separation of

2π/sk around the group’s nearest primary user (Pk).

An illustrative example: Let us consider the network shown in Figure 4.2-A. m = k = 1

i.e., there is only group g1 which contains the three pairs. Assume s1 = 3 i.e., (all three

pairs are qualified for splitting). Since T1-R1 has the SINRmax it will be used to replace

all the splitting qualified pairs. The resultant network is shown in Fig. 4.2-B. The angular

placement (2π/s1) makes the distance between the pairs fully characterizable by the extended

Pythagorean theorem as well as it makes SINR(Tj ,Ri) for all the pairs symmetric. Thus the

capacity for the network in Fig. 4.2-B is an upper bound for the maximum capacity of the

network in Fig. 4.2-A.

Figure 4.2 A) 3 pairs randomly placed. B) 3 copies of the pair with SINRmax are placed
with angular separation of 120o to replace the original 3 pairs.

Number of Qualified pairs per Group (sk): It has to be noted that in any gk when sk

pairs qualify for splitting γ/ĝ, they will be replaced by sk copies of the pair with SINR
max of

that group (Hk1). Each replaced pair will get γ× dα
Tj ,PH1

/(sk × ĝ) W of transmission power,

thus SINRTj ,Ri
of each pair is now SINRmax/(sk × ĝ) instead of SINRmax. Thus, in each

91



gk there is a trade-off between having more pairs/copies with smaller SINR values or small

number of pairs with high SINR values. This trade-off can be stated as an optimization

problem:

sk = arg max
A

(A× log2(SINR
max/(A× ĝ))) (4.10)

Solving this equation for each gk, we find the upper bound for its sk. It is to be noted:

even for a symmetrically deployed network as in Figure 4.3-A, it is not necessary that the

number of qualified pairs (sk) is 6 since sk is determined solely by Eqn. (4.10).

In checking the number of pairs that qualify for the split in each of the groups (sk),

we proceed as follows: in each gk since the SINR decreases as sk increases (due to γ/(sk× ĝ)),

each split affects the capacity as B×sk×log2(SINR
max/(sk×ĝ)) = B×sk×log2 SINR

max−

B × sk × log2(sk × ĝ). The term B × s× log2(sk × ĝ) represents the loss in the capacity of

gk due to incorporating the transmitter of the sth pair of that group.

Using this logic, in each gk we start with its Hk1 (sk = 1) and record the capacity.

Next, we check gk for the pair with the second highest SINR (i.e., Hk2) and split the power

over Hk1 and Hk2 . If splitting over two pairs results in increased bits/sec than the cost of

splitting (loss of capacity) then we repeat the process i.e., try to split over with Hk3, Hk4,

and so on. The split stopping condition in each group will be either i) the upper bound for

sk is met or, ii) including Hki results in capacity reduction as compared to the capacity from

92



using only i− 1 pairs. Based on this we state: In gk the sk-th pair of Hk qualifies if:

B × log2

(SINRmax
(Ts,Rs)

(sk × ĝ)

)

≥ B × (sk − 1) log2 (sk × ĝ) (4.11)
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Figure 4.3 A) A network with 6 identical pairs spaced by 60o. B) A dense network;
identical pairs with SINRmax

(Tj ,Ri)
= SINRmax are circled.

4.1.2.2 Putting It All Together

The above discussions can be summarized as follows. Using Eqn. (4.11), the value of sk is

found by iterating over the pairs in Hk of gk and checking how many of them qualify for

splitting. Each time a pair from the group is qualified, sk is incremented by 1. Due to

the mathematical properties of sk × log2(A/sk), the value of sk has to be upper bounded

as was shown in Eqn. (4.10) (A is a constant). Each qualified pair is replaced with a copy

of the pair which has the highest SINRmax
(Tj ,Ri)

in its group i.e., SINRmax. The copies of

each group are placed with equi-angular separation around the group’s nearest primary, this
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results in identical SINRmax
(Tj ,Ri)

values for all the group’s replaced pairs. The capacity of

such a network is an upper bound for the maximum capacity of the original network even

when i) the original network is optimized with a global optimizer, and ii) nodes move within

their groups given that the pair Hk1 still maintains the SINRmax. The upper bound, CUB,

is:

CUB =

ĝ
∑

k=1

sk ×B × log2

(

1 +

SINRmax
Hk1

ĝ×sk×dα
T ′
k
,R′

k

N ′
k,R′

k

)

(4.12)

where N ′
k,R′

k
is given by:

N ′
k,R′

k
= N0 +

m
∑

k=1

PPk

dPk,R
′
k

α

+

sk−1
∑

j′=1

SINRmax
Hk1

ĝ × sk × dαT
R′

k
,R′

k

T ′
k (R′

k) are the transmitter (receiver) of the pair Hk1. dTj′ ,R′
k
= d2

P
R′

k ,R′
k

+ d2
Tj′ ,P

T ′
j
−

2 d
P

R′
k ,R′

k

× dTj′ ,P
Tj× cos (2πj

′

/sk).

4.1.2.3 Pairing to Achieve Maximum Capacity

For a given network deployment, the secondary transmitters and receivers can be paired in

various ways. Each pairing results in a network topology which when globally optimized

yields a maximum capacity that is different from the maximum capacities of the other

pairings. This occurs in-spite of having the same number of static nodes. For example,

the two networks shown in Figures 4.4(a) and 4.4(b) consist of the same deployment of

nodes but with different pairing. Both result in different topologies and different maximum
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capacities. The question that arises is: which pairing yields the maximum capacity for a

deployed network?
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Figure 4.4 Same Network Deployment with two different pairing a) Random pairing. b)
Exhaustive search pairing

To answer this question, the pairing relationship itself has to be examined. Suppose

the optimizer decides that for the deployment in Figure 4.4(a) T7-R1, T2-R2 and T6-R4

are the only pairs that would yield the maximum capacity for the network; therefore it

allocates all the available power-budget to these three pairs. In doing so, T1 did not get

any power allocated, so its receiver R7 is now idle. Note, compared to R1, R7 is closer

to T7, so the total capacity of the network will increase if T7 transmits to R7 instead of

R1 (SINRT7,R7 > SINRT7,R1). Now T7 can pair with R7, since the latter is idle and

transmitting to it increases the system’s capacity. To avoid such unstable pairing and to

have benchmarks, we propose a pairing scheme that results in the maximum capacity for

the given deployment.
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Tx-Rx Matching Using Exhaustive Search: For a fixed transmit power, the SINR

at the receiver of any pair decreases as the transmitter-receiver distance increases. We see

a tendency to preserve the transmitted power and hence the SINR, by transmitting to close

by neighboring receivers. Such measure will improve the SINR of the pairs. In doing so,

the pairs will not revert from each other to achieve a better SINR as each transmitter is

already matched to the closest receiver. The question is: how do we implement such pairing

(matching) for n nodes?

We explore all possible transmitter-receiver pairings to create various topologies and

compute the total capacity for each such topology. The total capacity is nothing but the

sum of the individual capacities of every transmitter-receiver pair. We consider the topology

for which the system’s capacity maximized (i.e., the pairings that constitute that topology).

4.1.2.4 Lower Bound on Maximum Capacity

The lower bound of the maximum capacity represents the guaranteed capacity that results

from the deployed DSA network i.e., no matter how in-efficient the power optimizer is, the

lower bound is the smallest capacity as it accounts for the worst case scenario. To obtain

the lower bound of the maximum capacity, we start with optimizing the objective function:

C = B

n/2
∑

j,i=1

log2

(

1 +

PPj

dα
Tj ,Ri

N0 +
m
∑

k=1

PPk

dαPk,Ri

+

n/2
∑

j′=1,j′ 6=j

PTj′

dαTj′ ,Ri

)

(4.13)
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In order to maximize the total capacity, the optimizer does two things. 1) It allocates

the entire power budget to one pair at a time and records the SINRmax
Tj ,Ri

for each pair. The

pair with the maximum SINRmax
Tj ,Ri

(i.e., SINRmax) yields the highest capacity achievable

by a single pair without splitting the power budget. 2) Then it finds whether the capacity

can be increased by splitting the power over two or more pairs. It does so by searching

for the optimal split ratio (γ/sk) and the best pairs which together achieve the maximum

capacity. Note: the optimizer does not split unless the new split increases the capacity as

compared to the current split ratio.

Theoretically, with infinite time, the optimizer will converge to the optimal split and

accordingly the best pairs. Practically, with finite time for the optimizer, it might not find the

optimal split, resulting in a sub-optimal solution. In terms of optimization-time (convergence

time) complexity we address two cases ofO(1) andO(n) and show the resultant lower bounds

for the maximum capacity.

Convergence in O(1): The smallest time window that can be given to an optimizer is

O(1). In O(1) no optimization technique will be able to converge to the optimal solution i.e.,

the winners and the ratio over which γ is to be split. For example, convergence techniques

like Nelder-Mead, Lagrange Multiplier, Gradient Methods requires finding the gradient of the

objective function (C) and solving its corresponding simultaneous equations which cannot

be done in O(1). Thus, in O(1), γ has to be allocated to one pair. Moreover that pair has to

be chosen randomly. Since allocating γ to any pair Tj-Ri yields SINR
max
Tj ,Ri

of that pair, it

might so happen that the pair with the worst SINRmax
Tj ,Ri

value is allocated the entire power
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budget which attains the minimum possible maximum capacity given by:

CLB,O(1) = B × log2 (1 + SINRlowest) (4.14)

where SINRlowest is the lowest SINRmax
Tj ,Ri

value among all the n/2 pairs. Thus Eqn. (4.14)

provides a lower bound on the maximum capacity of the network when optimized in O(1).

Convergence in O(n): In this case, there is not enough time to split γ optimally, since

splitting involves iterating over the nodes at least twice which requires Ω(n2) time. However,

O(n) is enough to iterate all the nodes once. This is enough to locate the pair with the

highest SINR value i.e., SNIRmax. Thus, in terms of O(n) the lower bound on the maximum

capacity of the network, CLB,O(n), is:

CLB,O(n) = B × log2 (1 + SINRmax) (4.15)

4.1.3 Elimination Schemes

As we mentioned earlier that, the objective function shown in Eqn. (4.13) is non-convex and

even when approximated the problem is still an NP-hard; hence scalability and optimization

time are big concerns. This is why, any reduction in the search space helps decrease the

optimization time and allows for better scalability.
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We note that, the summation in Eqn. (4.13) accounts for the power from all the

secondary transmitters. As mentioned earlier, this means the power of every Tj adds an

additional dimension/variable to the search space of the optimizer. If we can somehow

identify the pairs whose powers are always 0, we can exclude them from the input power

vector and eventually from the optimizer’s search space thus reducing the dimensionality. To

this end we propose the concept of dead receivers and dead transmitters.

4.1.3.1 Dead Receivers

A receiver Ri is considered jammed, when its SINR is less than the receiver threshold i.e.,

when SINR(Tj ,Ri) < β. When Ri is jammed, it will not be able to decode the transmission

from its transmitter Tj ; such transmissions are considered unsuccessful. Such unsuccessful

transmissions have severe consequences– particularly in secondary DSA networks for two

important reasons:

1. With a bound the interference the primary is willing to tolerate, any unsuccessful

transmission is a waste of power because it leaves less remaining power budget for the other

transmitters (recall: there is an interference threshold as given in Eqn. (4.3)).

2. Any unsuccessful transmission adds to the overall noise for the other secondary

receivers, thus reducing their SINR and overall capacity. In other words, it is better to put

a transmitter to sleep/turn-off if the SINR at its peer-receiver is less than β.
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It is intuitive that the power of an unsuccessful transmission could be reassigned to

some other successful transmission to increase its SINR. When SINRTj ,Ri
< β, it can be

tackled by:

i) letting the peer-transmitter Tj transmits with higher power, given that it is bounded by

Pmax
Tj

(Eqn. (4.5)).

ii) reducing the received interference at the receiver Ri by putting some other secondary

transmitters to sleep. It should be noted that, there is no control over the primary trans-

mitter(s), so the interference from the primary user(s) is inevitable.

The two anti-jamming solutions discussed above are conditional in nature, thus it

is not possible to determine the exact number of jammed receivers. However, the expected

number of jammed receivers can be always found. We are interested in finding those receivers

that are always jammed (unconditionally dead). A receiver Ri is considered a dead-Rx if:

SINRmax
(Tj ,Ri)

< β (4.16)

The equation above means, receiver Ri is not able to decode the received signal from Tj

(its transmitter) even if Tj transmits with Pmax
Tj

because the received interference from the

primary transmitter(s) is dominating over Tj’s transmission.

As long as the secondary radio is in the underlay mode (i.e., primary users are ON), there is

no point considering the dead receivers and their peer transmitters for any capacity/power

optimization. In fact, dropping their decision variable (power request) from the input power
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vector reduces the optimizer’s search space i.e., instead of solving for an input vector with

n/2 decision variables (a decision variable is a pair’s power), the vector can be reduced to

n/2−(no. of dead-receivers). Clearly, this reduces the dimensionality of the search space to

be explored by the optimizer.

Dead-Rx Zones: Amoeba Like Regions: To find whether receiver Ri is a dead-Rx or

not, its SINRmax
Tj ,Ri

is compared to β i.e., when its peer-transmitter Tj transmits with Pmax
Tj

,

that is:

SINRmax
(Tj ,Ri)

=

Pmax
Tj

dα
Tj ,Ri

N0 +
m
∑

k=1

PPk

dαPk,Ri

≥ β (4.17)

Substituting for Pmax
Tj

yields:
γ×dα

Tj ,P
Tj

dα
Tj ,Ri

N0 +

m
∑

k=1

PPk

dαPk,Ri

≥ β (4.18)

Any receiver that does not satisfy the above equation is in the dead-Rx region of one

of the primary users. An illustrative example is shown in Figure 4.5-A, where an amoeba like

region (the dead-Rx region) contains the dead-Rxs. Such regions exist around the primary

users and they can be connected or separated depending on the power, distance, of the

primary and secondary users thus they are hard to characterize mathematically. However,

the exact number of dead-Rx nodes inside the amoeba region(s) can be found by testing

the secondary receivers using Eqn. (4.18). The total number of dead-Rxs in the amoeba
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region(s) can be found as:

N
′

Rx,Amoeba =

n/2
∑

i=1

Si (4.19)

where, Si =















0 SINRmax
j,i ≥ β

1 otherwise

(4.20)

In Eqn. (4.20), Si is 0 if the receiver is not dead and 1 if the receiver is dead. Eqn. (4.19)

goes through all the n/2 pairs, and accumulates the dead ones to obtain N
′

Rx,Amoeba (number

of dead receivers in the amoeba region(s)).

We attempt to characterize the area of the dead-Rx zone(s) using standard geomet-

rical shapes. We approximate using a circle since it is convex and fully characterizable by

its radius. Thus for each Pk we define the dead-Rx circle as the biggest circle that can be

drawn inside its amoeba region and centered at XPk
. Any secondary receiver that lies inside

any of the dead-Rx circle(s) is a dead-Rx. We acknowledge that there are other dead-Rxs

which lie outside that dead-Rx circles however they are still inside the amoeba region(s).

Dead-Rx Circle: Having a receiver Ri inside the dead-Rx circle of PRi (its closest

primary transmitter/transceiver) means it remains dead even if all the following conditions

are achieved:

1. peer-transmitter Tj is allocated P
max
Tj

.
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Figure 4.5 A) Visualization of dead-Rx region around the primary receiver/transceiver,
dead-Rx nodes lie inside the amoeba; B) Visualization of dead-Tx region, dead-Tx nodes

lie inside the amoeba.

2. peer-transmitter Tj is placed at dmin distance from Ri (which is the closest distance a

pair can have). dmin denotes the smallest pair-wise distance dTj ,Ri
among all the pairs

and is given by:

dmin = min(dTj ,Ri
) for all the pairs.

3. Only PRi is transmitting and the other primary users are asleep i.e., the received

interference from the primary users is at its minimum level.

Note the same logic can be applied for any number of primary users. More primary users

will result in more dead nodes as will be shown in the results section.

Dead-Rx Circle: Proof of Concept: The proof is done by induction. When a transmit-

ter Tj is allocated P
max
j , it puts all the other transmitters to sleep according to the threshold

condition. Recall, SINRmax
(Tj ,Ri)

∝ 1/(dTj,Ri
) and dTj ,Ri

≥ dmin for all the Tj-Ri pairs. When

dTj ,Ri
of a pair is replaced by dmin i.e., the transmitter and receiver are brought closer, it

results in a modified maximum SINR (SINRmax′

(Tj ,Ri)
) which is greater than or equal to the
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pair’s original SINRmax
(Tj ,Ri)

. The allocation of PTj = Pmax
Tj

and dTj ,Ri
= dmin gives the sec-

ondary pair Tj-Ri the opportunity to achieve SINRmax′

(Tj ,Ri)
> SINRmax

(Tj ,Ri)
. If with all these

assignments SINRmax′

(Tj ,Ri)
< β i.e., the modified SINR is still less than the secondary receiver

threshold, then the receiver Ri is a dead-Rx. By induction, any other power or pairing

relation yields PTj < Pmax
Tj

and dTj ,Ri
> dmin, which leads to SINRTj ,Ri

< SINRmax′

(Tj ,Ri)
.

Thus, the receiver remains dead because the pairs’ current SINR is already smaller than

SINRmax′

(Tj ,Ri)
. ✷

Finding Dead-Rx Radius: For each primary transmitter/transceiver Pk we characterize

its dead-rx circle (RadiusRxk
) as follows: a dead-Rx Ri, has SINR

max′

(Tj ,Ri)
=

Pmax
Tj

×GTj ,Ri

PPk
×GPk,Ri

< β.

Alternatively,
PPk

×GPk,Ri

Pmax
Tj

×GTj ,Ri

≥ β.

