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ABSTRACT 

This thesis covers a range of work detailing the transitions between spin eigenstates in molecular 

magnet systems. Broadly speaking, these transitions can be divided into two kinds: Those that involve a 

the tunneling of spin through a potential barrier to a resonant state on the other side, a phenomenon 

known as quantum tunneling of magnetization, and those that occur through the absorption or emission of 

a photon. In this latter case, the energy of the photon must match the difference between two eigenstates 

with a difference in angular momentum of ħ. 

We will detail research performed on single molecule magnets, a class of systems that has 

established itself as an exemplar of higher-order spin interaction. Specifically, we will present the results 

of studies focused on two Manganese based systems, both of which represent good examples of single 

molecule magnet behavior. By performing magnetization measurements below the temperature threshold 

where these systems’ polarizations become hysteretic, we find that the precise form of the observed 

resonant tunneling features (which includes evidence for strong interference of geometric phase a.k.a. 

Berry phase) can be related to the specifics of the intramolecular interaction. We have analyzed our 

results using the “giant spin” model (which approximates the system as a single spin) as well as with a 

“multi-spin” method which considers all interactions between the ions in the molecular core.  

We will also discuss the results of measurements performed on a crystalline sample under stress 

(uniaxial pressure). The data has been analyzed in a framework in which a physical distortion is modelled 

as a modification of the molecular anisotropy, with different directions of applied stress represented as 

changes to different parameters governing the molecular energy landscape. This analysis includes 

simulation of the magnetic relaxation through a master equation approach to the spin-phonon interaction. 

Finally, our discussion will outline efforts toward understanding the coherent behavior of spin 

systems. The “weak” and “strong” coupling between a photon and spin represent two regimes of an 
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interaction by which the information within a spin can be accessed and manipulated. We will discuss the 

challenges involved in exploring these regimes, both from a theoretical and experimental standpoint. The 

purpose of this experiment dovetails with those outlined above in attempting to form an intimate basis of 

knowledge describing the universal relationships to spin at the most fundamental level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

 

 

 

 

 

 

 

 

 

 This thesis is dedicated to my wife, to my family, and to all the other teachers who helped 

me reach here. 

 

 

 

 

 

 

 

 

 



 

vi 

 

ACKNOWLEDGMENTS 

 I would like to acknowledge the gracious support and encouragement of my advisor, Dr. Enrique 

del Barco, as well as my committee members Dr. Bo Chen, Dr. Fernando Luis, and Dr. Eduardo 

Mucciolo. I’d also like to thank all of my collaborators, in particular Dr. Jonathan Friedman of Amherst 

College and Dr. Stephen Hill at the NHMFL in Tallahassee. 

 I would also like to thank the UCF Physics department for their support, in particular Dr. Elena 

Flitsiyan, and the National Science Foundation for their support. I also owe a debt of gratitude to my 

current and former group members, including Dr. Firoze Haque, Dr. Asma Amjad, Dr. Simran Singh, Dr. 

Alvar Rodriguez, Marta Anguera, Priyanka Vaidya, Rebecca Cebulka, Tyler Townsend, Chris Coleman, 

and, most of all, Dr. Hajrah Quddusi. Finally, I’d like to thank my parents, without whom none of this 

would be possible, and my siblings David and Sara, who contributed in innumerable ways. 

 

 

 

 

 

 

 

 

 



 

vii 

 

TABLE OF CONTENTS 

LIST OF FIGURES ...................................................................................................................................... x 

LIST OF TABLES ................................................................................................................................... xviii 

LIST OF ABBREVIATIONS .................................................................................................................... xix 

CHAPTER 1: INTRODUCTION ................................................................................................................. 1 

1.1 Spin ½ ................................................................................................................................................. 2 

1.1.1 The Classical Magnetic Dipole Potential ..................................................................................... 2 

1.1.2 The Zeeman Interaction ............................................................................................................... 4 

1.1.3 The Transition Matrix Element .................................................................................................... 5 

1.2 The Single Molecule Magnet .............................................................................................................. 7 

1.2.1 The Double Well Potential ........................................................................................................... 8 

1.2.2 Transverse Dependence and Quantum Tunneling of Magnetization ........................................... 9 

1.2.3 Berry Phase Interference ............................................................................................................ 13 

References ............................................................................................................................................... 15 

CHAPTER 2: BERRY PHASE MODULATION IN A TRIGONAL SYMMETRY MN3 MOLECULE . 16 

2.1 The Mn3 Molecule ............................................................................................................................ 17 

2.2 Instrumentation & Methods .............................................................................................................. 18 

2.3 Experimental Results ........................................................................................................................ 23 

2.4 Analysis & Discussion ...................................................................................................................... 27 

2.5 Conclusions ....................................................................................................................................... 36 

References ............................................................................................................................................... 38 



 

viii 

 

CHAPTER 3: THE EFFECT OF UNIAXIAL PRESSURE ON THE QUANTUM TUNNELING OF 

MAGNETIZATION IN A MN12 SINGLE MOLECULE MAGNET ........................................................ 39 

3.1 The Mn12-MeOH Molecule ............................................................................................................... 39 

3.2 Experimental Equipment and Techniques ........................................................................................ 40 

3.3 Results ............................................................................................................................................... 43 

3.4 Methods of Analysis ......................................................................................................................... 44 

3.5 Analysis & Interpretation .................................................................................................................. 49 

3.6 Discussion & Conclusions ................................................................................................................ 57 

References ............................................................................................................................................... 59 

CHAPTER 4: THE SPIN-PHOTON INTERACTION............................................................................... 61 

4.1 Decoherence in SMMs and Weak Spin-Photon Coupling ................................................................ 61 

4.2 Experimental techniques and apparatus for probing weak spin-photon coupling ............................ 64 

4.3 Modelling the Spin Photon Interaction: The Jayne-Cummings Hamiltonian ................................... 68 

4.3.1 Vacuum Rabi oscillations .......................................................................................................... 70 

4.4 Techniques for probing strong coupling between spins and a low number of photons .................... 71 

4.4.1 Design Parameters of Nb/Sapphire Superconducting Resonators ............................................. 72 

4.4.2 Device Fabrication and Characterization ................................................................................... 81 

References ............................................................................................................................................... 86 

CHAPTER 5: CONCLUSIONS ................................................................................................................. 88 

References ............................................................................................................................................... 91 

APPENDIX A: PROCEDURES USED IN EMPLOYING THE “REMAINDER METHOD” ................. 92 



 

ix 

 

APPENDIX B: RECIPE FOR FABRICATION OF NIOBIUM/SAPPHIRE RESONATORS ................. 97 

 

  



 

x 

 

LIST OF FIGURES 

Figure 1.1 - Plot of the energies of the parallel/antiparallel orientations of an electron spin in a magnetic 

field. The yellow spheres with arrows represent electrons and their magnetic moments. Note that these 

arrows reflect a “left hand” rule due to the negative charge of the electron, with the curved arrows 

representing a hypothetical classical physical rotation which produces the equivalent direction of spin. ... 3 

Figure 1.2 – Energy level diagram of the eigenstates of equation 1.4. The green arrow represents an 

energy separation of 10 GHz between the two states. .................................................................................. 4 

Figure 1.3 – Magnetization data from the two samples studied later in this work, Mn3 (left, blocking 

temperature ~2.5 K) and Mn12-MeOH (right, blocking temperature ~3.5 K), plotted as “hysteresis loops” 

and exhibiting the step-like feature associated with quantum tunneling of magnetization. .......................... 7 

Figure 1.4 – Double well potentials in the absence (left) and presence (right) of a magnetic field BZ. The 

right hand plot also contrasts a system with only second order axial anisotropy (solid line) with another 

which includes a fourth order term (dashed line). Note that by including a fourth order term, excitations 

for a given k no longer reach resonance simultaneously. ............................................................................. 8 