Substituting Pmax
Tj

from Eqn. (4.5), we get

PPk
×GPk ,Ri

×GTj ,Pk

γ ×GTj ,Ri

≥ β

Replacing each channel gain by its corresponding 1/dα, yields:

PPk
× dαTj ,Ri

β × γ × dαTj ,Pk

≥ dαPk,Ri

To find the dead-Rx radius of Pk, dTj ,Ri
is set to dmin (and all the other primary users are

assumed to be a sleep), this leads to:
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PPk
× dmin

α

β × γ × dαTj ,Pk

≥ dαPk,Ri

From the triangle inequality: dTj ,Pk
≤ dTj ,Ri

+ dPk,Ti, we get

PPk
× dmin

α

β × γ × (dPk,Ri
+ dmin)

α ≥ dαPk,Ri

Solving for dPk,Ti results in:

dPk,Ri
≤ RadiusRxk

, RadiusRxk
∈ R+ (4.21)

Eqn. (4.21) characterizes a disk whose center is XPk
, and whose radius is RadiusRxk

with 0 ≤ k ≤ m. Any secondary receiver which satisfies Eqn. (4.21) is located within the

dead-Rx circle of Pk and is a dead-Rx. The probability of a receiver being in the dead-Rx

circle of Pk is
π×Radius2

Rxk

TotalArea
. The expected number of dead receivers in the dead-Rx circle of

Pk is:

ndead−Rxk
=
n

2
×
π × Radius2Rxk

TotalArea
(4.22)
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4.1.3.2 Dead Transmitters

For each primary receiver/transceiver Pk, we define a dead-Tx zone as the area that covers its

closest-in-distance secondary transmitters which cannot establish a successful transmission

to their peer-receivers as that would result in violation of primary’s threshold condition.

Two issues arise:

i) Can a transmitter switch to a lower transmit power if it violates the threshold condition

and become a valid transmitter?

ii) A transmitter might not be able to transmit due to other active transmitters that already

push the total interference at the primary receiver close to γ, leaving no leftover power to

any new transmitter– rendering them dead (from transmission perspective).

An important question is: can we define a dead-Tx taking the above issues into consideration?

Though these two issues are probabilistic in nature, we seek those transmitters that are

certainly (un-conditionally) not able to transmit in the underlay mode.

We address the first issue by stating: a transmitter Tj can lower its transmit power

PTj up to a certain level, which is Pmin
Tj

. Since reducing the power reduces the SINR, we

have to keep in mind that SINRTj ,Ri
has to be larger than or equal to β (secondary receiver

threshold). However, transmitting with (Pmin
Tj

) results in a minimal SINR (SINRmin
Tj

= β).

To overcome the probabilistic scope of the second issue, we propose to let the trans-

mitter transmits with Pmin
Tj

alone which lets Tj causes the minimal interference possible for

the closest primary receiver/transceiver PTj . If with all these facilitations, the transmitter’s
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Pmin
Tj

is still violating the threshold condition, i.e., Pmin
Tj
×GTj ,P

Tj > γ, the transmitter Tj is

declared as a dead-Tx.

Dead-Tx Zones: Amoeba Like Regions: The main reason for obtaining an amoeba

like region for a dead-Tx zone, is the difference between dTj ,PTj , dTj ,Ri
for all the pairs.

For example in Figure 4.5-B, although T1 is closer to the primary than T5, the distance

dT5,R5 > dT1,R1 . Therefore, T5 cannot even sustain SINRmin
(T5,R5)

= β, so it is a dead-Tx. The

same applies to T2 and T3. However, T5 will not be a dead-Tx if it transmits to R1. It is clear

that the concept of conditionality has to be accounted for when dealing with the dead-Txs–

a transmitter might be considered dead if it pairs with a specific set of receiver(s) and not

dead otherwise. Such conditionality results in the amoeba like region(s) around the primary

receiver(s). To have a successful transmission from Tj, it should have:

Pmin
Tj
≤ PTj ≤ Pmax

Tj

For Pmin
Tj

the definition states: SINRmin
Tj ,Ri

= β. Substituting for SINRmin
Tj ,Ri

yields:

Pmin
Tj
×GTj ,Ri

m
∑

k=1

PPk
×GPk ,i

= β

Or, Pmin
Tj

= β × dαTj ,Ri
×

m
∑

k=1

PPk

dαPk,Ri

(4.23)

Transmitter Tj is dead-Tx if it satisfies:
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Pmin
Tj
×GTj ,P

Tj > γ (4.24)

The exact number of dead-Txs in the Amoeba is:

N
′

Tx,Amoeba =

n/2
∑

j=1

Sj (4.25)

where, Sj =















0 γ > Pmin
Tj
×GTj ,P

Tj

1 otherwise

(4.26)

Sj is 1 if the node is a dead and 0 otherwise.

Dead-Tx Circle: Characterizing the area of the amoeba is not an easy task, so we

switch to finding the dead-Tx circle around each primary receiver/transceiver since it is

fully characterized by its radius. Having a transmitter Tj inside any of the dead-Tx circle(s)

means it will violate the threshold condition of that primary transceiver even all the following

conditions are satisfied:

1. let it transmit with Pmin
Tj

and put all the other transmitters to sleep.

2. place its peer-receiver at a distance of Ri at dmin from it (which is the closest distance

any pair can have for a given network deployment).
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3. Put all the primary transmitters to sleep except PTj . This last condition ensure a

minimal primary interference to the pair Tj-Ri.

Note, the same logic applies for any number of primary users (transceivers). As the number

of considered primary users increases, so does the number of dead transmitters.

Dead-Tx Circle: Proof of Concept: The proof is done by induction. When Pmin
Tj

is

assigned to Tj and all the other secondary transmitters are put to sleep as well as all the

primary transmitters except the closets one (PTj ). This means that the current transmitter is

the only interferer to the primary receiver/transceiver. Since Pmin
Tj
∝ dTj ,Ri

, the peer receiver

Ri should be placed as close as possible to transmitter Tj . The closest pair-wise distance in

the network is dmin. For that reason the receiver Ri will be placed dmin away from Tj . Doing

so, gives the secondary transmitter Tj the opportunity to transmit with the smallest Pmin
Tj

.

If with all the mentioned assignments (which aids in minimizing the transmitted power), Tj

is still dead (i.e., Pmin
Tj
×GTj ,P

Tj > γ), it will remain dead no matter what, because:

1. Tj will be paired with another receiver R
′

i such that dTj ,R′

i
≥ dmin

2. When the other secondary transmitters and primary transmitters are allowed to trans-

mit as well, they add interference to Tj ’s receiver which brings the SINR of the pair

even lower.

It is clear that, either (i) or (ii) makes PTj > Pmin
Tj

. Thus Tj will keep on violating

the threshold condition for any other power value. ✷
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Finding Dead-Tx Radius: Similar analysis to those used in finding the dead-Rx radius

will be used in finding the dead-Tx radius for each Pk.

From Eqn. (4.24), a dead-Tx has

β×PPk
×dα

Tj ,Ri

dα
Pk,Ri

dα
Tj ,Pk

> γ. By triangulation inequality, we have

dPk,Ri
≤ dTj ,Ri

+ dTj ,Rk
. Using the definition of the dead-Tx circle (i.e., dTj ,Ri

= dmin), we

get:
β×PPk

×dmin
α

(dTj ,Rk
+dmin)

α

dTj ,Pk
α > γ (4.27)

Solving for dTj ,Pk
results in:

dTj ,Pk
≤ RadiusTxk

, RadiusTxk
∈ R+ (4.28)

Eqn. (4.28) characterizes a disk centered at XPk
and whose radius is RadiusTxk

. Any

secondary transmitter that satisfies Eqn. (4.28) is located inside the dead-Tx circle of Pk

and is a dead-Tx. Accordingly, the expected number of dead transmitters in the dead-Tx

circle of Pk is:

ndead−Txk
=
n

2
×
π × Radius2Txk

TotalArea
(4.29)

4.1.4 Pre-processing for Optimizations

A DSA network is unlike a legacy wireless network where transmitter T
′

j and receiver R
′

i can

communicate successfully as long as SINRT
′

j ,R
′

i
≥ β, regardless of the distance between them

as well as the level of interference at the receiver. Thus in a legacy network, any transmitter-
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receiver pairing can be considered feasible with the right transmit power (we acknowledge the

hardware limitation; our treatment is general). As we mentioned earlier, in DSA networks

the transmit power PTj of transmitter Tj can be as high as Pmax
Tj

according to Eqn. (4.5),

which puts a limit on the coverage area of Tj . With more active secondary transmitters, the

coverage area shrinks because: i) other secondary transmitters act as interferes to the pair

Tj-Ri, and ii) other active secondary transmitters contribute to the total noise perceived by

the primary receiver (transceiver), thus preventing Tj from transmitting with higher power.

This observation allows us to exclude some pairs from the optimizer’s search space without

compromising the optimality. Let us first discuss the optimization problem then proceed

with further dimensionality reduction.

The Optimization Problem: The optimization here is to optimize the transmit power

of each pair such that the total network capacity is maximized given a power budget. Thus

an optimizer can be considered as a power control algorithm that maximizes the capacity.

We treat the power control algorithm as a black-box that receives power allocation requests

in the form of an input vector (of length L ≤ n/2) [P1, P2, ..., PL], where L is the number

of active transmitters. At this point, a request PTj (by Tj) is a member/dimension of the

vector space which spans the optimizer’s search space. Larger input vectors (i.e., big values

of L) require more time to converge/solve.

Coverage Zones: In searching for additional pair-elimination rules, we note that a

paring relation Tj-Ri is valid if receiver Ri is inside the feasible region (coverage zone) of its

peer-transmitter Tj , otherwise it is in the dead region. We use this observation for further
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reducing the optimizer’s state (search) space. It can be noted that the coverage zone ZTj of

Tj is bounded by [0, Zmax
Tj

], where Zmax
Tj

(maximum coverage zone for Tj) is obtained when Tj

is assigned Pmax
Tj

. Now, the question is: What value for ZTj should be considered in deciding

whether Ri is inside ZTj or not? We argue that if receiver Ri is outside Z
max
Tj

, it is dead, and

such a pair Tj-Ri can safely be excluded from the optimizer’s search space. That happens if

SINRmax
Tj ,Ri

≤ β. That is:

Pmax
Tj

dα
Tj ,Ri

N0 +
m
∑

k=1

PPk

dαPk,Ri

=

γ×dα
Tj ,P

Tj

dα
Tj ,Ri

N0 +
m
∑

k=1

PPk

dαPk,Ri

≤ β (4.30)

The expression on the right side follows for N0 ≪
m
∑

k=1

PPk
/dαPk,Ri

.

If a receiver Ri satisfies Eqn. (4.30), it is said to be outside Zmax
Tj

; hence the pair

Tj-Ri can be excluded. We acknowledge that the existence of a secondary receiver Ri inside

Zmax
Tj

does not necessarily mean Ri is alive, because Tj may not be transmitting with Pmax
Tj

,

thus ZTj < Zmax
Tj

, which does not reveal whether Ri is dead or alive.

To summarize, the elimination rules are:

1. Exclude the power request for any pair whose transmitter is a dead-Tx.

2. Exclude the power request for any pair whose receiver is a dead-Rx.

3. Exclude the power request for any pair which satisfies Eqn. (4.30).

Any pair verifying any of the conditions above will be marked as a dead-pair.
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Since dead pairs are orthogonal to the output decision vector (i.e., assigned 0 power), there

is no point submitting their requests to the power control algorithm (optimizer). On the

contrary, not considering them helps in reducing the dimensionality of the search space. This

motivates us to purge the input requests vector before it is fed to the optimizer. Instead of

submitting and optimizing a vector of n/2 requests (dimensions) we propose to submit and

optimize a reduced vector of length n/2− ndead, where ndead is the number of dead pairs.

4.1.4.1 Relative Goodness of Tx-Rx Pairs

Global optimization for the capacity of the entire network becomes infeasible when the

number of transmitter-receiver pairs is too large for the optimizer to compute within a

specific amount of time (user time budget). To that end, we propose a metric SINRRel

which abstracts the relative distance relations between each pair and the primary user(s) as

well. SINRRel provides a measure of the goodness of a pair’s ability to contribute towards

the system capacity. Thus it reflects the pair’s potential for “winning” power allocation from

the optimizer.

Defining SINRRel
Tj ,Ri

= SINRmax
(Tj ,Ri)

=
Pmax
Tj

/dα
Tj ,Ri∑m

k=1 PPk
/dα

Pk,Ri

with Pmax
Tj

= γ × dα
Tj ,P

Tj
sounds

appealing. This is because the numerator specifies the maximum power that can be received

at Ri from Tj , and the denominator specifies the interference from all the primary transmit-

ter(s). However, that makes the metric more of a conditional measure as it is conditioned

on PTj = Pmax
Tj

, which means it does not account for interference from other live pairs.
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At this point, we point out that the interference from the other live transmitters is

not known because i) this step precedes the optimization and ii) the optimization itself might

not be feasible. As a result, we resort to an alternative method.

A pair Tj′-Ri′ with high SINRmax
Tj′ ,Ri′

is seen as a good candidate (capacity maximizer)

by the optimizer. So when the receiver Ri (receiver of Tj) is close to a conditional winner Tj′,

Tj′ becomes a candidate interferer toRi. The closerRi gets to Tj′, the higher the interference

from Tj′ to Ri (in case Tj′ gets power from the optimizer). So SINRRel
Tj ,Ri

should decrease

due to the existence of Tj′. If Ri is far from such a transmitter-receiver pair, Ri’s metric

should increase reflecting the relation of Tj-Ri with the other good candidates around them.

Continuing with the same approach, we define:

SINRRel
Tj ,Ri

=
Pmax
Tj

/dαTj ,Ri

∑m
k=1

PPk

dα
Pk,Ri

+
∑n/2

j′ 6=j

SINRmax
(T

j′
,R

i′
)

dα
T
j′

,Ri

(4.31)

The above equation is similar to SINRmax
(Tj ,Ri)

but with an additional summation term

in the denominator which accounts for the existence of other conditional candidates around

Ri. Thus a pair with high SINRRel
(Tj ,Ri)

stands as a good candidate for increasing the system’s

capacity and hence a candidate power winner from the optimizer.

We show an illustrative example in Fig. 4.6 with 4 secondary transmitter-receiver

pairs around their closest primary transceiver. The numerical values of the corresponding

SINRRel for each pair is analytically found and the corresponding power values from the

global optimizer (optimization was done in Matlab) are also shown.
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Figure 4.6 4 pairs around their closest primary transceiver with primary transceiver
power=800 mW, γ = 0.1; the numbers on the links are the distances. The table shows

SINRRel values and their actual power allocations (in mW), a node with higher SINRRel

gets higher allocated power.

Inaccuracies in SINRRel: An important observation regarding the SINRRel
Tj ,Ri

is, when:

m
∑

k=1

PPk

d2Pk ,Ri

< 2×

n/2
∑

j
′
6=j

SINRmax
(Tj′ ,Ri′ )

dαTj′ ,Ri

the secondary interferers of Ri will add inaccuracies to its SINRRel value. The effect of

the inaccuracy appears in the pairs which have comparable SINRRel values and are close

to each other. Since their values are comparable and are in close proximity, the optimizer

choose some of them as winners and leaves the rest unallocated, since they interfere each

other highly (due to proximity) if all of them are given power.

When the power from the primaries dominate i.e., their interference is bigger than

twice the interference from other secondaries, the effect of the un-allocation do not change

the final result. When the primaries are not dominating, the un-allocation is reflected in the
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summation that appears in the denominator of Eqn. (4.31). This is because, Eqn. (4.31)

considers all pairs while calculating the SINRRel; while in reality it might so happen that

not all the pairs with comparable SINRRel are allocated power by the optimizer. This

results in a scenario where some receivers are surrounded by more secondary interferers than

the others, thus it affects the actual SINR and the pair’s opportunity of winning power from

the optimizer. Overall, this phenomenon adds inaccuracy to the ordering of the best pairs

which we discuss next.

116



Ordered Set of Tx-Rx Pairs: We will show that for the same amount of power budget,

a set that consists of pairs that have large SINRRel yields better total capacity than a

set having smaller SINRRel values, given that the cardinalities of the two sets are equal.

Question is: which subset of pairs maximizes the system capacity?

In a network with n/2 pairs, the corresponding power vector of the secondary users

is P = [P1, P2, ..., Pn/2]. The ordered set U = {U1, U2, · · · , Un/2} is formed by re-arranging

the elements of P in descending order (Uj−1 ≥ Uj) based on the SINRRel values of the

corresponding pairs. Next, a random subsetM is formed by choosing pairs randomly from

the set P , with |M| = |U |. If the power budget is optimized over the elements of M, it

would result in some capacity. We argue: if any pair fromM is to be replaced with a pair

from U such that the SINRRel
Ui

> SINRRel
Mi

, the total capacity will increase. The question

that arises is: what is the maximum achievable capacity using L ≤ n/2 pairs with a given

power budget?

Further investigation of the setM reveals that its current capacity can be improved

by replacing the pair inM which has the lowest SINRRel with U1 (U1 is the first element

in U). This replacement increases the total capacity. However, there might be still room for

improvement because replacing the pair which currently has the smallest SINRRel in M,

with U2 (the elements of U are arranged in descending order) results in capacity improvement.

The process is repeated until all L elements of M correspond to the first L elements from

the set U . At that point, it can be said that out of the
(

n/2
L

)

possible sets, optimizing the

setM yields the maximum expected capacity for the given power budget.
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Subset Optimization: Here, we extend the idea of using the top pairs of U which was

introduced in the previous section. The idea behind subset optimization is to achieve the

highest capacity using only a subset of L pairs out of the n/2 pairs. Such scenarios are

encountered when the convergence time for the n/2 pairs exceed the given time budget. In

other words, due to time budget, it is not possible to optimize over the search space that is

spanned by the n/2 dimensions of all the pairs. Instead, we can afford to optimize over a

smaller search space of L dimensions only (L < n/2). So the idea is to optimize a partial

set of length L whose elements have the highest SINRRel values in U i.e., {U1, · · ·, UL}. We

present a case study in Section 6.2.1.4.

4.2 QoS and Power Vector Evaluation

We outlined in Section 2.2, that there has been lots of work on power control and QoS metrics.

While the focus of these works have been mainly on obtaining the optimized power vector,

evaluating the QoS metrics of these power vectors were left open. Such evaluation becomes

even more critical for “low cost” DSA devices [92]. Importance of such devices/modules

emerges as they open new horizons for building low cost DSA devices. Of course, the use

of such devices is accompanied by the cost vs. processing dilemma i.e., as the price goes

down so does the processing power. An issue that has been ignored is how to manage the

computations while keeping the cost low.
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To that end, we propose a predictive model that takes into consideration the power

levels of a set of secondary transmitters and provides the expected performance of the system.

We show how the power vector which is the result of a power control scheme is nothing but a

point in a K-dimensional space. We consider the power control scheme as a black box. Using

vector quantization, we partition the space into different regions that reveal what the allowed

power level of each transmitter is. Thus, by knowing the power vector and recognizing which

partition it belongs to, we are able to determine the current state of the system including

the expected performance in O(log N) time.

4.2.1 K-dimensional QoS Space

We consider a secondary network where secondary transmitters and receivers are scattered

randomly over the region of interest in the presence of primaries. We consider a generic power

control algorithm which provides the transmit power levels for each transmitter. It can be

noted that the output power vector is a function of time due to noise, fading, and primary

transmit power variations. The objective of the power control algorithm is to maximize

a given QoS-metric for example, capacity, spectrum usage, primary service degradation,

interference at the primary, etc.
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We consider the power levels for the K secondary transmitters at time t and represent

them by a K-dimensional vector

Pt = [P1, P2, ...PK ]t

where Pi is the transmit power of transmitter i. Based on the instantaneous values of Pi’s

at any time t, Pt can be thought of as a point in the K-dimensional continuous space at

that time. Due to the dynamic channel conditions and primary activities, the values of

Pi’s continuously change– the optimal value of which is determined by the employed power

control scheme. Thus, Pt can be seen as a loci of a point that moves in the n-dimensional

space. Thus the power vector determines the current system status and provides insights

into the level of QoS being attained by the system. It can be noted that the power for the

non-transmitting nodes can be set to 0.

For every Pi, there are some range of values that indicate i) normal operating condi-

tions, ii) abnormal conditions, and iii) unfeasible conditions. For example, transmitting at 1

mW could be normal, transmitting at 10 mW could cause harmful interference to a primary,

and a power level of 100 mW might not be possible due to hardware constraints. Just as we

can identify various ranges for Pi, we can think of various regions in the K-dimensional space

that offer different service quality. As a matter of fact, every point in this space signifies a

level of performance or the QoS offered by the system. Thus, we associate every point with

a QoS index that represents the current state of the system. As mentioned earlier, our use of
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the term QoS is generic; it can refer to a variety of attributes like capacity, spectrum usage,

primary network degradation, etc.

4.2.2 QoS Space Partitioning

Since vector Pt can take any real value, we get a real-valued space. Dealing with such a

space with infinitely many QoS indices is not only cumbersome but also computationally

intractable. A better approximation would be to represent nearby points by a representative

point with its corresponding QoS index. In this work, we apply our technique to capacity, i.e.,

the QoS index is the capacity produced by the representative’s Pt value. These neighboring

points actually define a region with a strict boundary. Now the question that arises is: how

to obtain the non-overlapping or disjoint partitions– the union of which spans the entire

region?

The problem of finding the disjoint regions boils down to partitioning the QoS space

into a finite number of regions, each associated with the QoS index of the region’s representa-

tive point. The QoS of every point within a region would be represented by the QoS index of

that region. So, instead of dealing with infinitely many indices, we will have a finite number

of indices representing different regions in space. This scenario is illustrated in figure 4.7,

where a 2-dimensional space is spanned by disjoint regions. This diagram is commonly re-

ferred to as the Voronoi diagram [93]. We show only the first quadrant because the power

levels (Pi’s) can only be non-negative. Each of the regions will have a representative point,
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which is usually the centroid (shown by the solid dots), and any point in that region maps to

that representative point. It is to be noted that, theoretically the QoS space is unbounded

since Pi is unbounded, for 1 ≤ i ≤ K. Optimal partitioning of the unbounded space with

a finite number of bounded regions is a hard problem. Hence there exists some unbounded

regions as shown in figure 4.7. However from a practical viewpoint, all transmitters have

limited capability, thereby making the QoS space bounded.

Partitioning the QoS space is analogous to space quantization, where the space is

partitioned into N quantization regions, and every point in the space belongs to one of the

regions. If we can identify the region in which the system is currently operating then we

have an idea about the QoS as experienced by the system. In other words, the power vector

representing the system status maps to one of the representative points in the K-dimensional

QoS space.

It is not necessary that the QoS indices of all the N partitions are distinct, since two

different partitions might offer the same QoS and hence could have identical QoS indices.

An exact quantification of the QoS index is non-trivial because it is difficult to find a single

value that would capture all the attributes contributing towards the QoS.

4.2.2.1 Mapping Power Instances

As pointed out earlier, the dynamism of the system is manifested by the ever-changing power

vector P which is mainly due to the channel characteristics and primary activities. Every
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instance of the power vector P can be mapped to one of the N representative points in space.

Each time a new instance of P is encountered, its relationship with the previous instance is

examined in order to find the region it belongs to, or more precisely the representative point

it maps to.

One approach to finding the target (representative) vectors could be to retrieve similar

instances from memory and classify them based on the previous classification. But the

problem is that the target points for the new instance may not be the same as the one

obtained from the previous classification. This is possible if the retrieved similar instances

were mapped to different target points. Moreover, there is a huge computation associated

with the classification.

Figure 4.7 Partitions with their centroids
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One technique to avoid this cumbersome computation is to use the 1-Nearest Neighbor

algorithm which is a modified version of the K-Nearest Neighbor algorithm [93]. The K-

Nearest Neighbor algorithm assumes that all instances are mapped to points in the K-

dimensional space. The nearest neighbors are usually defined in terms of Euclidean distance.

For example, if an instance is P = [P1, P2, · · · , PK ] then the distortion dj is simply the

Euclidean distance from P to the target point Mj = [Mj1,Mj2, · · · ,MjK ], where 1 ≤ j ≤ N ,

is given by

dj =

√

√

√

√

i=K
∑

i=1

(Pi −Mji)2.

4.2.2.2 Design Objectives

We would not be interested in uniformly partitioning the space, as done in uniform quan-

tization, since the power vectors are not uniformly distributed in space. There is a density

variation of the power vectors in the sense that the system might tend to operate in a par-

ticular region more often than others. Moreover, uniform quantization does not yield an

optimal solution with respect to the global distortion. Our goal is to find the target point

which yields minimum distortion and also minimizes the search time for that target point.

1. Minimizing Distortion: The values of dj’s, for 1 ≤ j ≤ N , give the distances between

the new instance and all the N target points. The nearest target point can be obtained

by finding the minimum of dj’s for all j. Thus,
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Mj ← P for which dj is minimum.

Thus, the new instance of P maps to the nearest target point Mj and obtains the QoS

index of Mj . Of course, there is an error introduced due to the mapping– the larger

the number of target points, the smaller the distortion. The average distortion is a

good measure of the quantizer since we aim to minimize the average distortion.

2. Minimizing Search Time: If a linear search is employed to find the nearest target point,

the required time would be O(N). For large values of N , though the average distor-

tion will be less, the search for the nearest neighbor would be high for any real-time

decision. A technique for efficiently indexing the space is a significant practical issue

in minimizing the computation required at the query time. We borrow concepts from

tree structured vector quantization (TSVQ) that takes O(log N) time [94].

The question still remains, how to optimally partition the space and identify the

different regions, each of which would be represented by one QoS index. In the following

subsection, we show how to construct the representative vectors so as to bring down the

search time and also keep the global distortion minimum. We adopt a technique called

vector quantization [94], which is a generalized version of scalar quantization.
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4.2.3 Quantizing the QoS Space

Before applying vector quantization to partition the QoS space, let us first discuss scalar

quantization for the sake of completeness and better understanding. In scalar quantization,

a 1-dimensional space is partitioned into multiple regions and any point in a particular

region is mapped to the representative point of that region. More precisely, an N -point

scalar quantizer Q is a mapping function such that Q : R → C where R is the real number

line and

C ≡ {M1,M2,M3, · · · ,MN} ⊂ R.

The output set C is popularly called the codebook of size |C| = N . We will use the terms |C|

and N synonymously to refer to the size of the codebook. The output values, Mi, are also

referred to as reproduction values. Associated with every N point quantizer is a partition of

real line R into N cells or regions Ri, for i = 1, 2, · · · , N . The ith region is given by

Ri = {x ∈ R : Q(x) =Mi} ≡ Q
−1(Mi),

the inverse image of Mi under Q. Thus, we see that a quantizer Q can be completely

described by

Q = {Mi, Ri; i = 1, 2, · · · , N}

in terms of its reproduction points {Mi; i = 1, 2, · · · , N} and the corresponding regions

{Ri; i = 1, 2, · · · , N}.
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Vector Quantization (VQ) is a generalization of scalar quantization where an ordered

set of real numbers is quantized. A K-dimensional vector quantizer Q is a mapping from a

point (a vector) in the K-dimensional Euclidean space, RK , into a finite set C containing N

reproduction points. These reproductions points are called the codewords. Thus,

Q : RK → C.

As in scalar quantization, each of the N codewords is associated with a region Ri, such that

Ri = {x ∈ R
K : Q(x) =Mi}.

The set C is also called the codebook which has size N , meaning it has N distinct

vectors. The goodness of a codebook is measured by the distortion which is defined as the

non-negative cost d(x, x̂) associated with quantizing any input vector x with a reproduction

vector x̂. The codebook of a VQ is said to be optimal if it minimizes the average distortion

which quantifies the performance of the system.

Since neither the input instance (power vector) nor its probability distribution is

known beforehand, the design of the codebook is heavily dependent on the probability density

function (pdf) of the input vectors. A reasonable approach is to take long sequences of

training vectors and estimate the average distortion. It is difficult to come up with a pdf

which would replicate the actual power vectors during the normal course of operation of

the system. In that case, the only option is to use real data gathered from the system

itself and use them as training vectors. If the input training vectors are stationary and

ergodic, the resulting average distortion on future data should yield approximately the same
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distortions [95]. If we deal with sufficiently long sequences of training vectors, then the

performance of the obtained codebook on new and real data would be the same. Given the

training vectors, there are several approaches for the construction of codebook [94, 95, 96].

We choose the splitting method (also known as the LBG algorithm [97]). Though improved

versions have been proposed by [98, 99, 100], we choose the original method due to its

simplicity.

4.2.3.1 Finding the Codewords

In this iterative method, the size of the codebook grows from 1 to the desired value N . Given

the set of training vectors, if we are to have a codebook of size N = 1, then the reproduction

vector would be the centroid of these training vectors. This is illustrated in figure 4.8(a)

where the solid dot M1 denotes the centroid of the training vectors represented as hollow

dots. It also means that we have only one partition R1. For the sake of convenience, a

2-dimensional space is considered, which means we have two transmitters operating with

power levels P1 and P2 respectively. The centroid is the only point in the space whose

sum of the Euclidean distances to all the training vectors is minimum. (The position of

the centroid M1 as shown in figure 4.8(a) might not be accurate as it is for demonstration

purpose only.) The following question might arise due to the discrete nature of the training

vectors. It was previously argued that the power vector has a continuous motion. Strictly

speaking the training vectors should have been the locus of the power vector. But the locus
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can be sampled periodically at a certain rate to obtain those discrete points. In other words,

the hollow dots represent the snapshots at equals interval of time.

We start with just one entry in the codebook which is the centroid, say M1. This

codeword is then split into two codewords, M1 and M1 + ǫ, where ǫ is a vector of small

Euclidean norm. An iterative clustering algorithm can now be used to find the optimal

positions of these two codewords. Figure 4.8(b) shows the scenario with two codewords

corresponding to the two partitions R1 and R2. On splitting these two codewords into four

and applying the clustering algorithm iteratively, we obtain the four centroids along with the

four partitions as shown in figure 4.8(c). Note that the partitions R1 and R2 are bounded,

whereas partitions R3 and R4 are unbounded. At the next step, eight partitions would be

obtained, the figure for which is not shown.

(a) (b) (c)

Figure 4.8 a) One codeword and one partition; b) Two codewords and two partitions; c)
Four codewords and four partitions.
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4.2.3.2 Choice of N

The main goal of a quantizer design is to find the codewords and the partitions such that the

average distortion is minimized for a fixed number of codewords. The minimum distortion

also gives a measure of the resolution of the quantizer. This minimum distortion can be used

to back-calculate the number of codewords which would be necessary. More explicitly, the

average (mean square) distortion D is given by

D =
N
∑

i=1

∫

Ri

(x−Mi)fX(x)dx, (4.32)

where Mi is the codeword in the region Ri and fX(x) is the pdf of the random variable X .

We sum the distortions in all the N regions and integrate within each region Ri because of

the continuous space, thus capturing the spatial-temporal aspect of the power vector. Thus,

if the tolerable distortion is given, the number of codewords N can be obtained.

4.2.3.3 Iterative Clustering

In iterative clustering, all the training vectors are made to map on to the nearer of the two

codewords y0 and y0+ ǫ. As a result, two clusters will emerge as some of the training vectors

will map to y0 and the others will map to y0 + ǫ. The centroids of the two clusters will be

found and the two codewords, y0 and y0 + ǫ, will be updated with the centroids’ position

(i.e., the codewords are displaced to decrease the distortion). Clustering will be performed
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again on these two codewords. (Note that it is not necessary for a training vector in one

cluster to be mapped on to the same cluster after the displacement of the codewords.) The

clustering and the displacement of the codewords are done iteratively till the displacements

become negligible. It has been shown in [95] that for a finite set of training vectors, the

splitting algorithm always produces a sequence of vector quantizers whose average distortion

converges in a finite number of iterations. The final positions of y0 and y0 + ǫ will be the

entries in the codebook of size 2. To obtain codebook of higher orders, these two codewords

are again split into four and their optimal positions are found. This process is continued till

the desired size (N) of the codebook is obtained.

4.2.3.4 Search in O(logN) Time

Tree structured VQ, denoted as TSVQ, is a technique to reduce the search complexity in VQ.

Due to the nature of the splitting algorithm, the codebook can be stored in as tree structure

which can reduce the search time. Such a tree structured VQ is a natural byproduct of the

splitting algorithm. As opposed to linear search which takes O(N) time, finding the nearest

neighbor using a tree takes O(logN) time, if there are N entries in the codebook. In TSVQ,

a binary search starts with comparing the SINR vector instance with the two codewords

which were the outcome of the codebook generation process for N = 2. Note that these

two codewords are not part of the codewords in the final codebook. This is just one of the

intermediate stages in the codebook generation process. Figure 4.9 gives an example of a
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TSVQ for N = 8 with the intermediate codebooks of size 2 and 4 are also stored for the

purpose of search. The final 8 codewords are marked asM1 throughM8. of size 8. Of course,

the process of storing the intermediate codebooks is recursive which can generate codebook

of any size with is an exponent of 2.

Figure 4.9 Codebook storage and lookup

4.2.3.5 Updating the Codebook

So far we have considered an off-line and one-time construction of the codebook based on

the training vectors. That is, the codebook is constructed once and all real signal vectors are

coded based on that. But it might so happen that the signal vectors exhibit non-stationary

behavior. A natural way to adapt the quantizer is to dynamically adapt the codewords in the

codebook based on acquiring updated information about the power vectors. In this manner,
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improved coding performance is possible if the codebook can somehow adapt its codewords

to suit the local-stationarity of the actual power vectors.

4.2.3.6 An Illustration: Putting It All Together

Let us give an illustration as the power vector P moves in figure 4.10. This is the same two-

dimensional QoS space as shown in figure 4.7. The solid dots represent the representative

points of the respective partitions. Let P(t) be the position of the power vector at time t

belonging to the partition 1 with representative pointM1. We consider two possible scenarios

at time (t +∆t) as follows. P1(t +∆t) undergoes a displacement of ~D1 and remains in the

same partition 1. Hence it maps to the same representative point M1 as for P1(t), yielding

the same QoS index. Whereas, P2(t + ∆t) undergoes a displacement of ~D2 but moves to a

different partition 2, and maps to a different representative point M2.

4.2.4 Proof of Concept

To provide a proof of concept, we simulate a simple DSA network with two transmitters.

Thus, the output of the power control algorithm is a vector P = [P1, P2], where P1 and P2

are the transmit powers for transmitter 1 and 2 respectively. (Having 2 transmitters will

allow us to pictorially illustrate the concept of QoS space partitioning.)
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Figure 4.10 Displacement vector

The two transmitters along with their respective receivers are randomly placed over

an area of 100 X 100 with the primary being at (50, 50). We randomly generate 100 instances

of [P1, P2] pairs and partition them using the LBG algorithm. P1 and P2 were generated

uniformly randomly between 0 and 200 mW. The first phase results in 1 centroid (black solid

triangle) as shown in Fig. 4.11(a). Continuing with partitioning and clustering we obtain 2,

4, and 8 centroids as shown in Figs. 4.11(b)-4.11(d). We do not continue further.

As for a specific QoS metric, we consider the capacity of the system which is nothing

but the sum of the capacities of all the transmitter-receiver pairs. For K transmitter-receiver

pairs, we evaluate the Shannon capacity, C, as:

C = B

K
∑

i=1

log2

(

Pi

dii
α

N0 +
Pp

dαpi
+
∑K

j=1,j 6=i
Pj

dαij

)

(4.33)
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Figure 4.11 a) 1 centroid; b) 2 centroids; c) 4 centroids; d) 8 centroids
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where B is the bandwidth, N0 is the noise, dij is the distance between the ith transmitter

and the jth receiver, dpi is the distance between the primary transmitter and the ith receiver,

Pp is the power of the primary, and α is the path loss exponent.

For illustration and better pictorial representation, we consider K = 2, i.e., two

transmitter-receiver pairs. Thus, equation (4.33) reduces to:

C = B log2

(

P1

d11
α

N0 +
Pp

dαp1
+ P2

dα21

)

+B log2

(

P2

d22
α

N0 +
Pp

dαp2
+ P1

dα12

)

(4.34)

For each instance of P as shown in Fig. 4.11(a)-4.11(d), we plot the corresponding

capacity in Fig 4.12 which is the 2-dimensional QoS (capacity) space. We partition this

capacity space into 8 regions and find the 8 centroids as shown in Fig. 4.13(a). Again,

selection of 8 regions is for graphical demonstration purpose only. (It can be noted that

the projections of the 8 points in Fig. 4.13(a) onto the P1 − P2 plane are the same as the

8 centroids in Fig. 4.11(d).) Once these 8 entries for the codebook are created; we simply

consult the codebook to find the closest centroid for a new power vector.