Figure 1.5 – Three dimensional anisotropy barriers calculated for purely axial (left) and rhombic (right) 

Hamiltonians. Note that the rhombic barrier contains two additional characteristic axes which define the 

“medium” and “hard” orientations in the transverse plane. ........................................................................ 10 

Figure 1.6 – Zeeman diagram of the energy levels and the splittings of a S = 10 system with dominant 

uniaxial anisotropy (D) and significant tetragonal transverse anisotropy. The inset shows the effects of 

this transverse anisotropy, which mixes levels separated by multiples of the transverse symmetry, as 

indicated by the insets showing different resonances. ................................................................................ 11 

Figure 1.7 – Cartoon in which a spin begins in one state, mixes at an anticrossing, and is left to wonder 

what happened. ........................................................................................................................................... 12 



 

xi 

 

Figure 1.8 – Plot of calculated tunnel splitting showing the effect of Berry phase interference in a S = 6 

Mn3 system with sixfold symmetry. This inset illustrates how the field was applied relative to the 

system’s anisotropy barrier. ........................................................................................................................ 13 

Figure 2.1 - Schematic of the entire Mn3(Et−sao)3(Et−py)3ClO4 molecule (left) and a zoom on its core 

(right) containing the three exchange coupled s = 2 Mn3+ ions (outlined pale violet spheres). The light 

blue spheres represent nitrogen sites, the red represent oxygen, the green are chlorine, and the grey and 

white spheres represent carbon and hydrogen sites, respectively, in the ligands. ....................................... 17 

Figure 2.2 – a) Temperature dependence of hysteresis magnetization data acquired from our crystalline 

Mn3 sample. The approximate resonance positions are labelled according to the convention k = m′ - m. 

Note that some resonances are evidently split among several transitions (i.e. tunneling through ground or 

excited states) and/or have indistinct contributions from multiple transitions. The field sweep rate was 0.8 

T/minute. b) Derivative dM/dH of the hysteresis showing clear peaks about each resonance position. Note 

the absence of the k = 1 resonance below ~ 1 K. The data from different temperatures has been offset for 

clarity. ......................................................................................................................................................... 19 

Figure 2.3 – Diagram outlining the “remainder” method by which data from resonances occurring in the 

presence of large transverse fields could be extracted even if such fields would skew the calibration of the 

Hall bar magnetometer. The striped region represents conditions where accurate measurements of the 

sample’s magnetization would be impossible due to the quantum Hall effect caused by the necessary 

transverse field. ........................................................................................................................................... 20 

Figure 2.4 – a) Sixfold modulation of the k = 0 tunneling probability as a function of the angle of a 1.05 T 

transverse field. The sharp minima which occur at the labelled angles are indicative of strong Berry Phase 

interference which quenches the tunneling rate. b)-d) Threefold modulations of the k = 1-3 QTM 

resonances as a function of 0.65, 0.50, and 0.35 T transverse fields, respectively.Figure 2.3 – Diagram 

outlining the “remainder” method by which data from resonances occurring in the presence of large 

transverse fields could be extracted even if such fields would skew the calibration of the Hall bar 



 

xii 

 

magnetometer. The striped region represents conditions where accurate measurements of the sample’s 

magnetization would be impossible due to the quantum Hall effect caused by the necessary transverse 

field. ............................................................................................................................................................ 20 

Figure 2.4 – a) Sixfold modulation of the k = 0 tunneling probability as a function of the angle of a 1.05 T 

transverse field. The sharp minima which occur at the labelled angles are indicative of strong Berry Phase 

interference which quenches the tunneling rate. b)-d) Threefold modulations of the k = 1-3 QTM 

resonances as a function of 0.65, 0.50, and 0.35 T transverse fields, respectively. .................................... 24 

Figure 2.5 – Modulation of the resonance probabilities as a function of transverse field magnitude, with 

the field swept along the sample’s hard/medium axes. The conditions where we observed significant BPI 

effects are indicated with the arrows and occur at 1.05, 0.57, 0.50, and 0.35 T, respectively. For the 

resonances which occur with the application of a longitudinal field (k = 1-3), data acquired under both 

polarizations of HL are shown, with solid data points representing a positive HL and hollow data points 

representing the negative. The overlay of this ±HL data illustrates the time reversal symmetry present 

within the QTM process. The inset shows detail of the k = 3 resonance data in the neighborhood of the 

BPI conditions. ............................................................................................................................................ 25 

Figure 2.6 – (Left) Data from measurement (red dots) of the compensating field at the k = 0 resonance as 

induced by a 1.2 T transverse field. The solid line is an estimate of the compensating field generated from 

a MS Hamiltonian incorporating parameters derived from other data. Note that the directions of the 

maxima/minima are coincident with the hard/medium axes of the k = 1-3 resonances and not the k = 0. 

(right) Simulation of the threefold corrugated hard anisotropy plane where the radial dimension represents 

the magnitude of the transverse field. The alternating regions of positive and negative “compensating 

field” each span 60°. ................................................................................................................................... 26 

Figure 2.7 – (left) Relative orientations of the hard/medium axes of the k = 0 and 2 resonances as a 

function of the local ion anisotropy angle γ. The inset details the convention used for the Euler angles. 

(right) Magnitudes of the transverse field vector at which Berry Phase minima appear for the k = 0-4 



 

xiii 

 

resonances as a function of the local ion anisotropy angle α. The fields at which the minima are 

experimentally observed are indicated by the orange arrows. .................................................................... 30 

Figure 2.8 – a) & b) Spherical surface plots of the anisotropy barriers represented by the O4
3 and O6

6 

operators. The white circular planes are cuts through the transverse axes. c) & d) Show 3-D surface plots 

representing the relative arrangement and combination of the rhombic local ion anisotropies with and 

without tilts of the angle γ. .......................................................................................................................... 31 

Figure 2.9 – Simulated tunnel splitting as generated from the MS model (dark/dashed lines) and GS 

approximation (transparent lines). Note that these models both predict the asymmetry in the k = 1-3 

splittings. The relative sharpness of the k = 2 resonance (as compared to, say, the k = 1) helps explain 

why this resonance is observed in experimental data despite indications that it should be quenched in the 

absence of any transverse field (the splitting falls far below that of the k = 0 resonance as HT goes to 

zero). ........................................................................................................................................................... 32 

Figure 2.10 – Contour polar plots of calculated splittings generated from the MS model. The dark spots 

representing regions with predomination tunnel quenching due to BPI effects. ........................................ 33 

Figure 2.11 – Plot of the Zeeman split energy levels as a function of longitudinal field. The black lines 

represent eigenstates calculated by the MS model with a total spin S = 6, whereas the green lines represent 

eigenstates that the model attributes to total spin excitations (S = 5). The red overlay is generated from the 

GS Hamiltonian, which fails to reproduce the total spin excitation states. The blue line is the derivative 

dM/dH extracted from measurements and shows peaks which match the positions of transitions with both 

|S| = 5 and 6. ................................................................................................................................................ 34 

Figure 2.12 – (left) Plot of the anisotropy barrier generated by the O4
3 operator, with cuts along the border 

of the opaque/transparent regions at opposite inclinations reflecting how the threefold pattern of 

modulation is inverted with respect to the sign of the longitudinal field. (right) Diagram of the core of the 

Mn3 molecule with the axes of O-Mn-N bond  (which is the presumed JT axis) highlighted by the blue 

lines. The orientation of the estimated local ion anisotropy is along the red z′ axis. .................................. 35 



 

xiv 

 