Search complexity: The corresponding capacity can be found by a fast look-up and compar-

ison with the pre-computed codebook (centroids) and not by computing Eqn. (4.33) which

is tedious for large number of transmitter-receiver pairs. Though a linear search for the

nearest centroid takes O(N) time, we use the tree structured vector quantization that takes

O(log N) time [94].
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Figure 4.12 Capacity as the objective function
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Figure 4.13 a) 8 centroids in the capacity space with 100 data points; b) Updated 8
centroids in the capacity space with 125 data points.
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Codebook update: As mentioned earlier, we used 100 data points (i.e., power vectors) to

generate the codebook with 8 entries. As we get more data points, we are able to update the

codebook. With additional 25 data points, we update the codebook as shown in Fig. 4.13(b).

Note that, the initial centroids have moved slightly due to the new data points.

It can be noted that the selection of the data points influences the codebook. There-

fore, we used a training set that produces most of the possibilities given the restrictions on

the upper bound on the transmit power and the localization of the nodes. Should there

be any deviation in the statistical nature of the data points, a continuous update process

performed off-line time will keep the codebook updated.
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Figure 4.14 Distortion with increasing no. of partitions

Distortion Vs. N : Distortion, as was given in Eqn. (4.32), is a measure of the goodness of a

codebook. Of course, there is a trade-off between the number of partitions (i.e., entries in the
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codebook) and the search time. For the same distribution of P1 and P2 (i.e., between 0 and

200) we find the distortion. As expected, the distortion decreases with increasing number of

partitions (N) as shown in Fig. 4.14.

4.2.4.1 Reverse Lookup

As mentioned earlier, that although the proposed method does not perform power control, it

can still be used to bypass the complex resource optimization by performing a reverse-lookup

as follows. If a specific network QoS (say Qtarget) is desired then the codebook can be looked

up in O(logN) time to find the centroid with the closest QoS value (say, Qclosest) to Qtarget.

Once Qclosest is determined, its corresponding power vector can be assigned to the secondary

users to achieve a QoS value that is closest to the target QoS without the need to perform

optimizations.

Moreover, the codebook can be constructed to include all the different resources such

as time frames, frequencies, codes, that are associated with each power vector. Following

such an approach, the reverse look can help decide on not only power but also other types

of resources that are associated with Qclosest.
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4.2.4.2 Impact On The Primaries

Since the secondaries use the same channel as the primary, the primary will get interfered

from all secondaries– the magnitude of which will depend on their mutual distance and the

path loss exponent. The total interference perceived at the primary, Ip, is given by

Ip =

K
∑

i=1

Pi/d
α
i,p (4.35)

where di,p is the distance from the ith secondary transmitter to the primary.

An Illustrative Example with 2 Secondary Pairs: Let us consider a primary receiver

located at (0, 0) and two secondary transmitters at distances of 110 and 130 Meters respec-

tively. The transmit power ranges from 0 to 200 mW. For each instance of P, we plot the

corresponding interference at the primary for all values of P1 and P2 creating the Interference

Space as shown in Fig. 4.15(a).

Following the same approach in Section V (in creating the centroids for the capacity),

we partition the space into 8 regions and find the 8 centroids as shown in Fig. 4.15(b). These

8 centroids will be used to map the new values of P to find the expected interference on the

primary.
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Figure 4.15 (a) Interference space of the primary, (b) Partitions of the interference space
with their centroids

4.3 Summary

In this chapter, we showed how to bound the maximum achievable capacity of a finite

secondary DSA network operating in the underlay mode using the SINR model. We also

presented the concept of dead pairs and used it to reduce the optimizer’s search space without

comprising the optimality. We also presented SINRRel and illustrated how to use it to obtain

sub-optimal solution or as well as to further reduce the optimizer’s search space.

Next, we presented a vector quantization based QoS evaluation scheme where the

K-dimensional QoS space is partitioned and each partition has a representative point which

can be looked up in O(logN) or O(N) time for the expected QoS metric.
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CHAPTER 5: DESIGN AND IMPLEMENTATION OF LOW
COST DSA SYSTEM

This chapter presents the design and implementation of a low-cost DSA system. We start by

outlining our design philosophy and present the system architecture with its components. We

discuss in detail the design of each component. We also present the details of the hardware

and software implementation.

5.1 Design Philosophy

Although many techniques exist for spectrum sensing like matched filer, energy detection

(ED), cyclostationary, etc [101, 102, 103]; energy detection stands out as one of the opti-

mum methods as it is simple and does not require any prior knowledge about the primary

user(s) [104]. Simply stated, ED revolves around measuring the amount of energy on a spe-

cific bandwidth. In traditional DSA systems, heavy duty hardware devices (SDRs, spectrum

analyzers) are employed for this simple task which is an overkill. Also, the cost of these

devices becomes a bottleneck for large scale deployment. We argue that these light-weight

sensing tasks can potentially be done on relatively inexpensive and computationally light

devices.
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Our approach is based on the fact that recent years have witnessed a proliferation

of low cost off-the-shelf software configurable RF (SCRF) chips. Popular examples are the

CC2500, CC1100, CC2550 by Texas Instruments [105] and RFM22, RFM23, and RFM69

by HopeRF [106]. These devices have built-in capability to record RSSI values (digital or

analog)– a feature which we believe has been overlooked for its potential for spectrum sensing,

particularly when combined with the energy detection algorithms like localization algorithm

double-thresholding (LAD), forward consecutive mean excision (FCME), etc [107, 108]. Our

design philosophy is based on i) harnessing the inexpensive commercial off-the-shelf SCRF

chips that offer this RSSI feature, instead of traditionally used SDRs allowing for a low-

cost solution to sensing, scalability, and cost, and ii) realizing flexible system configurablity

via user-friendly programming interface. Though the spectrum analyzers and SDRs are far

more capable than the SCRF chips for spectral analysis, however for ED, such features

are irrelevant. Most importantly, the SCRF chips sold for $3-$4 are orders of magnitude

economical than SDRs and spectrum analyzers.

5.2 System Architecture

The proposed DSA system architecture, which has also been implemented, is shown in

Fig. 5.1. The overall system architecture consists of three primary components– each of

which has multiple sub-components. The primary components are: i) the RSSI sensing

network, ii) the DSA server, and iii) the service engine. The sensing network captures the
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RSSI readings and streams them real-time to the DSA server where the data is received,

parsed, and stored in a database. The RSSI records from the database are made accessible

to any end-user by the service engine which offers a wide variety of services.
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Figure 5.1 System Architecture.

The sensing network consists of a variety of low-cost spectrum sensors which are

capable of streaming real-time RSSI measurements (wired or wirelessly) to the DSA server.

The RSSI collector in the DSA server continuously receives the streams of data from multiple
144



sensors and passes them to the database engine which creates a record (that includes time-

stamps, sensor ID, sensor location) for each reading. The configuration panel module allows

changes to the radio and network parameters for the sensing network based on the real-time

performance diagnostics. The service engine facilitates various end-user services like channel

allocation to DSA nodes, radio map environment (REM) construction, real-time updates on

spectrum occupancy on various bands, etc.

5.3 RSSI sensing network

The sensing network consists of spectrum sensors which can be wired or wireless. We must

first understand the building blocks of the sensor nodes.

5.3.1 Spectrum Sensors

A spectrum sensor unit/node primarily consists of two main components: the RF-front end

and the controller. Depending on how the senor would be connected to the rest of the

network, there could an additional Ethernet interface. A block diagram along with what

has been actually implemented is shown in Fig. 5.2. We emphasize that the design is not

based on any specific component. These components are treated as generic building blocks.

Our goal is to provide a guideline on how to capitalize on the off-the-shelf SCRF chips and

controllers for making low-cost spectrum sensors.
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Figure 5.2 Block diagram of sensor node (left) with correspondence to an implemented
unit (right).

5.3.1.1 RF front-end

The RF front-end is responsible for measuring the RSSI values on the target bands. The RF

front-end makes use of the RSSI reporting feature that is available in the off-the-shelf SCRF

chips. As discussed earlier, these SCRF chips can be configured as transmitters (Tx) or

receivers (Rx) in addition to configurable modulation schemes, bandwidth, and data rates.

The features of any specific SCRF chip dictate the RF properties and capabilities of the

sensor. For example if the SCRF chip uses an analog technology with maximum bandwidth

of 500 KHz, then the sensor will have an analog front end with 500 KHz as the maximum

bandwidth. If needed, the RF front-end can also be used to transmit the measured RSSI

values over a radio channel as will be shown later in Section 5.3.
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5.3.1.2 Controller

In order to configure and control the SCRF chips, a controller is needed– the interface of

which depends on the SCRF chip in question. The serial peripheral interface (SPI) is a pop-

ular choice for TI and HopeRF chips. The controller instructs the SCRF chip with the RF

configuration parameters (target frequency, bandwidth, scanning rate and resolution) based

on the user inputs. The RSSI values from the RF front-end are then read by the controller.

Depending on the network architecture, the controller either i) instructs the Ethernet inter-

face to stream the RSSI values to the DSA server using some real-time streaming protocol,

or ii) reconfigures the RF-front end as a transmitter to transmit the RSSI value over a radio

channel.

5.3.1.3 Ethernet Interface

This optional interface can be used to make use of an existing network infrastructure to

stream the RSSI values, thus relieving the RF-front end for sensing only. It can be noted

that, the Ethernet circuitry could be integrated with the controller or it could be external

to the controller.
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5.3.2 Network Architecture

Though the Ethernet-enabled sensors can stream the RSSI values directly to the DSA server,

the wireless sensors cannot do so as the DSA server is not wireless enabled. A wireless enabled

DSA server does not help because of i) additional cost due to specialized hardware, and ii)

reduced sensing area as the sensors will have to be able to directly communicate with the

DSA server iii) lack of support for multiple frequencies.

In order for the wireless sensors to send their data to the DSA server, the sensors

must send the data to a wireless hub which will then send the data to the DSA server via

Ethernet as shown in Fig. 5.3. The figure also shows the Ethernet-enabled sensors that

stream directly to the DSA server over the Internet. Apart from the hub and the sensors

streaming data over the Internet, they could also be directly connected to the DSA server.

Both configurations are illustrated in Fig. 5.3.

5.3.3 Network Operations

Let us now elaborate on how the various network components communicate over RF and

Ethernet.
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Figure 5.3 Overall network architecture showing how wireless sensors, hubs, and
Ethernet-enabled sensors connect to the DSA server.

5.3.3.1 Wired Sensors

Recall, the wired sensors have an RF-front end, a controller, and an Ethernet interface. On

power-on, each sensor contacts the DSA-server over Ethernet to obtain the list of frequencies

that need to be scanned including bandwidth, sweep time, and scan resolution (i.e., scan-

list). Once the scan-list is obtained, the controller cycles through the list one frequency

at a time and instructs the RF front-end to measure the RSSI on each frequency. The

controller then fetches the RSSI value from the RF front-end and passes it to the Ethernet

interface where the controller instructs the Ethernet interface to build a UDP packet to be

streamed to the DSA server. The payload of the UDP packets can carry: i) single RSSI

value or ii) multiple RSSI values– the decision of which depends on the time critically of
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RSSI reporting. Apart from the RSSI value(s), the payload contains other information such

as nodeID, frequency, sensor coordinates.

5.3.3.2 Wireless Sensors

The wireless sensors use the same RF front-end for sensing and for transmitting the sensed

data to the hub. On a broadcast channel, the hub instructs each wireless sensor to scan

a specific set of frequencies. It also manages the channels (i.e., uplink frequency and the

transmit time slot) for each sensor. This switching between sensing and transmitting by the

RF front-end is achieved by the controller. It starts with the controller instructing the RF

front-end to listen to the dedicated broadcast channel (i.e., Rx mode). Once the broadcast

is received, the controller extracts the scan-list and instructs the RF-front end to measure

the RSSI values. Similar to the wired sensors, the controller fetches the RSSI values and

switches the RF front-end in the Tx mode and transmits the data to the hub. Once done,

it switches back to the Rx mode and the process repeats.

5.3.3.3 Hubs

The role of a hub is not only to communicate with the wireless sensors in a “hub and spoke”

configuration but also to serve as a wired sensor. The hub is equipped with the RF-frond end,

controller and Ethernet interface. While sensing, it simply behaves just like the wired sensors.
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While controlling the wireless sensors, the hub is responsible for i) broadcast of scan list to

respective sensors (i.e., task allocation) ii) uplink channel allocation to individual wireless

sensors, and iii) data aggregation and UDP streaming.

On power-on, the controller contacts the DSA server and obtains a scan list for itself

and the wireless sensors connected to it. As in the wired sensors, the controller cycles through

the list of frequencies, configures the RF front-end, fetches the data and streams it over UDP

to the DSA server. Next, it configures its RF front-end for transmission on the broadcast

channel and transmits the scan-list to the wireless sensors. It can be noted that the hub

might instruct all the wireless sensors to scan the same set of frequencies or it might instruct

the sensors to scan different sets of frequencies.

Once done, the hub switches the RF front-end to the receive mode and waits for the

wireless sensors to send their data. Transmissions by the wireless sensors are scheduled by

the hub using any mechanism such as polling or token passing. Depending on the time-

criticality of the RSSI measurements the hub can i) have a single RSSI measurement per

packet, ii) aggregate multiple RSSI measurements from the same wireless sensor into a UDP

packet, or iii) aggregate multiple RSSI measurements from different wireless sensors into a

UDP packet. In all three cases, it streams the UDP packet to the DSA server using its

Ethernet interface.
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5.4 DSA server

As discussed in the system architecture, the DSA server has four primary components: RSSI

collector, real-time diagnostics, configuration panel, and database engine.

5.4.1 RSSI Collector

The RSSI collector can be a single or multi-threaded server depending on the number and size

of RSSI incoming UDP streams from the sensors and hubs. The RSSI collector extracts all the

fields (i.e., nodeID, location, freq, bandwidth, and RSSI values) from the UDP packets and

time-stamps and passes them to the database engine. The same information is also passed to

the real-time diagnostics module. Apart from the RSSI streams, the RSSI collector also gets

the queries for the scan-list from the sensors and hubs which is directed to the configuration

panel.

5.4.2 Real-time Diagnostics

Diagnostics allow spectrum managers to have real-time assessment of the spectrum assay of

the RF field being sensed. Various representation techniques and/or display visualization can

be used that best conveys the meaning of the parameters captured by the sensing network.
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Based on the assessment, it also provides a feedback to the configuration panel for scan list

parameters update.

5.4.3 Configuration Panel

The configuration panel is used to configure the scan parameters for the sensors and hubs.

Such configuration can be done in an automated manner in response to what the diagnostics

are or it could be done manually by the end-user. In either case, these parameters (target

frequencies, bandwidth, sweep time, and scan resolution) are sent to the sensors and hubs.

5.4.4 Database Engine

This is a multi-threaded server which receives the time-stamped entries from the RSSI col-

lector. This engine provides a mechanism for storage and retrieval of data by storing data

in a NoSQL format, primarily because of its simplicity and scalability. If needed, the engine

purges entries which are older than a specifies time period. It also replies to all the queries

from the service engine.
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5.5 Service Engine

A variety of services can be provided to the end users, network operators, and spectrum

managers based on the available information at the DSA server. Such services are facilitated

by the service engine which could be either: i) collocated with the DSA server, or ii) cloud-

based. To provide ease of implementation and provide modularity to the wide variety of

services, the service engine uses two important modules as shown in Fig. 5.1. The service

mapper is a multi-threaded TCP and UDP server which takes in the user inputs with varying

formats and directs them to the right service. The database interface provides a single API

for the various services to request database entries.

The services themselves are some methods that make use of the database entries and

supplies meaningful information to the requester which could be an end-user or a DSA node.

Fig. 5.1 shows three different services: i) channel allocation, ii) radio environment map, and

iii) real time spectrum monitoring (these 3 services have also been implemented as discussed

in Section 5.6).

5.5.1 Channel Allocation

For any channel allocation and access, it is important for a pair of transceivers to know the

channel that provides the best possible data rate.
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This is even more crucial in a DSA system because of the fleeting nature of the

set of available channels. The channel allocation service finds the best available channel

for the given locations of the transmitter and the receiver. As the database might not

contain the RSSI values for requested locations, channel allocation service resorts to some

interpolation/extrapolation methods to estimate the data rate for the given locations.

5.5.2 Radio Environment Map

A REM is a representation of the RF field in space that is obtained by sampling the field by

the spectrum sensors at various locations. It typically represents the power spectral density

for the target frequency for a given region. The number of points for which the power spectral

density has to be estimated depends on the temporal and spatial granularity of the desired

REM, thus a more detailed REM requires more computations.

5.5.3 Real-time Spectrum Monitoring

This service allows the end user to monitor the RSSI measurements by any subset of the

spectrum sensors in real-time. This is achieved by streaming the RSSI values over the

Internet to any host. It also offers a variety of ways to graphically display the data in a user

friendly manner.
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5.6 Hardware and Software Implementation

Based on the proposed DSA system architecture and capitalizing on the SCRF chips’ ca-

pabilities, we implement a low-cost system level solution for the same. For the sensing

network, we design and build four different kinds of sensors– three of which are wired and

one is wireless. The DSA server was implemented on a Linux machine. As for the services,

we implement three services: channel allocation to the DSA enabled nodes, creation of the

radio environment map, and real-time spectrum monitoring. Let us discuss each of the

components in detail.

5.6.1 Wired Sensors

We built three types of wired sensors that had different sensing and streaming capabilities.

For all three, to ensure compatibility, we used the same frame format to stream the UDP

packets to the DSA server:

nodeId:targetFreq:BW:RSSI:XX:YY

The nodeId is used to identify the sensor, the targetFreq and BW are the center frequency

and bandwidth being scanned, RSSI is the measured signal strength in dBm, XX and Y Y

are the X-coordinate and Y-coordinate of the sensor. The operational procedure for the

wired sensor is shown in Fig. 5.4. Next, we discuss the The 3 types of wired sensor are:
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Figure 5.4 Operation procedure for the wired sensor.

157



Type-1 Sensor: Type-1 sensor is meant to detect sub-GHz frequencies. All the components

were low-cost off-the-shelf devices– the total cost of which was less than $10. The individual

components are shown in Fig. 5.5(a) while the assembled one is shown in Fig. 5.5(b).