Figure 3.1 - (a) Temperature dependence of magnetization data plotted as hysteresis “loops”, acquired 

under ambient conditions at a longitudinal field sweep rate of 8 mT/s, labelled by their resonance number 

k = m – m’ and temperature (in K). (b) Schematic of the molecular core of Mn12-MeOH, from [16], with 

the dark blue/green arrows illustrating relative spin orientations of the individual ions and a large blue 

arrow representing a collective “giant spin”. (c) Diagram showing the relative orientations of the sample 

and magnetic within the pressure apparatus. The sample’s “easy” magnetization axis is taken to be along 

the long dimension or the black box. (d) Detailed schematic of the high-pressure cell within the low 

temperature portion of the apparatus showing the arrangement of the hall-bar sensor and the elements that 

deliver pressure to the sample, taken from [17]. Note that shape of the epoxy “pellet” used in this 

experiment is close to a parallelepiped. ...................................................................................................... 41 

Figure 3.2 - (left) Extracted relaxation rate data about the k = 0 resonance acquired at 3.3 K with a sweep 

rate of 19.9 mT/s. (right) Sections of normalized magnetization data about the k = 2 resonance acquired at 

2.4 K with a sweep rate of 1.1 mT/s. The dotted lines are fits to the data. The square marks represent only 

2% of the actual data points, with the remainder hidden here for visual clarity. ........................................ 44 

Figure 3.3 – Details of the functions fit to the normalized magnetization and extracted relaxation rate data. 

(Top left) Plot of several sequential Lorentzian (η = 1) fit functions with different probabilities. Note that 

in order to model successive resonances in this way, the function involves a product Π over the different 

components. (Top right) Examples of different fit functions with identical amplitudes, widths, and center 

positions but different Lorentzian/Gaussian factors η. The black line represents equal contributions from 

each type. (Bottom left) Experimental data (expressed as the relaxation rate) plotted with pseudo-Voigt 

fits composed of traditional Lorentzian/Gaussian functions. (Bottom right) Plot of experimental data 

(black line) and fit (red) outlining the method of fitting data. Here, the resonance step between the two 

blue dashed lines is the “target” which is fit with free parameters for amplitude, width and center, whereas 

functions representing steps on either side are fit with constraints in order to maximize the quality of the 

fit to the target step. .................................................................................................................................... 47 



 

xv 

 

Figure 3.4 - Pressure dependence of the resonance magnitudes extracted from linear fits to the magnitude 

data, with the plot point style differentiated for the two different pressure configurations. (b) Pressure 

dependence of the extracted resonance positions........................................................................................ 51 

Figure 3.5 – Log/Log plot of simulated relaxation showing the contributions of various transitions about 

the k = 0 resonance in the model outlined below. The solid line is a linear interpolation between points. 

The inset shows the same data in a Log/Linear representation. .................................................................. 52 

Figure 3.6 - Panel (a) shows the result of numerical simulation of the relaxation rate using the “ambient” 

anisotropy parameters as well as the altered values for the parallel and perpendicular cases. (b) Shows the 

estimated resonance position Bres extracted from the simulations, with the inset illustrating an exaggerated 

distortion of a tetragonal symmetry as induced by the introduction of a B2
2 term. ...................................... 53 

Figure 3.7 - Comparison calculations (black/red/green points) with the results of pressure dependence 

outlined in Fig. 4 plotted as patterned grey boxes, where the upper and lower extents are defined by the 

highest and lowest values at that step and the whisker lines are the error bars for those points. ................ 54 

Figure 3.8 – Detail of the calculated relaxation rate for ambient conditions (black) and the perpendicular 

pressure change per kbar (green) for two resonances at the k = 2 step. The data is also shown in figure 3.6. 

The peak no the left represents a transition where the change in spin is ΔS = 10, whereas the peak on the 

right is ΔS = 10. .......................................................................................................................................... 56 

Figure 4.1 – (left) Plot of the Zeeman split energy levels of the Mn3 system discussed in Chapter 2 as a 

function of transverse field in the GSA approximation. The dashed red line is the approximate boundary 

between conditions where the ZFS dominates (the left hand side) and where the large transverse field 

defines a new quantization axis (right hand side). (right) Plot of measured and simulated EPR spectra 

from a Mn3 sample at 4.3 K as a function of a transverse field. The arrows indicate the positions of the 

transitions (= 13.2 GHz) in the associated Zeeman plot above. .................................................................. 63 

Figure 4.2 – (top left) Photograph of the pulse circuitry used to perform pulsed microwave measurements. 

(top right) Circuit diagram of the pulse delivery and homodyne detection instrumentation. Table 4.1 



 

xvi 

 

contains a description of the items indexed by their alphabetical labels. (bottom left) Photograph of a 

sample mounted on a 10 GHz Au resonator, which is in turn mounted on the bottom plate of our Cu 

housing box. The housing box can be mounted into our cryostat/dilution refrigerator with contacts 

between coaxial microwave lines and the feed lines of the device. (bottom right) Spin echo signal from a 

“Bruker Coal” sample at 4.3 K. The solid lines are the signal after subtraction of a background, with 

different colors representing a different time delay between π-half = 120 ns and π = 240 ns pulses. The 

dotted red line is an exponential fit to the echo peaks, extracting a spin-spin relaxation time of 1.3 μs. ... 65 

Figure 4.3 – Energy level diagram in the JC model at the anticrossing between coupled spin and cavity 

eigenstates. The magnitude of the splitting exactly on resonance is given by 2g, which separates 

eigenstates comprised of symmetric/antisymmetric superpositions of the bare states. .............................. 69 

Figure 4.4 – Section of an infinite series representation of a CPW transmission line circuit. .................... 74 

Figure 4.5 – Circuit diagram of the distributed element representation for a capacitively coupled 

resonator. ..................................................................................................................................................... 74 

Figure 4.6 – Circuit diagram of the near-resonant lumped element LRC circuit. ....................................... 76 

Figure 4.7 – Detail of the schematics showing the different styles of coupling gaps employed, with direct 

gaps shown in the left and interdigitated gaps on the right. ........................................................................ 79 

Figure 4.8 – Circuit diagram of a resonant cavity with Norton representation of a parallel capacitance and 

resistance in place of the load resistance and coupling capacitance shown in figure 4.6. .......................... 80 

Figure 4.9 – Plots of the quality factor QL as a function of the coupling capacitance for a cavity with an 

internal quality factor Qint ~ 1015 (left) and Qint = 106 (right) as generated from equation (4.42). .............. 81 

Figure 4.10 – (top) Autocad design of a 7 GHz Nb-on-Sapphire superconducting resonator. The 

meandering path allows for low frequency devices which fit within a smaller footprint. The long 

dimension of the entire pattern is 2 cm. (Bottom left) Photograph of a microstrip style Nb resonator with a 

sample. (Botttom right) The housing box used for mounting samples and measurements in our 



 

xvii 

 

cryostat/dilution refrigerator. By an exclusively copper construction, the device/sample space within is 

free of any superconducting material that might lead to parasitic resonances. ........................................... 82 

Figure 4.11 – Plots of various parameters of the superconducting resonators. The top-left panel shows the 

temperature dependence of a SC resonance feature from Q ≈ 25,000 CPW resonator. The top-right panel 

shows the resonance of an identical device as a function of an in-plane magnetic field. The bottom-left 

panel shows the power dependence of a Q ≈ 800 SC resonance feature from a microstrip style device. The 

bottom right panel shows the same resonance feature as a function of an in-plane applied magnetic field.

 .................................................................................................................................................................... 83 

 

 

 

 

 

 

 

  



 

xviii 

 

LIST OF TABLES 

Table 3.1 – List of initial states used in modelling tunneling in the two state approximation. ................... 50 

Table 4.1 - Table of microwave components included in the circuit shown in Fig. 4.2 ............................. 66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xix 

 

LIST OF ABBREVIATIONS 

BPI Berry phase interference 

EPR Electron paramagnetic resonance 

GS Giant-spin (Hamiltonian/model) 

JC Jayne-Cummings (Hamiltonian/model) 

JT Jahn-Teller (axis) 

LZ Landau-Zener 

MS Multi-spin (Hamiltonian/model) 

QTM Quantum tunneling of magnetization 

SMM Single molecule magnet 



 

1 

 

CHAPTER 1: INTRODUCTION 

Two ceramic bar magnets are all you need to explore a realm that normally lies beyond the scope of 

human experience.  The way that different orientations can lead to attractive or repulsive forces is 

fascinating but perhaps difficult to intuit. Until the scientific endeavors of the 19th century (by Oersted, 

Faraday, Maxwell, Ampere, etc.), the rare magnetic object (such as a “lodestone” or a magnetic compass) 

could only hint at the existence of mechanisms fundamentally different from what we need to interpret the 

greater part of the world around us. With the arrival of modern science, their understanding changed 

rapidly and the utility of electricity and magnetism was incorporated into the heart of the industrial 

revolution. By the middle of the 20th century, the theory of electromagnetic phenomenon had been unified 

and placed firmly within the framework of quantum mechanics in which the source of macroscopic 

magnetism was traced to either electric currents or to the intrinsic angular momentum of fundamental 

particles, the property known as spin.  

The discoveries of the relationship between moving electric charge and magnetic force and of the 

existence of angular momentum in the absence of tangible physical rotation are two of the most startling 

discoveries in the history of science. From there, one only need consider their combination within a 

charged particle to understand the atomic building blocks of permanent magnets. More broadly, we find 

that many things which appear non-magnetic are actually composed of magnetic materials or are 

fundamentally susceptible to magnetic fields. The lesson here is that magnetic systems are pervasive and 

essential, if seemingly abstract. 

 In this thesis, we will explore the behavior of spins through the study of Single Molecule Magnets 

(SMMs). These are molecular systems that typically exhibit large spins (often times > 10ħ) and intrinsic 

anisotropy, leading to slow relaxation of spin at low temperatures. They also often display the 

phenomenon known as quantum tunneling of magnetization (QTM), a non-classical process by which the 

molecular spin can tunnel through the anisotropy energy barrier. We study these systems in order to learn 
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(1.1) 

about the intra-molecular interactions, including couplings between ions in the magnetic core and the 

bonds they form with non-magnetic neighbors, which can teach us about the behavior of spin in different 

energy landscapes. 

 The remainder of this chapter will include a brief background of the fundamentals theoretical 

elements useful in analysis of SMMs. This background will begin with the case of the spin ½ electron, 

serving as an introduction to the quantum mechanical framework necessary to describe the interaction of 

a spin with a magnetic field and individual photons. The subsequent section will further detail SMM 

systems, including some of the theoretical underpinnings behind the explanation of QTM. 

1.1 Spin ½ 

In the theory of quantum mechanics, the state of a system is described by the coefficients of 

eigenstates as determined from the equations of motion, while observable properties manifest as 

eigenvalues/eigenstates of a Hermitian operator acting on the state wavefunction.  Essentially, this implies 

that we can only extract information about a system as some amplitude (the eigenvalue) of some state (an 

eigenstate of the observable operator), while the system itself is described with another set of 

eigenvalues/eigenstates of another operator (such as a Hamiltonian). Thus, classical properties are rooted 

in operators which extract (incomplete) information from the system state (the wavefunction).  

1.1.1 The Classical Magnetic Dipole Potential 

 Take angular momentum for example: The famous Stern-Gerlach experiment demonstrated 

quantization of spin angular momentum through the effect of a magnetic field on a moving ion, sorting a 

randomly oriented stream into two populations of strictly parallel/antiparallel magnetic moments. We can 

perform the transit from the classical to quantum regimes by beginning with the classical expression for 

the potential UB of a magnetic moment μ in a magnetic field B: 

𝑈𝐵 = −𝝁 ∙ 𝑩.  
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(1.2) 

The semi-quantum expression relating the magnetic moment to spin is given by 

𝝁 = −𝑔𝜇𝐵𝑺/ℏ 

where g ≈ 2 (for a free electron spin) is the dimensionless g-factor and μB is the Bohr magneton. Since the 

moment of a free electron will always prefer to point along the direction of an applied field, we can 

substitute the dot product with the scalar product SzB. Figure 1.1 shows a plot of the energies of the two 

orientations of an electron in an applied field as defined by equation (1.1) with the yellow spheres 

representing the electrons as a kind of classically equivalent spinning-ball. The lines represent the 

parallel/antiparallel orientations of the moment with respect to the applied field, states that 

maximize/minimize the energy.  

Figure 1.1 - Plot of the energies of the parallel/antiparallel orientations of an electron spin in a magnetic 

field. The yellow spheres with arrows represent electrons and their magnetic moments. Note that these 

arrows reflect a “left hand” rule due to the negative charge of the electron, with the curved arrows 

representing a hypothetical classical physical rotation which produces the equivalent direction of spin. 
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(1.3) 

1.1.2 The Zeeman Interaction 

Our first step towards the quantum regime begins by admitting the quantization of spin. 

Presumably, B is large (on the scale of 1 T) and can be approximated as a continuous variable, but the 

spin of an electron is a universally minute quantity that falls squarely within the discrete quantum regime. 

This is the level where the Stern-Gerlach experiment revealed the discretization in units of Planck’s 

constant ħ, a feature incorporated within the operator representing the observable SZ (as the “projection” 

of the spin into the quantization axis, defined in this case by the direction of application of B): 

𝑆𝑧 ≡  
ℏ

2
[
1 0
0 −1

] .  

The eigenvectors of this matrix are [1, 0] and [0, 1], with eigenvalues +1 and -1, respectively.  Quantum 

mechanics tells us that we can only ever find the electron in an eigenstate of the observable, so we are left 

to conclude that every measurement of the electron’s spin along a direction Z will indicate a spin of either 

Figure 1.2 – Energy level diagram of the eigenstates of equation 1.4. The green arrow represents an 

energy separation of 10 GHz between the two states. 
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(1.4) 

(1.5) 

(1.6) 

(1.7) 

+ħ/2 or -ħ/2, regardless of whether an applied field is pointing along that direction or not. Changing the 

field will only affect the average (the expectation value) of all of the measurements. We can further 

replace the classical potential UB with a Hamiltonian consisting of the Zeeman coupling 

𝐻 =  −𝑔𝜇𝐵𝑆𝑧𝐵𝑧 

where Bz is the component of the field that lies along the direction of the particle’s spin vector S (this may 

seem a trivial distinction, since the orientation of an electron’s moment in a field will always point along 

that direction, but we introduce it here to lay the groundwork for systems with arbitrary intrinsic fields). 

Note that a minus sign has effectively been incorporated into Sz (and an ħ has disappeared) as compared 

to equations (1.1) and (1.2) so that the ground state occurs when Sz and Bz have the same sign. We can 

label our eigenstates with the kets |↑> and |↓>, representing “spin up” and “spin down”, respectively. 

Figure 1.2 shows a plot of the eigenvalues of the two states defined by equation (1.4) in units of 

gigahertz. 

1.1.3 The Transition Matrix Element 

With formalized eigenstates we can lay the groundwork for transitions between different spin 

levels. The general form for the intensity of an associated transition is given by Hamiltonian matrix 

element 

𝑀 = ⟨↑ |𝐻| ↓⟩ . 

As written, equation (1.5) contains no off-diagonal elements which might mix the system’s eigenstates. 