RF Front-end: The RF front-end for this sensor is RFM22 by HopeRF [106] which has a

frequency response from 240 MHz to 930 MHz. The receiver sensitivity is −118 dBm with

a configurable receiver bandwidth from 2.6 KHz to 620 KHz. It also has an RSSI reporting

feature. The transmit capabilities of RFM22 are exploited for the hub and the wireless

sensors as will be discussed in sections 5.6.2 and 5.6.3.

Controller: We used the microcontroller ATmega328p as the controller. It is an 8 bit

device with 32 KBytes of ROM, 2 KBytes of RAM, with 20 MIPS. Packet encapsulation and

streaming were done as follows.

S t r ing DSAServerIP =10 .192 . 168 . 4 ;

d e f i n e RF−SPI−PIN 5

de f i n e Ethernet−SPI−PIN 4

scanL i s t [ ]= ObtainScanList ( ) ;

For ( each entry i in scanL i s t )

// shared SPI r e qu i r e s i n d i v i d u a l a c t i v a t i o n o f RF and Eth .

SwitchSPIControl ( 5 ) ;

se tFreq ( scanL i s t [ i ] ) ;
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double read ing=readRss i ( ) ;

double RSSI=convertReadingToRSSI ( read ing ) ;

S t r ing payLoad = buildPayLoad ( nodeId , s canL i s t [ i ] ,

BW, RSSI , XX, YY) ;

SwitchSPIControl ( 4 ) ;

delayMicroSecond ( 1 0 ) ;

s e l e c tE t h e r n e t I n t e r f a c e ( ) ;

Datagram udp=Datagram(DSAServerIP , payLoad ) ;

sendUDP(udp ) ;

End−For−i

SPI

SPI

(a) (b)

Figure 5.5 (a) Components for Type-1 sensor; (b) Assembled Type-1 sensor.
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Ethernet Interface: We used W5100 chip which is a hardwired TCP/IP embedded Ether-

net controller that enables easier Internet connection for embedded systems. An attractive

feature of this chip is that it can be controlled via SPI by the ATmega328p microcontroller.

Type-2 Sensor: Type-2 sensor is meant to detect the 2.4 GHz ISM band. Again, all

components were off-the-shelf with the total cost being less than $10. The components are

shown in Fig. 5.6(a) while the assembled sensor is shown in Fig. 5.6(b).

RF Front-End: The RF front-end of this sensor uses CC2500 by TI which has a frequency

response from 2.4 GHz to 2.4835 GHz [109]. The receiver sensitivity is −104 dBm with

a configurable receiver bandwidth from 58 KHz to 812 KHz. CC2500 also has an RSSI

reporting feature. Though CC2500 has transmit capabilities, they are not needed for RSSI

sensing.

Controller and Ethernet Interface: We used the microncontroller PIC18F87J60 which is

an 8 bit device with 128 KBytes of ROM, 3808 Bytes of RAM, and processes up-to 10 MIPS.

This microcontroller has a built-in 802.3 compatible Ethernet controller with integrated PHY

and MAC modules.

S t r ing DSAServerIP =10 .192 . 168 . 4 ;

s canL i s t [ ]= ObtainScanList ( ) ;

For ( each entry i in scanL i s t )

setFreq ( scanL i s t [ i ] ) ;

double RSSI=readRss i ( ) ;

S t r ing payLoad = buildPayLoad ( nodeId , s canL i s t [ i ] ,
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BW, RSSI , XX, YY) ;

Datagram udp=Datagram(DSAServerIP , payLoad ) ;

sendUDP(udp ) ;

End−For−i

Ethernet Connector

PIC18F87J60

CC2500

SPI

Data Bus

(a) (b)

Figure 5.6 (a) Components for Type-2 sensor; (b) Assembled Type-2 sensor.

Type-3 Sensor: Type-3 sensor is meant to detect a wider band (50 MHz to 1.87 GHz);

however, it is costlier than the other two with a total cost of $45. The assembled sensor

along with the internals of the USB dongle is shown in Fig. 5.7.

RF Front-End: We used a USB dongle based TV tuner and reverse-engineered it to serve

as the RF front-end. The dongle contains two essential RF chips: the first is the RF tuner

chip R820 and the second is the demodulator chip RTL2838. The combination of these

two chips allows reconfigurable frequency from 50 MHz to 1.87 GHz with a configurable

bandwidth of up to 2.4 MHz while supporting ASK, FSK PSK and QPSK demodulation
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schemes. The receiver’s sensitivity is between −72 dBm and −92 dBm and depends on the

bandwidth and demodulation scheme used.

It is to be noted that this dongle is sold for decoding 6 MHz TV channels. It does not

directly measure RSSI values nor does it allow any ‘receive bandwidth’ that is less than or

more than 6 MHz. In order to measure RSSI for any bandwidth, we implemented customized

device drivers to communicate with the PIC micro-controller inside the dongle to pass the

modified commands to the R820T tuner and the RTL2838 demodulator chip to obtain the

raw demodulated data. Fast Fourier Transform (FFT) is performed on the raw data with

the desired resolution (i.e., 100 pins per 1 MHz) that yields the RSSI values.

Controller and Ethernet Interface: We used BeagleBone which is a single board com-

puter (SBC) due to the following reasons: i) the USB dongle requires libusb-1.0 support

for USB interface, ii) capability to handle large amounts of raw demodulated data for FFT

computation, iii) complete USB host functionality to execute the customized device drivers,

and iv) integrated Ethernet support.

S t r ing DSAServerIP =10 .192 . 168 . 4 ;

i n t p inS i z e =100;

s canL i s t [ ]= ObtainScanList ( ) ;

For ( each entry i in scanL i s t )

setFreq ( scanL i s t [ i ] ) ;

byte [ ] baseBand=captureData ( ) ;

double [ ] r ead ing s=FFT( baseBand ) ;
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double RSSI=readingsToRSSI ( read ing ) ;

S t r ing payLoad = buildPayLoad ( nodeId , s canL i s t [ i ] ,

BW, RSSI , XX, YY) ;

Datagram udp=Datagram(DSAServerIP , payLoad ) ;

sendUDP(udp ) ;

End−For−i

RF-IN

AGC

LIF

CLOCK OUT

    Digital 

Demodulator

  (RTL2838)

SPI Micro-

Controller
R820T

Xtal

Figure 5.7 Type-3 sensor.

A sample wide-band scan, 50 MHz to 1.7 GHz, performed with a Type-3 sensor is shown in

Fig. 5.8. The scan was performed on December 12th 2015 around 04:46 PM eastern time at

Lat: 28.6035429, Long: -81.1994791. The scanning resolution was set to 100 pin/MHz.
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Figure 5.8 Measurements performed by Type-3 sensor.

5.6.2 Wireless Sensors

The wireless sensors have the same RF front-end and the controller as that of Type-1 sensors.

Being wireless, it does not have Ethernet connectivity. For transmission, it uses the same RF

front-end that is used for sensing. For the Tx part, the RFM22 supports FSK, GFSK, and

OOK modulation schemes with data rates from 1 to 128 Kbps. It has configurable transmit

power from 8 dBm up to 17 dBm. The operational cycle of the wireless sensor is shown in

Fig. 5.9.

The wireless sensors send data to the hub using a customized light-weight protocol

using the following format:

MyNodeID:targetFreq:BW:RSSI:XX:YY
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      target freq

Transmit the reply

Start

Figure 5.9 Operation procedure for wireless sensor.

The MyNodeID is the id of the sensor that measured the RSSI, XX and Y Y are the x and

y coordinates of the sensor, targetFreq is center frequency of the band being sensed, BW

is the bandwidth, and RSSI is the measured value. The components of a wireless node are

shown in Fig. 5.10(a) while an assembled wireless sensor is shown in Fig. 5.10(b).

5.6.3 Hub

We used the same hardware components that we used for Type-1 sensor to serve as the hub

for the wireless nodes. In addition to the functions that are performed by the Type-1 sensor,

the hub has been programmed to query the wireless nodes, manages their channel access
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using a polling-based MAC, get their responses, encapsulate the data in UDP packets, and

stream them to the DSA server. The operational cycle is show in Fig. 5.11. An assembled

hub is identical to the wired sensor shown in Fig. 5.5(b).

Using a dedicated channel, the hub queries the wireless nodes in its vicinity using the

frame format:

YourNodeID:targetFreq:BW

where The YourNodeID is the id of the sensor that is being queried by the hub, targetFreq is

center frequency of the band to be sensed, and BW is the bandwidth. Once the hub receives

the data from a wireless sensor, it encapsulates the entire data in a UDP packet and streams

it to the DSA server.

SPI

(a) (b)

Figure 5.10 (a) Components for wireless sensor; (b) Assembled wireless sensor.
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Figure 5.11 Operation procedure of the hub.
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Figure 5.12 Measurements performed at the hub (unit A) and the wireless sensor (unit B).

Sample wide-band scans, 400 MHz to 930 MHz, performed by a hub and a wireless sensor

are shown in Fig. 5.12. The scans were performed at January 28th 2016 around 09:46 PM

eastern time at Lat: 28.6035429, Long: -81.1994791.

5.6.4 DSA Server

The DSA server, consisting of the four modules, is the core of the entire system. We imple-

mented all the modules in Jave on a Linux box running Ubuntu 14.04.

For the RSSI collector, a multi-threaded server is run on port 25100 (randomly chosen)

to read the incoming UDP packets. To infer the presence of primaries, we implemented the

classical periodogram in Java that essentially compares the RSSI values against a threshold.
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The diagnostic functionality keeps track of the active primaries and their spectrum usage

patterns. A multi-threaded UDP server was implemented to allow the sensors in the field to

open a UDP connection to the configuration panel. This connection was used by the sensors

to request the scan-list from the configuration panel and also for the configuration panel to

respond with the same. The UDP frame format that was used was:

nodeID : freq1 : BW1 : freq2 : BW2 : ... : freqN : BWN

with the nodeID being the id of the node asking for the scan-list, BWi is the bandwidth for

the i-th channel around the target center frequency freqi. Using the configuration panel,

Type-1 sensors were configured to scan channels with bandwidth of 300 KHz centered at

900, 905 and 910 MHz. Type-2 sensors were configured to scan frequencies from 50 MHz to

1.7 Ghz with channel width of 2 MHz. Type-3 sensors were configured to scan from 2.4 GHz

to 2.485 with a bandwidth of 50 KHz. The RSSI reported value, nodeID, node’s location,

bandwidth, target frequency from all sensors were time-stamped and stored as ‘Comma

Separated Values’ (CSV) file format in the database engine as:

a,b,c,....
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5.6.5 Service Engine

We implemented three services as part of the service engine. All services made use of the

Database Interface and the Service Mapper. The database interface was implemented as a

Java-API that takes a query from the services and parses the database entries and returns the

results to the respective service. The service mapper was implemented as a multi-threaded

UDP server on the following ports 25200, 25300 and 25400 corresponding to the channel

allocation, radio environment map, and real-time spectrum monitoring services respectively.

Channel allocation service: was implemented as a multi-threaded Java server running on

port 25200. This service is used by the DSA enabled transmitter-receiver pairs as they seek

the best vacant channel in their vicinity. Upon receiving a channel allocation request with

the format

nodeId:XX:YY

the channel allocation service extracts the pairs’ location (i.e., (x, y) coordinates). It then

accesses the database engine to find entries that might have been recorded by sensors in the

viciniy of (x, y). We used a modified version of Shepard’s interpolation technique to estimate

the RSSI (and hence the best possible channel) for the location in question by fusing the

RSSI values recorded by sensors in the vicinity [110]. In particular, we implemented the

technique proposed in [111] which was computationally lightweight and also efficient for

different types of primary networks. The service responds back with a UDP packet using
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the following format:

nodeId:freq:BW

where freq, BW are the frequency and bandwidth of the recommended channel.

Figure 5.13 Client side of real time monitoring service showing 5 live strems.

Real-time monitoring service: was implemented as a multi-threaded TCP server on port

25300. Upon receiving a TCP request from the user/client, the service uses the database

interface to obtain the most recent RSSI values from all the database engine and streams

them to the user using the frame format:

nodeID : freq1 : BW1 : freq2 : BW2 : ... : freqN : BWN
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Figure 5.14 Radio environment map displayed as 3D map at the client side.

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 −10

−5

0

5

10

15

20

25

30

35

40

dBm

Figure 5.15 Radio environment map as displayed as heat map at the client side.

Fig. 5.13 shows the real time monitoring service at the client side.
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Radio environment map: is similar to the channel allocation service; however, instead of

estimating for one location, the REM is constructed for N ×N discrete locations in the area

of interest. One time instance of the map is computed as:

d e f i n e mapResolution 1

de f i n e mapWidth 100

de f i n e mapLength 100

i n t dataPoints=mapWidth/mapResolution ;

// l o c a t i o n [ 0 ] i s X, l o c a t i o n [ 1 ] i s Y

double l o c a t i o n [ ]= extractLocationFromRequest ( ) ;

double yUpperLimit= l o c a t i o n [1 ]+mapHeight /2 ;

double yLowerLimit= l o c a t i o n [1]−mapHeight /2 ;

double xUpperLimit= l o c a t i o n [0 ]+mapWidth /2 ;

double xLowerLimit= l o c a c t i o n [0]−mapWidth /2 ;

double sensorReadings [ ]= QuerydataBaseforSensorsWithin (

xUpperLimit , xLowerLimit , yUpperLimit ,

yLowerLimit ) ;

For ( xIndex : xIndex<mapWidth : s t epS i z e=mapResolution )

For ( yIndex : yIndex < mapLenth : s t epS i z e = mapResolution )

est imatedRSSI = modif iedShepard ( sensorReadings , xIndex ,

yIndex ) ;

payload=concat ( payload , xIndex , yIndex , est imatedRSSI ) ;
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End−For−y

EndFor−For−x

Datagram udp=Datagram( requester IP , payload ) ;

sendUDP(udp ) ;

The results are streamed to the user using following frame format:

X1 : Y1 : RSSI1 : X2 : Y2 : RSSI2 : · · · : XN : YN : RSSIN

where RSSIi is the estimated RSSI value at coordinate Xi and Yi.

Figs. 5.14 and 5.15 show two different representation of the radio environment map as dis-

played at the client side.

5.7 Summary

In this chapter, we presented and implemented a low-cost yet effective architecture that

enables dynamic spectrum access for any network ranging from IoT to cellular. We broke

the cost-scalability barrier and showed that a complete system level solution for a database-

assisted DSA system can be implemented with standard servers and inexpensive software

configurable RF chips, thereby achieving economics of scale.

First, we presented the overall architecture and the system components. Next we

designed each component and showed how it integrates within our architecture. For the RSSI
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sensing network, we built wired and wireless spectrum sensors that operate on 280–930 MHz,

50 MHz–1.87 GHz, and 2.4–2.5 GHz using low-cost off the shelf software configurable RF

chips. To get the RSSI values on a set of bands, we use generic micro-controllers to program

the operating parameters (scan range, center frequency, bandwidth resolution, demodulation

scheme and scan rate) of the SCRF chips. The wireless sensors transmit the sensed RSSI

values to the nearest Ethernet-enabled hub using a light-weight communication protocol.

The hub aggregates the data from multiple sensors and streams to the DSA server using

UDP over IP. On receiving the real-time RSSI values from various sensors, the DSA server

stores them in database engine with other meta data. This database is made accessible

by the service engine that can offer a variety of services. We implemented three services:

channel allocation, radio map creation, and real-time spectrum usage monitoring.
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CHAPTER 6: SIMULATION MODEL AND RESULTS

In this chapter, we discuss the simulation models, experiments and testbeds. We first present

the results on connectivity, followed by the results on capacity. Finally we do a performance

evaluation for the implemented DSA system.

6.1 Connectivity

6.1.1 Connectivity of Interference Limited DSA Networks

To validate the theoretical findings on connectivity of DSA networks, we conduct Linux

based simulation experiments. In particular, we seek to find thinning probability, perco-

lation conditions, coverage shrinkage, and the effective density. We consider two different

Poisson distributed secondary networks thus eliminating any bias towards a favorable net-

work setting. The first network is discussed in 6.1.1.1 and the second network is discussed

in 6.1.1.2. We use |C| to denote the size of the biggest component and n to denote the total

number of deployed secondary nodes. The ratio |C|/n denotes the relative size of the biggest

connected component. We use the word percolation to refer to the formation of a spanning

giant component which contains at least 40% of the deployed nodes.
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6.1.1.1 Network-1

We consider an area of 300× 300 with secondary density of λs, rs = 25, rI = 35, α = 2, and

β = 1. To illustrate Lemma 3.1, we set γ = 0.5 and λp = 0. The resultant connectivity is

shown in Fig. 6.1(a). Using the Boolean model, it was found that a network with rs = 25

will percolate once the deployment density is more than 151/90000 i.e., λcs = 151/90000.

In other words, more than 151/90000 nodes per unit area should be visible in order for

the percolation to occur. By examining Fig. 6.1(a) it can be seen that the network never

percolates although λs is driven greater than λcs. The reason can be explained by checking

Fig. 3.8. It can be seen that, Pthin is very high for λs > 151/90000 and approaches 1. Thus

the percolation visible nodes have density of λs × (1− 0.9999) which is less than 151/90000

and that is why percolation can never occur for such a network.

Next, we keep λp = 0 and set γ = 0.08 and observe the resultant connectivity as

shown in Fig. 6.1(b). It can be noted that the network percolates for a certain range of

λs values while it does not for the rest. To understand such behavior, we examine the

analytical plot of λeff for γ = 0.08 as shown in Fig. 6.1(c) and observe that although λs goes

from 0 to 1200/90000 only a portion of it produces λeff > 151/90000 at which percolation

occurs. For further understanding, we revert to the analytical plots of Pthin (Fig. 6.1(d)),

Pd−x (Fig. 6.1(e)), pdia, pside (Fig. 6.1(f)), and the reduced coverage radius (Fig. 6.2(a)) for

γ = 0.08. From Fig. 6.1(e), we note that at low densities, Pd−0, pside, and pdia dominate,

due to deployment scarcity. As λs increases, nodes start to have a neighbor in their rs, this
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Figure 6.1 A) |C|/n versus λs at γ = 0.5; B) |C|/n versus λs at γ = 0.08; C)Effective
density versus λs with γ = 0.08, λp = 0; D) Total thinning probability versus λs with

γ = 0.08, λp = 0; E) Theoretical plot for Pd−0, · · ·Pd−4 versus λs at γ = 0.08; F)Theoretical
plot for Pside and Pdia versus λs at γ = 0.08.
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is why Pd−1 and Pd−2 peak. Then, the number of neighbors increases which gives a rise to

Pd−3 and Pd−4 while Pd−0, Pd−1, and Pd−2, pside and pdia decrease. This leads to decrease in

Pthin and increase in λeff to more than 151/90000 at which percolation occurs. On deeper

examination, we note that, |C|/n, λeff , Pd−3, and Pd−4 maximize for the same values of λs

which minimize Pthin, Pd−0, Pd−1, Pd−2, pside and pdia. For large values of λs, the distance

between the nodes becomes small. For this reason, the nodes start to dominate on each

other increasing Pd−1 and Pd−2 again.

0 20 40 60 80 100
8

10

12

14

16

18

20

22

24

26

Reduced Coverage Radius

R
ed

uc
ed

 C
ov

er
ag

e 
R

ad
iu

s

(a)

0
5

10
15

20

0

100

200

300
0

0.1

0.2

0.3

0.4

0.5

λ
p
× 90000λ

s
 × 90000

|C
|/n

(b)

0 5 10 15 20 25 30

0

100

200

300
0

50

100

150

200

λ
p
 × 90000λ

s
 × 90000

λ ef
f

(c)

Figure 6.2 A) Shrinkage in coverage radius versus number of interferes for γ = 0.08; B)
Analytical plot for λeff versus λs and λp with γ = 0.08; C) Analytical plot for λeff versus

λs and λp with γ = 0.08.
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This explains the behavior of λeff in Fig. 6.1(c) where it increases then decreases although

λs keeps increasing from 0 to 1200/90000 nodes/unit-area, however only a portion of λs

values1 results in λeff > 151/90000 and that is where percolation occurs in the simulated

network. We also note that as the number of percolation visible nodes per unit area (i.e.,

λeff) increases so does the corresponding connectivity.

To illustrate the effects of the primary users on the current simulated secondary

network, we simulate a primary network with density rp = 35 and a set of values for λp.

We show the resultant connectivity in Fig. 6.2(b). The corresponding analytical plot of λeff

along λs-λp values is shown in Fig. 6.2(c). As expected, presence of primary users degrades

the secondary connectivity; while the secondary network percolates only for the λs-λp values

which result in λeff > 151/90000.

6.1.1.2 Network-2

For the second network, we consider a deployment area of 500 × 500 with rs = 55, rI = 65

and γ = 0.06. At first, λp is set to 0 (i.e., overlay) to emphasize the secondary-to-secondary

interference. Eqns. (3.2), (3.6), (3.9), (3.10) and (3.14) are used to find r̄s, Pd=M , Pinter, Pside,

and Piso respectively. These are then used in Eqn. (3.5) to obtain λeff . The corresponding

analytical plots are shown in Figs. 6.4(a), 6.4(b), 6.4(c), 6.4(d), and 6.3(a), while the resultant

connectivity is shown in Fig. 6.3(b).

1Those are the λs values that correspond to λeff values which are above the dotted line
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Figure 6.3 A) λeff versus λs for γ = 0.06; B) |C|/n versus λs for γ = 0.06; C) |C|/n versus
λs and λp for γ = 0.06; D) Analytical plot for λeff vs λs and λp for γ = 0.06.

In this network as well, it can be noted that, although λs goes from 0 up to 800/250000,

only a portion of it results in λeff > 70/250000 (Fig. 6.3(a)) at which percolation occurs

as illustrated in Fig. 6.3(b). We point out that, 70/250000 is λcs for the Boolean network

with rs = 65. We also notice that, an increase in λeff results in an increase in the resultant

connectivity as illustrated in Fig. 6.1(b), and 6.1(c) for network-1 (γ = 0.08) and Figs. 6.3(a)

and 6.3(b) for network-2.

To show the effects of the primary users, we simulate a primary network with rp =

55 and a set of values for λp. The resultant connectivity is shown in Fig. 6.3(c). The

corresponding analytical plot of λeff along λs-λp values is shown in Fig. 6.3(d). Again, it
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can be noted that, presence of the primary users degrades the connectivity; while percolation

occurs for λs-λp values which result in λeff > 70/250000.
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Figure 6.4 A) Shrinkage in coverage radius versus number of interferes for γ = 0.06; B)
Theoretical plot for Pside and Pdia for γ = 0.06; C) Theoretical plot for Pd−0, · · ·Pd−4 versus

λs for γ = 0.06; D) Total thinning probability versus λs for γ = 0.06;

6.1.2 Connectivity Maximization

For network-1 and network-2, we show the corresponding results of their optimal density,

optimal receive ratio and optimal TDMA slotting. We use γ = 0.08 for network-1 and

γ = 0.06 for network-2.
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6.1.2.1 Optimal Density

The goal here is to compare λopts values for both networks which are obtained analytically and

via simulations. For network-1, solving Eqn. (3.20) numerically results in λopts = 300/90000.

Simulation results (Fig. 6.1(b)) show that the maximum connectivity is attained at λopts =

315/90000. Solving Eqn. (3.20) for network-2 results in λopt = 217/250000. The simulation

results (Fig. 6.3(b)) shows that the maximum connectivity is attained at λopts = 225/250000.

6.1.2.2 Optimal Receive-only Ratio

The goal here is to compare τ opt for both networks obtained analytically and via simulations.

For network-1 under λs = 500/90000, Fig. 6.1(b) shows that the corresponding connectivity

is around 0.35 and the network is not percolated. To maximize the network’s connectivity, we

use the random selection approach. Substituting λopts = 300/90000 (from previous section)

in Eqn. (3.21) results in τ opt = 200/500 = 0.4. To verify the analytical value of τ opt, we

simulate the network with τ = [0, 1] and show the resulting connectivity in Fig. 6.5(a). The

simulation result shows that the highest connectivity is attained at τ = 0.4.

For network-2, under λs = 800/250000, Fig. 6.3(b) shows that the resulting con-

nectivity is around 0.09 where the network is not percolated. Again, we use the random

selection approach to increase the connectivity. Using the analytical value that was found

for λopts = 217/250000 in Eqn. (3.21) results in τ opt = (800 − 217)/800= 0.72875. To ver-
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ify that, we simulate the network with τ = [0, 1] and show the resulting connectivity in

Fig. 6.5(b). Simulation shows that the highest connectivity is attained at τ = 0.725.
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Figure 6.5 (a) |C|/n versus τ for network-1 (γ = 0.08) (b) |C|/n versus τ for network-2
(γ = 0.06).

We point out that τ can be used as the ratio of the nodes that are put to i) sleep

or ii) powered-off. In both cases 1 − τ will refer to the nodes that are put to transmit or

powered-on and the approach will result in same connectivity maximization.

6.1.2.3 Optimal TDMA Slotting

We compare topt for both networks obtained analytically and via simulations. For network-1

with λs = 500/90000, Eqn. (3.22) results in topt = ⌊500/300⌉ = 2 time slots. To validate this

finding we run the simulation from t = 1 to 9 time slots and show the resulting connectivity

in Fig. 6.6(a). Simulation results show that the maximum connectivity is also attained with

2 time slots.

184



For network-2 with λs = 800/250000, Eqn (3.22) results in topt = ⌊800/217⌉ = 4

time slots. To validate this finding we run the simulation from t = 1 to 9 time slots and

show the resulting connectivity in Fig. 6.6(b). Simulation results show that the maximum

connectivity is also attained with 4 time slots.
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Figure 6.6 (a) Resultant connectivity for TDMA with time slots from 1 to 9 for network-1
(b) Resultant connectivity for TDMA with time slots from 1 to 9 for network-2.
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Figure 6.7 a) Pblock vs λs under U-MAC. b) Throughput under U-MAC with topt = 4 and
λs = 800/250000.
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We could not perform any comparative study as there are no other distributed mech-

anism for characterizing the connectivity maximization of the DSA networks under the SINR

model.

6.1.2.4 U-MAC

The goal here is to illustrate the performance of U-MAC. To do so we apply it to network-2

and compare our theoretical findings against the simulation results.

Under λp = 0, we vary λs and record the corresponding channel blocking and net-

work throughput as shown in Figs. 6.7(a) and 6.7(b). The zig-zag behavior in Pblock (and

subsequently R), can be understood by examining the number of interferers of a node as

shown in Fig. 6.8.

Starting with λs = λopts = 217/250000 leads to topt = 1. Note that, with λopt =

217/250000, a node will have (on average) 11.5212 interferers. topt will remain 1 as long as

λs/λ
opt
s < 1.5 i.e., λs < 325.5/250000. As λs increases, so does the number of interferers,

which increases Pblock (decreasing R). It can be seen that Pblock is maximized at λs =

(1.5 − ǫ)λopts ≈ 325.499/250000 as such density results in the highest number of interferers

(1.4999 × 11.52 ≈ 17) on that single time slot. An additional increase in λs by ǫ leads to

λs = 1.5λopts ; which results into topt = 2 (Eqn. (3.22)). At λs = 1.5λopts = 325.5/250000, it

can be seen that Pblock is minimized. This is because such density leads to (1.5/2)×11.52 ≈ 9

interferers for a node, which minimizes the interference and accordingly Pblock. Such sudden
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transition in the number of interferers from maximum to minimum around λs = 325/250000

causes that abrupt max-to-min behavior in Pblock, and R as shown in Figs. 6.7(a) and 6.7(b).

topt will remain at 2 time slots as long as λs/λ
opt
s < 2.5− ǫ (i.e., λs < 542.47/250000).

At λs = (2.5 − ǫ)λopts ≈ 542.4/250000, the number of interferers will be maximized with

11.52 × 2.499 ≈ 14 interferer for a node which maximizes Pblock (minimizing R). Further

increase in λs by ǫ results in λs = 2.5λopts ≈ 542.5/250000. Thus, U-MAC will set topt = 3

which minimizes the number of interferers to 11.52 × 2.5 × 0.3 ≈ 9.599 for a node which

minimizes Pblock (maximizing R). Again, the sharp transition in the number of interferers

from maximum to minimum within an increment in λs by ǫ results into that zig-zag behavior

again where Pblock is minimized (maximized) at the same λs values which minimizes (maxi-

mizes) the number of interferes. The same procedure applies when topt = 4, 5, ··, 9 time slots

which gives the zig-zag behavior that is noted in the figures.
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Figure 6.8 Avg. number of neighbors with U-MAC.
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Next, we consider the effects of the primary user, were λp is set to 4/250000. The

resultant connectivity is shown in Fig. 6.9(a). We note that, λopts is achieved at 250/250000

which is relatively higher than λopts = 217/250000 from the overlay case/setup/scenario. The

extra nodes are needed to compensate for the secondary nodes which were evicted by the

primary users. Again, with λp = 4/250000, we pick a dense network with λs = 800/250000

and apply U-MAC with topt = 3 as suggested by Eqn. (3.22). Next, the simulation is run

with t = 1 to 9 time slots and the resulting connectivity is recorded as shown in Fig. 6.10(a).

It shows that maximum connectivity is attained with 3 time slots as well. Finally, the

throughput is as shown in Fig. 6.10(b).
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Figure 6.9 Underlay Mode: a) |C|/n versus λs for λp = 4/250000 b) λeff versus λs for
λp = 4/250000.

6.1.3 Flooding in DSA Networks Under the SINR Model

We consider a Poisson distributed secondary network with density λs over an area of 500×

500. We use C to denote the size of component that has been flooded. The ratio C/N
188
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Figure 6.10 Underlay Mode: a) Resultant connectivity of the secondary network with
λs = 800/250000 and λp = 4/250000 for TDMA with 1 to 9 time slots. b) Pblock vs λs

under U-MAC.

denotes the relative size of the flooded component where N is the total number of deployed

secondary users, C/N = 1 indicates all the nodes has been flooded/reached. Flooding is

initiated by a node (source node) that is placed in the middle of the deployment area.

In order to isolate the combined effects of interference, primary presence, and spatial

distribution of the neighbors, we conduct our experiments in two phases. In Phase 1, we

consider no primary users, i.e., λp = 0. In Phase 2, we consider primary users, i.e., λp > 0.

For both the phases, we compare the performance of NAPF with traditional flooding and

probabilistic flooding for the i) Boolean model and ii) SINR model.

To ensure a fair comparison between NAPF and probabilistic flooding, we use P =

λc/λs in probabilistic flooding. This is because, NAPF will aim at maintaining λcπr
2
s broad-

casting neighbors for each node. Thus, the two techniques will end up (on average) with the

same number of rebroadcasting neighbors and the only way NAPF is different from proba-
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bilistic flooding is the way it allocates its broadcasting neighbors/group leaders as opposed

to the random manner in probabilistic flooding.
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Figure 6.11 (a) Number of Broadcasted messages for the three schemes with no primary
and under Boolean model. (b) Number of Broadcasted messages for the three schemes with

With no primary and under SINR model.
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Figure 6.12 (a) Resultant connectivity for the three schemes with no primary and under
Boolean model. (b) Resultant connectivity for the three schemes with no primary and

under SINR model.
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6.1.3.1 Phase 1: Primaries Absent

We vary secondary user/nodes per unit area (λs) from 160/250000 to 450/250000.

Boolean Model: For this model, we consider rs = 50 for all nodes. Fig. 6.11(a) illustrates

the total number of rebroadcasted messages by each technique in response to the broadcast

from the source node. The corresponding outreach is shown in Fig. 6.12(a). As expected,

conventional flooding achieves the best connectivity/outreach but with the highest number

of rebroadcasts. On the other hand, probabilistic flooding does a better job in reducing the

number of broadcasted messages while maintaining a relatively good connectivity. Finally

NAFP, utilizes a small number of rebroadcasts to achiever similar results by assigning re-

broadcast probability to the group leader in each group. In all three cases, the deployment

density increases the number of broadcasts needed to cover the network.

SINR Model: For this model, we consider γ = 1 and β = 1. Fig. 6.11(b) shows the total

number of rebroadcasted messages, while corresponding outreach is shown in Fig. 6.12(b).

From Fig. 6.11(b), it can be seen that although conventional flooding uses many rebroadcasts,

most of them are unsuccessful as the nodes interfere with each other– the result of which is

reflected in the drastically reduced node outreach. Probabilistic flooding generates the worst

outreach because the nodes that manage to receive correctly (SINR ≥ β), can decide not

to rebroadcast to their neighbors with probability 1− P . This results in further thinning of

the secondary nodes which are already thinned due to interference– an outcome supporting

Lemma 3.2. NAPF on the other hand groups the neighbors and allows only the group
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leaders to transmit as per Eqn. (3.29). Note that, such a rule decreases the rebroadcasting

probability for the group leader despite an increase in λs; thereby reducing the interference

at the receivers.

6.1.3.2 Phase 2: Primaries Present

Here, we keep the same density for the secondary nodes, and set the primary density (λp)

at 7/250000. We also set rp = 60.

Boolean Model: Fig. 6.13(a) illustrates the total number of rebroadcasted messages by

each technique in response to the broadcast of the source node, while corresponding outreach

is shown in Fig. 6.14(a). The results show the same behavior as with the primaries absent.

However, it can be seen that the values of C/N are smaller than the corresponding ones

from Fig. 6.11(a). This is because, all the nodes are not allowed to rebroadcast because of

the interference tolerance of the primary users.

SINR Model: Fig. 6.13(b) illustrates the total number of rebroadcasted messages by each

technique in response to the broadcast of the source node, while corresponding outreach

is shown in Fig. 6.14(b). This scenario exhibits similar behavior to the scenario with no

primary users under the SINR model. However the values of λs at which C/N maximizes

and starts to decline are a little shifted because some nodes (interferes) are prevented from

transmission by the primary users. This lowers the total noise level in the system. Thus, it

take more nodes to add up the interference to the point where C/N starts to decline.
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Figure 6.13 (a) Number of Broadcasted messages for the three schemes with primary
presence and under Boolean model. (b) Number of Broadcasted messages for the three

schemes with with primary presence and under SINR model.
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Figure 6.14 (a) Resultant connectivity for the three schemes with primary presence and
under Boolean model. (b) Resultant connectivity for the three schemes with primary

presence and under SINR model.

6.1.3.3 NAPF vs. Probabilistic Flooding

In the previous sections, the value of P used in probabilistic flooding was calculated with

respect to NAPF such that the same number of rebroadcasting neighbors is obtained in both

techniques, allowing a fair comparison between both. In this section, we set the value of P
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for probabilistic flooding from 0.1 till 1 i.e., independently from NAPF. Also, we consider

the SINR model with λs = 350/250000 and λp = 7/250000.

The resultant performance is shown in Figs. 6.15(a) and 6.15(b). From these figures,

it can be seen that the performance metrics for NAPF does not depend on P . This is

because, P is changed only for probabilistic flooding as NAPF uses the proposed technique

to calculate the rebroadcast probability for each node individually. Also, it can be seen that

for low values of P , the thinning is severe which results in relatively small values of C/N . As

P increases, more nodes participate in rebroadcasting the message; thus both C/N as well

as the number of messages increase. At P = 1, we see a correspondence with the results of

conventional flooding in Figs. 6.13(b) and 6.14(b) for 350 secondary users.
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Figure 6.15 (a) Number of broadcasted messages for NAPF and probabilistic flooding with
primary presence and under SINR model. (b) Resultant connectivity for NAPF and

probabilistic flooding with with primary presence and under SINR model.
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6.1.4 Percolation in Multi-Channel DSA Networks

In this section, we examine the relation between N , γ, λp and the percolation of the multi-

channel secondary network. We use |C| to denote the size of the biggest connected component

and S denotes the total number of deployed secondary nodes. The ratio |C|/S denotes the

relative size of the biggest connected component. We use the word percolation to refer to

the formation of the giant component which contains at least half of the secondary nodes

i.e., S/2 ≤ |Cmax| ≤ S, where Cmax denotes the size when C has at least half the nodes of

S. Thus when percolation occurs, we get 0.5 < (θp = |Cmax|/S) ≤ 1. We present 2 scenarios

and discuss the results accordingly.

Table 6.1 Theoretical and practical values of Nopt, NL and NU for γ = 0.01, 0.1, and 0.5.
φ implies does not exist.