However, if we can include some dependence upon the spin’s projection into the transverse XY plane, we 

would find a non-zero transition probability through the x, y spin ½ operators 

𝑆𝑥 ≡  
ℏ

2
[
0 1
1 0

]  

𝑆𝑦 ≡  
ℏ

2𝑖
[
0 −1
1 0

]  



 

6 

 

(1.8) 

(1.11) 

(1.10) 

(1.9) 

which are related to the Pauli spin operators σx σy σz by Si = ħ σi/2. This is the fundamental principle 

behind electron paramagnetic resonance (EPR) spectroscopy, in which a transition occurs through the off-

diagonal element in a Hamiltonian induced by the field of a cavity excitation, i.e. the coupling between 

the spin and a photon. Generally, we can define the transition rate through Fermi’s golden rule equation 

𝛤 =  
2𝜋

ℏ
|𝑀|2𝛿[𝐸𝑝 − 𝐸Δ] 

where Ep is the energy of the photon, EΔ is the energy difference between the two levels in the transition, 

and δ is the delta function. This equation implies the transition probability is zero everywhere except 

where the photon energy precisely matches the transition energy. In practice, many factors will lead to a 

broadening of observed spectral lines [1,2], such that the delta function can effectively be replaced with a 

“linewidth” function such as a Lorentzian or Gaussian. The other restriction for an EPR transition is that 

the change in the system’s spin must match that of the absorbed/emitted photon, i.e. that ΔS = ±1, such 

that total spin is conserved. 

 As we will see in the next section, systems with larger spin than ½ require additional machinery 

to understand.  In general, the relevant spin matrices for arbitrarily large spins are given by [3]  

⟨𝑚𝑎|𝑆𝑧|𝑚𝑏⟩ = 𝛿[𝑚𝑎 − 𝑚𝑏]𝑚𝑏 

⟨𝑚𝑎|𝑆𝑥|𝑚𝑏⟩ =
1

2
(𝛿[𝑚𝑎 − 𝑚𝑏 + 1] + 𝛿[𝑚𝑎 − 𝑚𝑏 − 1])√𝑆(𝑆 + 1) − 𝑚𝑎𝑚𝑏 

⟨𝑚𝑎|𝑆𝑦|𝑚𝑏⟩ =
𝑖

2
(𝛿[𝑚𝑎 − 𝑚𝑏 + 1] − 𝛿[𝑚𝑎 − 𝑚𝑏 − 1])√𝑆(𝑆 + 1) − 𝑚𝑎𝑚𝑏 

In addition to the complexities of larger spin, the following discussion will introduce intrinsic anisotropy, 

as well as a new mode of transition which that phenomenon creates.  
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1.2 The Single Molecule Magnet 

As far as spin systems go, bare electrons are not much of a mystery. A spin ½ system only has two 

eigenstates and cannot have any potential barrier between them that might inhibit decay from an excited 

state. Single molecule magnets (SMMs) stand in contrast in both of these respects. As a single molecular 

unit, they often contain a net spin many times that of a single electron, and due to internal fields and 

couplings they possess intrinsic anisotropy which forms an energy barrier to the reversal of spin 

orientation. First characterized and detailed in the early 1990s [4-7], many examples have been 

synthesized which show magnetic hysteresis at low temperatures and that exhibit the distinctive 

phenomenon of quantum tunneling of magnetization (QTM), a non-classical relaxation process. Figure 

1.3 shows magnetization data acquired from two samples which are discussed at length later in this thesis. 

Both are plotted as “hysteresis loops” which demonstrate the systems’ slow relaxation at the temperatures 

listed and the step-like features associated with QTM, a sharp contrast to behavior expected for a classical 

anisotropic system.  

Figure 1.3 – Magnetization data from the two samples studied later in this work, Mn3 (left, blocking 

temperature ~2.5 K) and Mn12-MeOH (right, blocking temperature ~3.5 K), plotted as “hysteresis loops” 

and exhibiting the step-like feature associated with quantum tunneling of magnetization.  
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(1.12) 

1.2.1 The Double Well Potential 

A simple way to represent many aspects of SMM behavior is through a “double well” potential. 

This formulation produces bistability at low temperature and defines an “easy axis” along which the spin 

finds a global energy minimum. Writing it out as a Hamiltonian gives 

𝐻 =  −𝐷 𝑆𝑧
2 − 𝑔𝜇𝐵𝑆𝑧𝐵𝑧 

where the first term characterizes the uniaxial anisotropy (with D taken to be a positive constant) and the 

second term describes the Zeeman coupling. Classically, the first term can be equated with a squared-sine 

potential by substituting S cos(θ) for Sz. Figure 1.4 shows a plot of this classical approximation as well as 

the energies of the eigenstates of the system in zero and non-zero field, with arrows representing QTM 

transitions between resonant states. Such resonances occur at zero field (where all levels are resonant with 

the equivalent level of opposite sign) and when an applied field raises/lowers the potentials and equalizes 

different pairs. The standard convention for labelling a resonance between two levels m, m′ is given by 

k = -m - m′. 

Figure 1.4 – Double well potentials in the absence (left) and presence (right) of a magnetic field BZ. The 

right hand plot also contrasts a system with only second order axial anisotropy (solid line) with another 

which includes a fourth order term (dashed line). Note that by including a fourth order term, excitations 

for a given k no longer reach resonance simultaneously. 
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(1.13) 

(1.14) 

 In the system outlined by Eq. 1.12, resonances occur at regular intervals of D / g μB for all states 

at a given step k. Introducing a fourth order term ASz
4

 acts to shift the resonant fields between higher and 

lower lying states at the same k. The fourth order Hamiltonian is given by  

𝐻 =  −𝐷 𝑆𝑧
2 − 𝐴 𝑆𝑧

4 − 𝑔𝜇𝐵𝑆𝑧𝐵𝑧. 

Solving this equation for the resonant field B(m,m′) produces the formula 

𝐵(𝑚, 𝑚′) = − 
𝑚 + 𝑚′

𝑔 𝜇𝐵
(𝐷 + 𝐴(𝑚2 + 𝑚′2

)) 

which implies that transitions through higher lying states take place at lower fields when A is positive and 

D is negative and dominant. 

1.2.2 Transverse Dependence and Quantum Tunneling of Magnetization 

 Thus far the components in our model have been limited to axial terms, all of which commute 

with the Hamiltonian. By the Heisenberg picture, this implies that any eigenstate should be stable; as long 

as our Hamiltonian is free of non-commuting terms, there is no mechanism by which a spin can relax 

from one well to the other.  Indeed, our purely axial Hamiltonian is entirely diagonal, with no elements to 

link different eigenstates. In order to enable such transitions, we need some actor to break the symmetry 

of the Hamiltonian in the transverse plane. This can be accomplished in a number of ways, with perhaps 

the most straightforward being the inclusion of applied field elements Bxy. 

 Through the development of the SMM field of research, it has become apparent that an aspect 

which sets SMMs apart is their intrinsic transverse anisotropy. A simple example of a Hamiltonian with 

transverse anisotropy is one which includes the rhombic term E (Sx
2 - Sy

2). Such a system produces an 

energy landscape in which characteristic “hard” and “medium” axes define additional planes of symmetry  

with the easy axis (see figure 1.5).  
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(1.16) 

(1.15) 

If we recalculate our transition matrix element M, we find non-zero amplitudes when the 

eigenstates under consideration differ in S by a multiple of two. The reason for this becomes apparent 

when we rewrite our transverse terms in the Sz basis:  

𝑆𝑥 =  (𝑆+ + 𝑆−)/2 

𝑆𝑦 =  −𝑖(𝑆+ − 𝑆−)/2 

where S+ and S- are the spin raising and lowering operators, respectively. From this we see that transverse 

anisotropy, such as the rhombic term E(S+
2+ S-2)/2, acts in the same way that a photon might in inducing a 

transition except that it mixes levels between multiples of ΔS = ±2 instead of by only ΔS = ±1.  