γ
Theoretical Values Practical Values

Nopt NL NU Nopt NL NU

0.01 9 φ 41 9 φ 44
0.1 13 7 42 12 6 41
0.5 30 φ φ 28 φ φ

6.1.4.1 Scenario 1: λp = 0

In this scenario, we illustrate the results of Proposition 3.1. We deploy 340 secondary nodes in

a square region of 400×400 following a Poisson distribution with density λs = 340/(400×400)

nodes per unit area. M is set to 5. rs and rI are 25 and 35 respectively. P is set to 1 Watt

and α = 2. Via simulations, λcs was found to be 0.0018125 nodes per unit area. Three values
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of γ are considered (0.01, 0.1 and 0.5) which correspond to K = 24, 9, and 3 respectively

(obtained via simulation). As defined earlier, K is the average number of interferers a

receiver can tolerate before it is interfered. The resulting connectivity for each case is shown

in Figures 6.16, 6.17 and 6.18. From these 3 figures, the practical values of Nopt, NL and

NU are obtained and compared to the theoretical values obtained by solving Eqns. (3.38)

and (3.39). The comparison is shown in Table 6.1.

For γ = 0.01 with λs = 0.002125 the expected number of interferers of each transceiver

is approximately 9. This is less than the number of interferers it can handle, so effects of

interference are negligible. For that reason, there exists no value for NL, both practically and

analytically, because the network is already percolated at N = 1. As N exceeds 2M , channel

abundance occurs which thins the secondary network. Thinning increases as N increases and
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Figure 6.16 |C|/S, θp versus N for γ = 0.01.
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Figure 6.17 |C|/S, θp versus N for γ = 0.1.
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at N = 44, the network becomes too thinned to be percolated as seen in Fig. 6.16 As a result,

|C|/S drops below 0.5.
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(a) (b) (c)

Figure 6.19 340 nodes, N = 6, and M = 5 (a) γ = 0.01, |C|/S = 81.3% (b) γ = 0.1,
|C|/S = 61.4% (c) γ = 0.5, |C|/S = 3.2%. • represents a secondary user/transceiver, and

— represents a two-way communication link.

For γ = 0.1 and N < 6 the network is already thinned due to interference (interference

dominated region). As N increases to 6, the neighboring nodes are guaranteed to have a

common channel. However, the interferers become scattered over more channels. This

reduces Ptx from 1 to 5/6 resulting in percolation for the first time. As N increases so

does θp and |C|/S. The optimal (maximum) connectivity is attained at N = 12 as seen in

Fig. 6.17. Further increase in N makes thinning due to interference negligible but it makes

channel abundance thinning dominant. Thus θp starts to decrease until the network is no

longer connected for N > 40.

For γ = 0.5, the network is heavily thinned due to interference. Increase in N reduces

that interference-effect until the maximum connectivity is attained at N = 28. However,

even at N = 28 (Nopt) the network did not percolate (|C|/S < 0.5). Thus under the current

network parameters, no value of N can minimize the interference and channel-abundance

thinning such that the network would percolate.
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Figs 6.16, 6.17 and 6.18 bound the range of N for which the network percolated.

Interestingly, Fig. 6.18 shows no such ranges as the network never percolates. The effect of

varying γ is further illustrated in Figs. 6.19(a), 6.19(b) and 6.19(c). We consider a network

with 340 nodes and set N = 6 and M = 5. We use the same values γ as before. With

γ = 0.01, the network has the most number of links. With increased interference (i.e.,

γ = 0.1), the number of links decreases. There are hardly any links for γ = 0.5.

6.1.4.2 Scenario 2: λp > 0

We illustrate Lemma 3.5 by showing the effects of λp on the connectivity of the secondary

network. We use the same secondary network that was used in scenario 1 with γ = 0.1 (also

with the same setup parameters). Unlike scenario-1 where N was a variable, we fix it at

50. From Fig. 6.17 we note that, for N = 50 the secondary network does not percolate with

|C|/S = 0.367 and the secondary network is in the channel-abundance-thinning dominated

region. For increasing values of λp, the corresponding connectivity and θp are shown in

Figs. 6.20(a) and 6.20(b) respectively.

In Fig 6.20(a), we note that, increase in λp from 0 to λoptp is accompanied by an increase

in |C|/S. This is because the arrival of the primary users reduces the set of available channels

for the secondary users. This in turn reduces Pthin which increases the connectivity because

the secondary network is in the channel-abundance-region. From Figs. 6.20(a) and 6.20(b),

it can be seen that percolation first occurs at λLp = 0.12 (i.e., total of 192 deployed nodes).

199



θp keeps increasing with λs until the maximum connectivity is attained at λoptp = 0.583125

(i.e., total of 933 deployed nodes). Further increase in λp pushes the nodes into the channel-

deprivation region i.e., the number of available channels has shrunk such that more and

more transceivers are ending up on the same free channels; thus increasing the interference

experienced by each receiver. At this point, the connectivity starts to decrease due to

interference until the network is no longer percolated which occurs at λUp = 0.87875 (i.e.,

total of 1406 deployed nodes). Another factor which reduces the connectivity is that some

secondary nodes will end up with no channels because of the primary users. The theoretical

values for λLp , λ
opt
p and λUp are 0.08625 (i.e., 138 nodes), 0.618125 (i.e., 989 nodes) and

0.918125 (i.e., 1469 nodes) respectively.
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Figure 6.20 A) |C|/S versus λp for γ = 0.1; B) θp versus λp for γ = 0.1.
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6.1.4.3 Cooperation between Primaries and Secondaries

Following the results of Lemma 3, we argue that primary-secondary cooperation can increase

the connectivity of both. As for the primary network, cooperation can be achieved by con-

trolling rp or λp, or both. The idea is to add enough number of primary users to eliminate the

channel abundance or remove primary users which increases the number of vacant channels

for the secondary users. For both cases (adding, removing primary users), we choose λp such

that λp = λoptp , which drives the connectivity of the secondary network to the maximum. As

for the secondary network, cooperation is achieved by relaying data on behalf of primary

users as was shown in [25].

Through Figs. 6.21(a), 6.21(b) and 6.21(c), we demonstrate how we can achieve coop-

eration via controlling λp. We consider the network setup used in Scenario 2 with a total of

340 static secondary deployed transceivers. For λp, we use λp = 0.00625, 0.538 and 0.947. In

Fig. 6.21(a), λp = 0.00625, the network is in channel abundance with |C|/S = 33.1%. Note

that, not many links are established in-spite of nodes being in range. On the other hand, in

Fig. 6.21(c) the network is in channel deprivation region with λp = 0.947 and |C|/S = 5.31%.

Now if the primary users agree to adjust λp such that λp = λoptp , it results in the network

shown in Fig. 6.21(b). Such λp value drives θp into the optimal point where θp = 87.51%.

Obviously in Fig. 6.21(b), there are less number of primary users than in Fig. 6.21(c)

which should decrease their coverage area. However, at the optimal point (Fig. 6.21(b)),
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the secondary coverage is maximized which helps improve the primary’s coverage area by

relaying the primary’s data.

(a) (b) (c)

Figure 6.21 Illustration for the secondary users connected component(s) for: (a)
λp = 0.00625 (channel abundance), (b) λp = 0.538 (optimal point) (c) λp = 0.947 (channel
deprivation). � represents a primary user, • represents a secondary user/transceiver, and

—– represents a two-way communication link.

6.2 Capacity

6.2.1 Capacity Bounds and Optimizations

To verify the validity of the theoretical findings, we conducted simulation experiments where

we considered a randomly deployed secondary DSA network in a square region of 100× 100

units with two primary transceivers (forming a transmitter-receiver pair) at the center. We

considered various network sizes by varying the number of secondary transmitter-receiver

pairs from 1 to 50. The transmitters and receivers were paired using exhaustive search

pairing. Total bandwidth (B) was 1 MHz. Power of the primary transmitter is set to 800
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mW, while the interference tolerance is set to 0.1 W at the primary receiver. The secondary

receiver threshold (β) was set to 1. Path loss exponent (α) was 2. No ambient noise (N0)

was considered in obtaining the dead-Tx and dead-Rx nodes, to ensure that any dead node

was due to the effects of the primary only. Gaussian noise with N0=0.001 W was considered

for capacity simulations.

6.2.1.1 Dead-Tx, Dead-Rx

To study the effects of the primary transmitter, 4 different power levels [50 mW, 100 mW,

400 mW, 800 mW] for the primary transmitter were used. The number of secondary pairs

(n) was incremented 1 pair at a time, from 1 to 50. For each value of n, we generated 200

different random topologies so as to average out any topological effects. For every topology,

we check for dead-Rxs using Eqn. (4.16). In Figure 6.22(a) we see how the number of

dead-Rxs increases with increasing network size. This is because as more nodes are added

randomly in a fixed area, more nodes get deployed in the vicinity of the primary transmitter,

thus increasing the dead-Rx count. More dead nodes means less number of pairs’ requests

are considered in the input power vector which reduces the search space of the optimizer.

For example, in Figure 6.22(a) with primary power of 800 mW, it can be seen that on the

average 18 out of the 50 pairs are dead-Rx. That is, using Eqn. 4.16 we managed to reduce

the dimensional state space from 50 to 32 dimensions.
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Figure 6.22 (a) Number of dead receivers (b) Number of dead transmitters (c) Number of
dead pairs with 10 primary transceivers, γ = 0.1, and 4 different power levels for the

primary transceivers.

To study the effects of the interference tolerance/threshold condition, we used 4 dif-

ferent values of γ [0.1 W, 0.05 W, 0.01 W, 0.001 W]. The primary transmit power was set

at 200 mW. The number of dead transmitters is shown in Figure 6.22(b). Just like the

dead-Rxs, as the deployment density increases the number of dead-Txs also increases. This

is because the number of secondary transmitters in the vicinity of the primary transmit-

ter (i.e., in the dead-Tx circle) increases. Just like the dead-Rx reduced the search space,

dead-Tx does exactly the same thing. For example, in Figure 6.22(b) with γ = 0.001 using
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Eqn 4.24, on average we reduced the optimizer’s search space from 50 to 18 dimensions and

with γ = 0.01, the reduction was from 50 to 34 dimensions.

6.2.1.2 Combined Elimination Schemes

In this section we filter the input power vector using all the elimination schemes which

we pointed out earlier: dead-Rx (Eqn. 4.16), dead-Tx (Eqn. 4.24), and coverage zones

(Eqn. 4.30). The number of secondary pairs (n/2) was changed from 0 to 200 pairs (400

nodes) with 10 and 20primary transceivers. Primary and secondary nodes were randomly

deployed.

Figure 6.22(c) shows the dead pairs when 10 primary transceivers are deployed with

γ = 0.1. Same level of transmission power Pp is used in all of the primary transceivers. 4

different power levels of [50 mW, 100 mW, 400 mW, 800 mW] are used for Pp. For this case,

in order to illustrate the effects of dead pairs, we have increased the number of secondary

pairs up to 200 pairs. Interestingly for Pp = 800 mW, using all the elimination schemes, on

average the dimensions of the search space are reduced from 200 to 200− 122 = 78 while for

Pp = 80 mW, the reduction is from 200 to 102.

Next, the number of primary transceivers is increased to 20 transceiver and the num-

ber of dead-pairs is recorded as show in Figure 6.23(a). Notably for Pp = 800 mW, us-

ing all the elimination schemes the dimension of the search space is reduced from 200 to

200− 182 = 18 while for Pp = 80 mW, the reduction is from 200 to 63.
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Figure 6.23 (a) Number of dead pairs with 20 primary transceivers, γ = 0.1, and 4 different
power levels for the primary transceivers (b) Number of dead pairs with 10 primary

transceivers, Pp = 200 mW, and 2 different values for γ (c) Number of dead pairs with 20
primary transceivers, Pp = 200 mW, and 2 different values for γ.

Now, we set the number of primary transceivers to 10 again and use 2 different values

for γ. The primary transmit power Pp was set at 200 mW. All the primary transceivers use

the same values for γ and Pp .

Figure 6.23(b) shows the dead pairs when 10 primary transceivers are deployed with

Pp = 200 mW, γ is set to 0.1 in one scenario and 0.05 in the other. From Figure 6.23(b)

we can see the effects of γ on the number of dead-pairs and consequently on dimensionality

reduction.
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In Figure 6.23(c), the number of the primary transceivers is set to 20 and the number

of dead-pairs is also recorded for γ of 0.1 and 0.05. Obviously more pairs are dead since the

additional primary transceivers impose further constraints on the maximum power of each

pair resulting in more dead pairs.

Notably, in all the four Figures 6.22(c), 6.23(a), 6.23(b), and 6.23(c) for small values

of n/2 (which correspond to sparse deployments) we see that the number of dead pairs is

approximately equal to the number of deployed pairs. As the density (number of pairs)

increases, more pairs become alive. The reason for that is: as the density increases, the

transmitter-receiver pairs are becoming closer to each other which is translated to higher

SINR values.

6.2.1.3 Relative SINR Goodness (SINRRel)

In order to demonstrate the proposed metric for capacity maximization goodness, we simu-

lated a network with 34 transmitter-receiver pairs distributed around a primary transceiver

with Pp1= 800 mW and γ=0.1. The SINRRel
Tj ,Ri

for all the pairs are found as shown in

Fig. 6.24(a). When the pairs are arranged in descending order of their SINRRel
Tj ,Ri

values,

they result in the ordered set U = {(T3,R3), (T6,R6), (T18,R18), (T17,R17), (T28,R28), · · · ,

(T2,R2)} as shown in Figure 6.24(a).

If the maximum capacity is to be found in O(1), the entire γ has to be allocated to

a single pair; that pair is U1 i.e., pair number 3 (T3-R3) as shown in Figure 6.24(a). The
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maximum capacity using 2 pairs only can be attained by allocating γ to U1 and U2 which

corresponds to pair number 3 and pair number 6 (T3-R3, T6-R6). Continuing, the maximum

capacity for K pairs was found by allocating the power budget to the first K entries in U .

The capacities obtained for K = [1, |U|] pairs taken from the first K elements in U are shown

in Fig. 6.24(b) with |U| = 34 pairs.

6.2.1.4 Optimal and Sub-optimal Solutions

First, we show how to perform the optimization with the reduced search space without

compromising optimality. Then, we discuss the trade-off for achieving a sub-optimal solution

versus optimization over smaller search spaces.

Optimal Solution: For the 34 pairs whose SINRRel values are shown in Fig. 6.24(a), the

number of dead pairs is 9– thereby immediately reducing the search space from 34 variables

(dimensions) to 25. However, we still managed to retain the global maximum via optimizing

the capacity over a smaller number of variables without compromising the optimality of the

solution. For that we propose two approaches: linear and binary searches.

• Linear Search: The idea is to start to compute the system capacity starting with the

first pair (U1) in the ordered set U and adding one pair at a time (the pairs are taken

in order from U). When adding a pair does not increase the capacity any more, the

process is stopped.
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Figure 6.24 (a) SINRRel for all 34 pairs; (b) Resultant maximum capacity K=[1,34] pairs.
Pairs are selected with descending SINRRel; (c) CUB, CLB, and the actual maximum

capacity for 40 randomly deployed networks.
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We started with U1 and found the corresponding capacity C1 = 8 Mbps as shown in

Fig. 6.24(b). Then U2 was added and the capacity C2 of U1 and U2 was found to be

12.52 Mbps. Since C2 > C1 it means convergence did not occur. Next U3 was added

and C3 was also found and compared against C2. The procedure was repeated until

convergence was obtained at U6 i.e., the maximum capacity was obtained by optimizing

over {U1, · · ·, U6} instead of optimizing over {U1, · · ·, U25}. To check the integrity of our

solution, we kept on including more pairs from U and finding the maximum capacity as

shown in Fig. 6.24(b). The figure clearly shows that incorporating {U7, · · ·, U34} with

{U1, ···, U6} did not change the maximum capacity that was obtained with {U1, ···, U6}.

It is obvious that, optimizing over only 6 pairs is much faster than optimizing over the

34 pairs given that the two optimizations produced the same result.

Note that the number of nodes to be incorporated in each step can be set according

to the user preferences. The same applies to the number of the nodes to start with.

Technically, the number of start-up nodes and the step-size control the convergence

time as well as the optimality of the optimization.

• Binary Search: Using binary search, we consider the first ⌈(25/2)⌉ = 13 entries of U

i.e., (U1 to U13). The maximum capacity that resulted from 13 pairs was 18.152 Mbps.

Next, we considered the first ⌈(13/2)⌉ = 7 entries of U . That resulted in 18.152 Mbps

as well. This meant that pairs U8 to U34 did not contribute to the maximum capacity.

We continue the binary split and use the first 4 entries of U ; the resultant capacity

was 18.0931 Mbps. Since 18.0931 < 18.152, it means that some of the pairs between
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U5 and U7 contributed to the capacity. Further investigations reveal that the first 6

entities in U resulted in the maximum capacity of 18.152 Mbps. This can be seen in

Fig. 6.24(b) where U1, · · · , U6 attain the maximum capacity of 18.152 Mbps beyond

which there is no improvement, i.e., convergence occurred at U6.

Sub-optimal Solution: If instead of continuing the linear or binary searches till convergence

is reached, we stop after some iterations, then obviously the optimal solution is not obtained.

Alternatively, we can choose to avoid the search and simply consider the first K elements

of U i.e., we choose to optimize a K dimensional space, K < n/2 − ndead. By doing so,

a sub-optimal solution is obtained. For example, in optimizing for K = 3 (3-dimensional

space) we simply optimize over {U1, U2, U3} to get a corresponding capacity of 15.36 Mbps

as shown in Figure 6.24(b). That is the highest capacity obtained by optimizing over 3 pairs

only.

6.2.1.5 Upper and Lower Capacity Bounds

To study the proposed upper and lower bounds, we simulated 40 random networks of sizes

1 to 40 secondary pairs. Power of the primary transmitter is set to 800 mW, while the

interference tolerance is set to 0.1 W at the primary receiver. Gaussian noise with variance

of 0.001 is used. The maximum achievable capacity (which we refer to as ‘Actual Capacity’)

for each network of a given size is found using a modified Nelder-Mead Method [112] with
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penalization. CUB, CLB,O(1) and CLB,O(n) are computed using Eqns. (4.12), (4.14) and (4.15)

respectively. The capacity results are shown in Fig. 6.24(c).