 We can see the effect of transverse anisotropy by analysis of the “tunnel splitting” Δk which 

characterizes the “anticrossing” between two eigenstates. Figure 1.6 shows a plot of the energy levels 

calculated for a S = 10 system under the influence of an axial field. In this simulation, the system contains 

a tetragonal (fourfold symmetry described by C(S+
4+ S-4)/2) element in addition to a dominant uniaxial 

term. The so-called “spin selection” rule for this system determines that eigenstate mixing is prohibited 

between levels that do not differ in spin by an integer multiple of the symmetry.  

Figure 1.5 – Three dimensional anisotropy barriers calculated for purely axial (left) and rhombic (right) 

Hamiltonians. Note that the rhombic barrier contains two additional characteristic axes which define the 

“medium” and “hard” orientations in the transverse plane. 
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It is also generally true that when it comes to the allowed transitions, states become less mixed as 

the number of operations necessary to link them increases (i.e. in a fourfold system, two states differing 

by ΔS = 4 are more heavily mixed as a result of the anisotropy than transitions where ΔS = 8 or 12, for 

which the fourth-order term operator would have to be applied 2 and 3 times, respectively). When the 

system is exactly on resonance and two levels would otherwise be degenerate, the states hybridize into 

symmetric/antisymmetric superpositions split by an energy difference described by tunnel splitting Δk. 

Far from the resonance, the states are close to their unmixed counterparts. One can imagine a spin 

approaching a resonance (see figure 1.7) in one state and tracing the path past the anticrossing, bending 

into a new trajectory and ending up in the state it thought it was passing over. 

  

Figure 1.6 – Zeeman diagram of the energy levels and the splittings of a S = 10 system with dominant 

uniaxial anisotropy (D) and significant tetragonal transverse anisotropy. The inset shows the effects of 

this transverse anisotropy, which mixes levels separated by multiples of the transverse symmetry, as 

indicated by the insets showing different resonances. 
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(1.17) 

We can relate the tunnel splitting Δk to the probability that a spin will complete a transition by the 

Landau-Zener equation [8]  

𝑃𝑘 = 1 − exp [−
𝜋∆𝑘

2

2𝜐0𝛿
] 

where υ0 = g μB (m - m′) and δ is the field sweep rate. This equation provides the final link in the chain 

that begins with a Hamiltonian characterizing the molecular symmetry and ends with magnetic relaxation. 

This argument forms the bedrock of the analysis performed in Chapter 2, in which the specifics of a Mn3 

based SMM’s symmetry and chemistry are related to the patterns observed in QTM from a sample of that 

compound.  

Figure 1.7 – Cartoon in which a spin begins in one state, mixes at an anticrossing, and is left to wonder 

what happened. 
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1.2.3 Berry Phase Interference 

At this point we have detailed the relationship between QTM and the intrinsic anisotropy, but 

have neglected finer discussion of the role played by transverse field elements. As it turns out, the 

interaction between a transverse field vector and the intrinsic anisotropy is ripe for detailing molecular 

symmetry, as it can lead to strong modulation of QTM amplitudes and resonance conditions (resonant 

fields) as a function of the angle of application relative to the molecular frame. In fact, such modulations 

can lead to dramatic insights into the nature of QTM itself. As was first theorized by Garg et al. [8] and 

experimentally confirmed by Wernsdorfer et al. [10], an applied magnetic field can lead to a quenching of 

the tunneling rate, a phenomenon known as Berry phase interference (BPI). The physical interpretation of 

this phenomenon is that dominant tunneling trajectories of similar amplitudes destructively interfere 

[11,12] as a result of geometric phases acquired in a path through angular space. 

Figure 1.8 – Plot of calculated tunnel splitting showing the effect of Berry phase interference in a S = 6 

Mn3 system with sixfold symmetry. This inset illustrates how the field was applied relative to the 

system’s anisotropy barrier. 
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The effects of BPI are evident within the Hamiltonian, bearing directly on the observed tunnel 

splittings. It has been shown that instances of strong BPI quenching (“BPI minima”) have a relationship 

with the molecular symmetry, with distortions of the energy landscape by a field applied along a 

symmetry axis creating periodic modulation of the tunnel splitting [10,13]. Fig 1.8 shows the calculated 

tunnel splitting for a ground state QTM transition as a function of a transverse field applied along one of 

the hard axes of the Mn3 system detailed in Chapter 2. 

Chapter 2 also details the importance that QTM and BPI can play in the characterization of 

SMMs, with a full treatment of the angular modulation and modelling of the system’s anisotropy. Chapter 

3 will discuss an experiment in which uniaxial physical pressure is applied to a Mn12 SMM, creating 

noticeable changes in QTM resonance magnitudes and resonant field positions. We attempt to model 

these changes by altering the anisotropy parameters in calculations of the relaxation rate.  Chapter 4 will 

take a look at the Spin-Photon interaction under different coupling strength regimes, with brief analysis of 

the Jayne-Cummings spin-photon model and the sources of decoherence in SMMs, as well as the 

discussion of several experiments and their goal of exploring different spin/photon couplings. 
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CHAPTER 2: BERRY PHASE MODULATION IN A TRIGONAL 

SYMMETRY MN3 MOLECULE 

The competing demands for minimizing the consumption of computational resources and optimizing 

model precision come to a head when attempting to diagonalize a large Hamiltonian, such as that of a 

system with large spin (|S| ≳ 10 h/2π). The number of operations necessary to complete the eigenvalue 

algorithm grows with matrix order [1], with the diagonalization of a 125 x 125 matrix requiring about a 

second of devoted CPU time for a typical desktop computer [2]. This places heavy constraints on the 

kinds of simulations that can be performed in a reasonable timeframe, especially when considering 

eigenstates as a function of some incremental parameter, such as magnetic field.  

For molecules composed of many ions, a choice must be made as to the level of resolution in 

modelling their eigenstates and anisotropies. Treating the system as a single rigid spin (the “giant spin” or 

GS approximation) limits the size of the matrix to at most 2S+1 but ignores contributions from internal 

composite states. By including terms for each interaction between constituent ions, the “multi-spin” (MS) 

treatment allows for the inclusion of intramolecular effects at the cost of a larger Hilbert space.  

In work outlined in this chapter, we sought to perform parallel analyses using both the GS and 

MS methods on a molecular spin system while aiming to understand the implications of each model and 

to scrutinize their differences. Additionally, we attempted to thoroughly characterize a compound through 

measurements of QTM resonances and in the process accurately determines its internal structure. Our 

results show that the observed QTM behavior is highly dependent upon the overall molecular symmetry, 

or perhaps more accurately, on the interactions between the local ion anisotropies. The next section 

outlines the sample we chose for study, followed by a description of the experimental methods used to 

acquire data, then a summary of results, analysis and discussion, and finally concluding remarks. 
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2.1 The Mn3 Molecule 

In order to examine the internal degrees of freedom described by a MS Hamiltonian, we needed a 

system with a low enough number of ions and total spin so that analysis would be computationally 

feasible. The compound Mn3(Et−sao)3(Et−py)3ClO4, (henceforth just “Mn3”) is a SMM with total spin S = 

6 originating from three ferromagnetically coupled s = 2 Mn3+ atoms. Figure 2.1 illustrates its chemical 

structure and details of the core containing the Mn3+ ions and interceding N and O sites. With a relatively 

low total net spin that is split between three ions, both the GS and MS methods are tractable for 

computation with an incremented applied field parameter (i.e. for hundreds or thousands of 

diagonalizations of the Hamiltonian).  