Effect of Topology: From Fig. 6.24(c), it can be noted that the capacity does not necessarily

increase with network size. For example, the network with 32 secondary pairs resulted in

a capacity that is lower than the capacity achieved by the network with 22 pairs. This

is because of the pathological topology that was created by 32 nodes. However, on an

average, larger networks would yield higher capacities when topological effects are averaged

out. Smaller inter-nodal distances means higher SINRmax
Tj ,Ri

values, which means more pairs

would satisfy the power split condition, hence increasing the upper bound and actual capacity

of the network.

The network obtained with 6 pairs is shown in Fig. 6.25. Strangely, its capacity and

both bounds are equal as seen in Fig. 6.24(c). This is because no pair other than T1-R1

qualified for the split condition (Eqn. 4.11). So the entire power was allocated to only one

pair (T1-R1) which has SINRmax, resulting in CUB, CLB,O(n) and the actual capacity being

equal. From Fig. 6.24(c) it can be noted that for high values of n (dense deployments)

CLB,O(1) = 0. This is because, with more nodes, the probability of a node being too close to

the primary increases. Such closeness renders the node dead. Thus with random selection

in O(1), it might so happen that the power is allocated to a dead-pair (dead-tx, dead-rx)

resulting in zero capacity. For sparse deployments the chances of being in the vicinity of a

primary user is lower which results in CLB,O(1) > 0 as can be seen in Fig 6.24(c). We point

out that:
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1. The derived bounds are computed in O(n), which affects their tightness. They can be

made tighter by trying combinations of Hk1 and Hk2 instead of using Hk1 only when

doing the replacement for the qualified for splitting pairs. However that will take at

least Ω(n). The bounds can be made even tighter by trying combinations of Hk1,

Hk2, and Hk3 instead of Hk1 and Hk2 only, again this will consume even more time.

Apparently, The bounds can be made tighter and tighter by trying combinations of

more pairs and this is why the problem is NP-hard.

Hki was defined as an element of the set Hk in section 4.1.2.1.

2. We did not compare our work with any existing work because all of them either find

the asymptotic bounds for the networks i.e., n → ∞ or use power control algorithms

that maximize the user’s desired throughput rather than exploring the capacity bounds

of the network itself.

6.2.2 QoS Evaluation

We would like to demonstrate the feasibility of providing a QoS evaluation platform that can

work with real systems. We emphasize that the VQ-based method improves the speed in exe-

cution as compared to executing the original capacity equation. Such improvement empowers

and opens the horizon for using relatively slower computational devices in computation in-

tensive applications. In this regard, we implement the proposed concept of VQ-based QoS

evaluation on an 8-bit micro-controller where we compare the time of executing the original
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capacity equation and the look up time using a precomputed codebook. The look up is done

through both linear search and binary search.

Figure 6.25 Network with 6 pairs where CLB,O(n) =CUB = actual capacity.

It is to be noted that, the computational complexity of the equation to be evaluated

depends on the number and nature of the mathematical operations needed to evaluate the

equation. For example, finding the total network capacity of K pairs involves evaluating

∑K
i=1 log2(1 + SINRi). From an embedded hardware point of view, there are two potential

problems with the above computation.

1. Finding SINRi means to evaluate:

SINRi =
Pi/x

α
i

K
∑

j=1,j 6=i

Pj/x
α
j

(6.1)

From a micro-controller’s point of view this is a time consuming process because it

involves multiplication, division, raising to power and finding the logarithm given that:

i) number of Million-instructions per second (MIPS) of a micro-controller is in the

order of tens MIPS at best, and ii) the cheapest micro-controllers are not equipped
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with hardware multiplier modules, thus all the operations have to be computed using

additions and subtractions only. We will show that even with micro-controllers that

are equipped with hardware multipliers, the process is still time consuming mainly due

to the limit set by the MIPS.

2. The computation of the capacity equation involves handling fractional numbers multi-

ple times (for each log(·) and SINRi term). It is to be noted that repeated handling of

fractional numbers on 8 or 16 bit devices can result in rounding errors even if multi-byte

allocation is used.

Such limitations make micro-controllers an infeasible option when considering such

computation intensive operations especially if the result has to be calculated within a delay

budget. This is why such calculations are usually performed using 24 or 32-bit DSP or

micro processors despite the micro-controller being robust, flexible, and most importantly

cheaper in cost as compared to microprocessors. Notably 24 (32) bit micro-controllers are still

slower than the 24 (32) DSP and micro-processors since they employ Multiply Accumulate

feature which is not performed by the micro-controllers.

6.2.2.1 Implementation Platform

We implement VQ on two 8-bit devices: PIC18F87J60 and PIC16F877A, the former is

running on a crystal oscillator of 25 MHz while the latter is running on a crystal oscillator
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of 8 MHz. Fig 6.26 shows the micro-controller development board that was used to in this

work along with the PIC18F87J60 and the software development tools.

Figure 6.26 Implementation testbed.

PIC18F87J60 is equipped with a hardware multiplier module while PIC16F877A has

no hardware multiplier module. Thus any mathematical operation that involves multiplica-

tion (like log) will consume more execution time on the PIC16F877A which further lowers

the maximum value of K in Eqn. (6.1) for a given time budget.

From the above discussion, it is clear that scalability (with respect to K) is an issue

with this embedded hardware platform if it was to evaluate the capacity equation as it is.

On the other hand VQ is scalable because the centroids/code-words are precomputed and

then stored in the micro-controller. Finally, they will be looked up against the input power
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vector to find the best match. By doing so, the execution speed will be greatly improved

since the values will be looked up instead of being computed.

6.2.2.2 Implementation Results

We primarily focus on how the VQ algorithm performs with respect to time as compared

to evaluating the capacity equation as both of them are run on the PIC16F877A and

PIC18F87J60. The results were obtained as follows:

1. For a given K, the capacity equation was computed for the input power vector

using the micro-controllers and the execution time was recorded.

2. The look-up table was generated on a central processing unit (on a desktop com-

puter) using Java.

3. The micro-controller was loaded with the look-up table (centroids/code-words and

their corresponding capacity values). The input power vector was compared to the centroids

in the codebook using linear and binary searches. This operation was repeated for different

number of code-words for the same value of K and the corresponding time from both the

search methods were recorded for each value of K and |C|.

4. Different values of K were used.

For PIC16F877A the execution time was recorded for K={1, 2, 3, · · ·, 25} (K is the

number of transmitter-receiver pairs/dimensions) and |C| = {8, 16, 24}, (i.e., different code-
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Figure 6.27 Time for computing Eqn. 4.33 vs. look-up time for PIC16F877A
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Figure 6.28 Time for computing Eqn. 4.33 vs. look-up time for PIC18F87J60
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book sizes). The results are shown in Fig. 6.27. It can be seen that as K increases the time

needed to compute the capacity equation grows almost exponential.

As expected, the time needed for linear search scaled linearly as the number of centroids

increased. This is because the number of computations increased linearly with the number

of centroids i.e., the time needed for computing 16 centroids is twice the time needed for the

8 centroids. For the 24 centroids, it is 3 times the time of the 8 centroids.

For the binary search, each split (a split increases the number of current centroids by 2)

costs only one more look up which is just two more computations. For example, the 8

centroids require 2 log2(8) comparisons which is 6 while the 16 centroids require 2 log2(16)

comparisons which is 8. For 24 centroids only 10 comparisons are needed. That is why the

time difference between the binary search of 8, 16, and 24 has close values. Interestingly, the

number of comparisons for 16 centroids under binary search is 8 which is the same number of

comparisons being performed in linear search with 8 centroids. This is why their execution

time matches.

For PIC18F87J60, the execution time was recorded forK={1, 2, · · ·, 250} and |C|={1,

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}. The result is shown in Fig. 6.28. It can be seen

that the results follow the same pattern which was obtained for the PIC16F877A (regarding

the behavior, scaling and number of comparisons). It can be seen that for large values of K

e.g., 250 pairs (dimensions), the time needed to compute the equation is 370.5 seconds while

the time needed to get an answer from the code-book with |C| = 256 entries using a linear

search is 92.09 seconds and only 9.87 seconds using a binary search. This shows how the VQ
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can empower a relatively slow device, originally incapable of doing the task within the time

window, and enable it to get the answer in a much shorter time. Table 6.2 shows the exact

number of comparisons that are performed for various number of code-word sizes (|C| = N)

in the code-book. Notably, for small values of K the time needed to calculate the capacity

equation is less than that required to go through a linear search, since the latter requires

going through all the centroids regardless of the number of pairs. Thus for small values of

K evaluating the capacity equation out-performs the linear search.

Table 6.2 Number of Comparisons for Linear search vs. Binary search

Number of Number of Comparisons Number of Comparisons
Centroids (N) using Linear Search O(N) using Binary Search log(N)

2 2 2
4 4 4
8 8 6
16 16 8
32 32 10
64 64 12
128 128 14
256 256 16
512 512 18
1024 1024 20
2048 2048 22

As outlined in Eqn. (4.32), the distortion increases as K increases and decreases as

the number of code-words increases. In Fig. 6.29, we show the distortion that results from

15 pairs and 10 pairs versus |C|={1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}. The power of

each pair is bound between 0 and 10 Watts.
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Figure 6.29 Distortion for varying number of centroids. Each dimension ranges from 0 to
10.

6.3 Performance Evaluation of Implemented DSA System

To demonstrate the efficiency of the implemented database-assisted DSA system, we compare

it to a legacy system and show the benefits in terms of resilience to jamming, channel

relinquishment on primary arrival, and best channel determination and allocation. Finally,

we show the performance gains in terms of frame error rate.
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Figure 6.30 RSSI measurements at location-B for 900 MHz, 905 MHz, and 910 MHz, with
the best channel being 910 MHz.

6.3.1 Deployment

Type-1 spectrum sensors were deployed in an indoor environment (laboratory) and pro-

grammed to sense 300 KHz of bandwidth centered at 900 MHz, 905 MHz, and 910 MHz.

The sensed RSSI were streamed to the DSA server.

Fig. 6.30 shows an instantaneous RSSI in dBm for 900 MHz, 905 MHz and 910 MHz

at a particular location (namely, location-B). During that time, any request for a channel

in the vicinity of location-B would be recommended to use the 910 MHz channel since it

has the lowest RSSI (i.e., -80 dBm) among the 3 channels. To induce controlled interference

and mimic the primary users, we built two software configurable jammers using RFM22

transceivers as the front-end and ATmega328p as the controller. We were able to control

the frequency, bandwidth, transmission power and transmit pattern of the jammers.
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6.3.2 DSA versus Legacy Tx-Rx

We built two transmitter-receiver pairs with identical components (i,e., same RF front-

end and controller sections). One pair was enabled with DSA capability– the pair was

programmed to contact the service engine (over Ethernet) and utilize the ‘channel allocation

service’. The other transmitter-receiver did not have this DSA capability and worked just like

legacy radios. For fair comparison, both pairs were placed equi-distant from the jammers.

The Tx-Rx distance for both pairs were also the same as shown inFig. 6.31.

On start-up, both transmitters were programmed to transmit packets of 16 bits on

the default channel of 900 MHz using FSK with 2 dBm of transmission power. Each packet

was identified with a sequence number. By default, the receivers of both pairs would listen

on the 900 MHz channel. On reception of a packet, the receivers would send an acknowledge

(ACK) to the respective transmitter. Both the transmitter and receiver keep track of the

number of packets that are successful.

The DSA pair (both transmitter and receiver) continuously i) contacts the service

engine to check for primary’s presence (similar to the SenseLess framework [113]), and ii)

requests for a new channel if there are 5 consecutive failures2. On the other hand, the legacy

pair continues to use the 900 MHz channel regardless of packets being successful or not. The

receivers of both pairs were interfaced to a Windows machine that used a Java snippet to

monitor the receivers’ throughput and packer error rate.

2We chose 5 randomly; although in real scenarios it will depend on the type of data, mission criticality
and other parameters.
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Figure 6.31 Experimental setup for DSA and legacy comparison.

6.3.3 Frame Error Rate (FER)

In addition to displaying the throughput and the packet error rate of each receiver, the Java

snippet also displays additional information as shown in Figs. 6.32(a) and 6.32(b). With time

on the x-axis, both figures show which channel is being used. Fig. 6.32(a) shows that channel

900 MHz is being used followed by 905 MHz, 910 MHz and again 900 MHz. Every time, the

channel was changed when the ‘failure’ remained for more than 5 packets (also shown on the

figure). On the other hand, the legacy pair continues to use the 900 MHz channel for the

entire duration in-spite of the long period of ‘failure’ as shown in Fig. 6.32(b).

We define a frame as a group of 10 packets. Both Figs. 6.32(a) and 6.32(b) show

small ticks on top of the success field that represent the frame times. We define frame error

rate (FER) as the fraction of packets that are unsuccessful in a frame. For example, if 3

packets are unsuccessful in a frame, the FER is 0.3. For the DSA pair, it can be noted from
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Fig. 6.32(a) that the FER is 0 for most frames, and either 0.1 or 0.2 for few (due to sporadic

noise). However, when channel switching occurs due to the channel being jammed, it can

be seen that the FER is considerably high for a small period of time. When the DSA pair

switch their communication to a new channel, the FER recovers. For the legacy pair, the

FER remains very high for the entire duration the channel is jammed.

6.3.4 Jammer in Operation

Figs. 6.32(a) and 6.32(b) show that both pairs start on 900 MHz channel at t=0. Till t=43:00,

packets were received successfully at both receivers with some sporadic failures due to the

background noise. Jammer-1 was turned on 900 MHz at t=43:02 as shown in Fig. 6.33(a).

It has a transmit power of 20 dBm. Note how the occurrence of failures at both pairs are

correlated with the time at which jammer-1 is activated on 900 MHz. For the legacy pair,

from Fig. 6.32(b), it is clear that the pair is totally jammed and it suffers from total packet

loss (indicated by FER=1) for the entire duration jammer-1 is active on the 900 MHz. As for

the DSA pair, when jammer-1 causes 5 packet failures, the DSA pair sought a new channel

and contacted the DSA server which checks the RSSI values on all the candidate channels

as shown in Fig. 6.34. Based on the lowest RSSI values, the DSA pair switches to 905 MHz

as it was chosen by the DSA server. To further show the DSA system in work, we activate

jammer-2 on 905 MHz from t=45:15. This jamming forces the DSA pair to contact the DSA

server again. As a result the pair switches to 910 MHz as it was was the only available
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channel at t=45:018. Finally, jammer-1 switches the jamming channel from 900 MHz to 910

MHz at t=46:49. As a result, the legacy pair is able to resume successful packet reception

(on 900 MHz) as indicated by Fig 6.32(b). In response to jammer-1 jamming the 910 MHz,

the DSA pair again contacts the DSA server and switches from 910 MHz to 900 MHz.

6.3.5 Performance Gains

To quantify the gains obtained from the DSA pair, we compare the normalized throughput of

both the pairs. The jammer emulated primary activity with a Poisson distributed ‘On-Off’

model with activity ranging from 0.1 to 1.0. The resultant normalized throughput values are

shown in Fig. 6.35. For very low primary activity, the legacy pair outperforms the DSA pair

as the latter incurs some overhead due to sensing and server access latency. When primary

activity increases, the normalized throughput of the legacy pair decreased linearly. However,

there was no change in the normalized throughput for the DSA pair as long as there was an

available channel.
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(a)

(b)

Figure 6.32 (a) Reception status of the DSA receiver. (b) Reception status of the legacy
receiver.
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(a)

(b)

Figure 6.33 (a) Activity of jammer-1. (b) Activity of jammer-2.
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Figure 6.34 RSSI values for channels 900, 905, 910 MHz during the evaluation.
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CHAPTER 7: CONCLUSIONS

This dissertation addresses some fundamental theoretical aspects on how to optimize con-

nectivity and capacity of DSA networks, it also presents a low-cost yet effective architecture

to solve the cost-scalability problem that is hindering the wide scale deployment of such

networks.

With respect to connectivity, we found the conditions under which the giant com-

ponent emerges in the secondary network. This is achieved by linking percolation from

the Boolean model with the concept of effective density under the SINR model where we

identified and excluded the nodes that are invisible to the giant component. We utilized

the concept of effective density to maximize the secondary network connectivity using three

different approaches. We also studied the performance of flooding and traditional flooding

under the SINR model and analyzed the sources of their performance degradation. Then

we employed our findings on connectivity and proposed a modified probabilistic flooding

technique which outperformed the popular techniques in terms of lower message overhead

and the node outreach. We also analyzed the connectivity of multi-channel distributed net-

works and showed the individual as well as the combined effects of the scanning limitations,

interference, primary users, and the existence of multi-channels on the resultant network
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connectivity. The theoretical findings were supported by the simulation experiments which

showed correspondence between the theoretical and practical results.

As for the capacity, we derived the bounds on the capacity of a finite and randomly

deployed secondary network in the presence of the primary users. Using dimensionality

reduction, we sped up the constrained non-convex optimization problem. Then we showed

how to quickly evaluate the resultant power vector using K-means clustering. We gauged

the performance of our technique by running it on 8-bit microcontrollers and comparing the

execution time vs. the traditional approach of evaluating a QoS metric. The results showed

that our technique performed the evaluation in a shorter time.

We implemented a low-cost yet effective architecture that enables dynamic spectrum

access for any type of network ranging from IoT to cellular. We showed a complete system

level solution for a database-assisted DSA system that is implemented with standard servers

and inexpensive software configurable RF chips, thereby achieving economics of scale. We

used three main components for the system’s architecture: RSSI sensing network, the DSA

server and the service engine. The modular design of these components allows transparency

between the components, ease of maintenance, and scalability in terms of size and features.

To demonstrate the efficiency of the implemented database-assisted DSA system, we com-

pared it to a legacy system and showed the benefits in terms of resilience to jamming, channel

relinquishment on primary arrival, and best channel determination and allocation. We also

showed the performance gains in terms of frame error rater and spectral efficiency.
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Overall, the dissertation provides new insights on understanding and improving the

connectivity and the capacity of DSA networks. It also provides low cost solutions to spec-

trum sensing, spectrum usage management, and value added services to the network opera-

tors. The insights from this dissertation can be used to build various algorithms, protocols,

architectures and testbeds for enhanced performance and make DSA network a common

technology.
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