Previous characterization [3] of the compound indicated that the system has an effective 

anisotropy barrier Ueff ≈ 48 K, large enough to support slow relaxation of magnetization at temperatures 

Figure 2.1 - Schematic of the entire Mn3(Et−sao)3(Et−py)3ClO4 molecule (left) and a zoom on its core 

(right) containing the three exchange coupled s = 2 Mn3+ ions (outlined pale violet spheres). The light 

blue spheres represent nitrogen sites, the red represent oxygen, the green are chlorine, and the grey and 

white spheres represent carbon and hydrogen sites, respectively, in the ligands. 
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∼1 K, with super-exchange coupling giving an effective isotropic J between the Mn ions of ≈ 5.9 K. The 

prior characterization also revealed that the packing structure of crystalline samples of this compound 

contain two species of the molecule which are inverted and rotated by 60 degrees with respect to each 

other but that are otherwise identical in structure. As it turns out, this is a particularly fortunate 

configuration, as the anisotropy of the compound proved to be symmetric to such an inversion/rotation 

and hence both species behave identically in response to any applied field. 

 In addition to its potential for analysis through both GS and MS Hamiltonians, our interest in this 

compound was spurred by the trigonal symmetry of the chemical arrangement. As will be discussed in 

detail below, the relationship between the molecular symmetry and modulation of the QTM behavior is 

mediated through the anisotropy in the energy landscape described by the spin Hamiltonian. The goal of 

our measurements was to analyze the QTM behavior for evidence of such a modulation with the 

expectation that it should present a threefold dependence on angle in the transverse plane. By measuring 

the intensity of the tunneling resonances as a function of an applied field component HT in the transverse 

plane, we were indeed able to record such modulations, with strong evidence for spin selection rules and 

Berry Phase interference, phenomena which are well understood in terms of transverse anisotropy 

operators [4-6]. 

2.2 Instrumentation & Methods 

 The experiment we wanted to perform had two important requirements: 1) That we could achieve 

stable temperatures below ~ 4 K, and 2) that we could apply fixed and swept fields along arbitrary 

directions. To accomplish this, we employed an Oxford Instruments Heliox He3 cryostat capable of 

reaching below 250 mK and which could set the sample and measurement devices in situ within the field 

center of an American Magnetics three-axis superconducting vector magnet. This vector magnet could 

reach field magnitudes up to 7.5 T along one axis (the magnet’s “Z” axis) and up to 1.2 T in the plane 

perpendicular, with sweep rates typically on the order of 0.1 T/minute.  
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A Hall bar magnetometer fabricated “in house” was used in conjunction with standard lock-in 

amplification techniques to record the signal of a sample oriented with its “easy” magnetization axis 

pointed approximately parallel to the magnet Z axis, with one axis of the plane of the Hall bar’s active 

area along that same axis (to minimize signal originating from the Z axis field). This particular Hall bar 

device contained multiple active areas within the same chipset, enabling us to subtract readings from an 

active area far from the sample in order to remove common background signals. Instrumentation 

amplifiers were used to balance the signals before being fed into a SRS Sr830 Lock-In. Data was recorded 

digitally onto a computer running LabVIEW software via a GPIB connection. The magnetization data 

was recorded in the format common for SMMs, as “hysteresis loops” generated by an applied field swept 

along the sample’s easy magnetization axis from one saturation to the opposite and then back again. For 

our sample, this generated the data shown in figure 2.2, which was acquired below the “blocking 

temperature” at which hysteretic relaxation of the net magnetization becomes evident (here, ≈ 2.5 K).  

Figure 2.2 – a) Temperature dependence of hysteresis magnetization data acquired from our crystalline 

Mn3 sample. The approximate resonance positions are labelled according to the convention k = m′ - m. 

Note that some resonances are evidently split among several transitions (i.e. tunneling through ground or 

excited states) and/or have indistinct contributions from multiple transitions. The field sweep rate was 0.8 

T/minute. b) Derivative dM/dH of the hysteresis showing clear peaks about each resonance position. Note 

the absence of the k = 1 resonance below ~ 1 K. The data from different temperatures has been offset for 

clarity. 

b) a) 
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The data shows clear step-like features indicative of QTM, with the steps becoming sharper with 

decreasing temperature.  

Perhaps the most critical aspect of this experiment was the measurement of the resonance 

magnitudes as a function of the fixed transverse field. Successful measurements required precisely 

maintaining the calibration of our magnetometer while running the applied field through a set of 

longitudinal (parallel to the easy axis, HL) field sweeps performed with different fixed components in the 

transverse plane (HT). This, however, presents a problem for our Hall bar – in the presence of a large field 

oriented normal to the active area, the sensitivity of the device becomes dependent upon the Quantum 

Hall effect, a phenomenon in which the charge in the two-dimensional electron gas potential generated by 

the AlGaAs/GaAs becomes quantized [7,8], causing oscillations in what would otherwise be a stable 

signal.  

Figure 2.3 – Diagram outlining the “remainder” method by which data from resonances occurring in the 

presence of large transverse fields could be extracted even if such fields would skew the calibration of the 

Hall bar magnetometer. The striped region represents conditions where accurate measurements of the 

sample’s magnetization would be impossible due to the quantum Hall effect caused by the necessary 

transverse field. 
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To surmount this challenge, we developed several indirect measurement protocols that used data 

from undistorted measurements (where HT = 0) while still gathering information from the desired 

resonance as a function of non-zero transverse field. Figure 2.3 illustrates the principle behind our 

technique, which we call the “remainder” method. At the lowest temperatures we observed stable (flat) 

stretches of magnetization data on either side of the QTM steps, enabling us to deduce the amplitude of a 

step from off-resonance magnetization data acquired immediately before/after the resonance of interest 

which was swept through while a transverse field was applied and held constant. The sequence of the 

process went as follows: We first recorded a full sweep worth of magnetization data in the absence of any 

transverse component, creating a “base” set of reference data. Then we began another sweep under 

identical conditions which was halted just before the resonance of interest at a point which we determined 

to have insignificant relaxation. While holding the longitudinal field HL steady, we swept HT to the target 

vector and then swept HL through the resonance condition to another off-resonant field. The transverse 

field could then be removed and then the longitudinal swept forward until saturation, creating the 

“remainder” data set. With these components we could compare the magnetization before and after the 

resonance with the transverse field on or off, and determine the amount of relaxation that occurred 

indirectly by the difference. This procedure allowed us to construct a data set of the resonances’ 

magnitudes (described in terms of their probability P, defined as the normalized change in magnetization 

that occurred during the step) as extracted from hysteresis data collected under different applications of 

fixed transverse fields.  

In addition to the resonance magnitudes’ dependence upon transverse field, we were interested in 

the effect of the molecule’s intrinsic anisotropy on the resonance condition. A previous study including 

work by our group [9] indicated the system’s threefold symmetry is expected to produce a “compensating 

field” effect by which the position of a given resonance (in longitudinal field) would shift as a function of 

the angle/magnitude of a transverse field. We were particularly interested in the k = 0 resonance, which is 

always expected to occur at zero field. Preliminary estimates were that for 1 T of transverse field we 
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might expect to see a shift of less than 0.01 T in longitudinal field, an amount much smaller than the 

resonance width. The need for such a large transverse field also meant that crossing the resonance at even 

the maximum achievable field sweep rates would lead to a saturated resonance (i.e. fast relaxation to 

thermal equilibrium), obscuring the “actual” resonance lineshape.  And of course we would again 

encounter issues with Quantum Hall effect degradation of our magnetometer.  

Our workaround in this case was similar to the indirect “remainder” method outlined above but 

designed to sample the leading edge of the resonance. We first swept out to saturation, and then back to a 

point HL,i close to but far enough from the k = 0 resonance that we could expect no relaxation. The 

longitudinal field and transverse field were then simultaneously and rapidly swept to their target values 

HL,z and HT,xy, and then quickly swept back to HL,i  and HT = 0. We could then sweep back towards the 

initial saturation state and measure the magnitude of any observed resonances, recording this as an 

account of the net relaxation that occurred during the sweeps to nearby the k = 0 resonance (i.e. if there 

was no relaxation when sweeping close to k = 0 then the sample would still be in its initial saturated state 

and we would expect to see no QTM). By performing this measurement for a range of target longitudinal 

fields HL,z we were able to derive a conversion factor dM/dHL,z describing the relationship between the 

change in magnetization (due to the k = 0 resonance) and how close we came to the resonance. Finally, 

we could choose a target HL,z of optimal sensitivity and repeat the measurement for different orientations 

of the transverse field HT,xy. From this we could extract the shifts in the resonance position from any 

change in relaxation, hypothesizing that the relaxation measured should increase if the resonance had 

shifted closer to the starting point and decrease if it moved away. Appendix A contains further details and 

specifics of both this and the “remainder” method. 

Armed with these two protocols and the equipment to perform them, we set out to produce a 

comprehensive set of data detailing the interaction between a transverse field and the quantum tunneling 

of magnetization as informed by intrinsic molecular anisotropy. We will summarize our results in the next 
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section and detail how we were able to conclusively relate the symmetries present in a number of 

properties derived from the QTM to the specifics of the molecular anisotropy. 

2.3 Experimental Results 

 As shown in figure 2.2 a, our sample generated clear magnetic hysteresis and QTM features 

below ~ 2.5 K, with well separated and sharp steps resolved to the point that transitions out of the ground 

and excited states were discernible at the lowest temperatures. At a sweep rate of 0.8 T/m, resonances up 

to k = 5 are observable. Figure 2.2 b shows the derivative of the magnetization data, with several of the 

resonances showing stabile amplitudes (such as the k = 0 and 2) as a function of temperature, indicating 

tunneling from the ground state. The absence of a feature associated with the k = 1 at the lowest 

temperatures is consistent with the spin selection rule [10,11] which forbids tunneling for transitions 

representing a change in spin number Δm = m – m′ that is incommensurate with the symmetry. In the case 

of ground state tunneling at this particular resonance, m = -6 → +5 and so Δm = 11. The k = 2 resonance 

(Δm = 10) is also suppressed at below 1 K (although still visible), while the k = 3 (Δm = 9) appears large. 

 Initial measurements were performed to locate the sample’s easy axis, with axial field sweeps 

applied across a range of angular orientations, a standard technique which exploits the expectation that a 

sweep along the easy axis is likely to minimize the field at which the QTM steps occur. Previous 

characterization indicated that the easy axis was likely to be along the crystalline c axis, and the sample 

was oriented with this in mind. We were able to locate the easy axis within a few degrees of the magnet’s 

Z axis.After locating the easy axis, we could perform measurements of the various resonances’ 

dependencies upon fixed applied field components in the plane perpendicular.  
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Based on calculations using the parameters from previous characterization, we estimated that the 

conditions for significant Berry Phase interference were within the scope of our vector magnet’s field 

output and that we could still expect to see noticeable modulation of the resonance magnitudes far from 

these BPI minima.  

Figure 2.4 – a) Sixfold modulation of the k = 0 tunneling probability as a function of the angle of a 1.05 

T transverse field. The sharp minima which occur at the labelled angles are indicative of strong Berry 

Phase interference which quenches the tunneling rate. b)-d) Threefold modulations of the k = 1-3 QTM 

resonances as a function of 0.65, 0.50, and 0.35 T transverse fields, respectively. 
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Such modulation (crossing through BPI minima or not) would allow us to discern the orientation 

of the molecular frame. The minima lie along directions which largely minimize the tunneling rate, 

known as the “medium” axes, and are halfway between angles which maximize it, the “hard” axes. Figure 

2.4 shows the results of the HT rotation measurements in polar plots where the radial coordinate represents 

the probability P of the k = 0, 1, 2, 3 resonances. In this data, the magnitude of HT was tuned such that the 

system would land close to the BPI minima for certain angles, indicated in the plots by the blue arrows. 

 

Figure 2.5 – Modulation of the resonance probabilities as a function of transverse field magnitude, with 

the field swept along the sample’s hard/medium axes. The conditions where we observed significant 

BPI effects are indicated with the arrows and occur at 1.05, 0.57, 0.50, and 0.35 T, respectively. For the 

resonances which occur with the application of a longitudinal field (k = 1-3), data acquired under both 

polarizations of HL are shown, with solid data points representing a positive HL and hollow data points 

representing the negative. The overlay of this ±HL data illustrates the time reversal symmetry present 

within the QTM process. The inset shows detail of the k = 3 resonance data in the neighborhood of the 

BPI conditions.  
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For the resonances k = 1 – 3, the data show a threefold angular modulation. The observed angular 

positions of the minima and maxima are inverted for equivalent resonances but with the opposite 

longitudinal field (i.e. k = +1 or -1), with the data from positive and negative field resonances labelled by 

black and red in the plots, respectively. The k = 0 resonance shows a six-fold modulation. Note that 

angles along which the extrema in probability occur for the k = 1 – 3 resonances are coincident, whereas 

the extrema for the k = 0 resonance are found along different directions. 

Figure 2.5 shows the results of measurements of the QTM probabilities as a function of the 

transverse field magnitude. Here, orientation of the transverse field vector was held fixed along one of the 

directions at which BPI minima occur (the medium axes).  Generally speaking, tunneling rates increase 

with larger transverse field, but this data shows clear evidence of BPI effects where the tunneling rates are 

minimum and far from zero. Note that for each resonance other than k = 0, the minima do not occur again 

at a simple reversal of the transverse field – the longitudinal field must be reversed as well in order to 

produce the equivalent features at opposite transverse field. This is a consequence of time reversal 

Figure 2.6 – (Left) Data from measurement (red dots) of the compensating field at the k = 0 resonance as 

induced by a 1.2 T transverse field. The solid line is an estimate of the compensating field generated 

from a MS Hamiltonian incorporating parameters derived from other data. Note that the directions of the 

maxima/minima are coincident with the hard/medium axes of the k = 1-3 resonances and not the k = 0. 

(right) Simulation of the threefold corrugated hard anisotropy plane where the radial dimension 

represents the magnitude of the transverse field. The alternating regions of positive and negative 

“compensating field” each span 60°. 
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symmetry [12] which dictates that a complete inversion of the applied field is necessary to reproduce the 

same conditions. 

Our final result is outlined in figure 2.6 which shows the modulation of the k = 0 resonance 

condition in terms of longitudinal field hL as a function of the orientation of a 1.2 T transverse field. This 

data (red dots) was acquired at an elevated temperature of 1.57 K where tunneling occurs predominantly 

through the third excited state (m = -3 → +3, or vice versa) as this transition was expected to show a more 

pronounced effect than with tunneling out of the ground state. The solid curve is a MS Hamiltonian 

calculation using the anisotropy parameters derived from other fits to other data (detailed further in the 

discussion below). Note that the threefold modulation of this property does not follow the angular 

orientations of the k = 0 ground state hard/medium axes (the orientations of the extrema in figure 2.4a), 

but instead that of the other observed resonances [13]. Although the error bars on the data are large, the 

majority are within a SD of the expected values and the overall appearance is in good agreement. 

These measurements encompass many aspects of QTM behavior, with several characterizations 

of the dependence upon transverse field and temperature dependence that speaks to the nature of the 

dominant transitions. The subsequent section discusses the analysis of these phenomena in a spin 

Hamiltonian framework, both in a GS approximation employing Stevens operators and in a MS model of 

the local ion anisotropies and their interactions. 

2.4 Analysis & Discussion 

In light of the wide array of data at our disposal, we hoped to precisely determine a model of the 

molecule’s energy landscape. Within this section, we first discuss our efforts in employing a MS 

Hamiltonian capable of resolving the system down to the level of the individual ion, shedding light on 

both the strength of mutual interaction and the orientation of their anisotropies in the molecular frame. 

This analysis ultimately revealed the sensitivity of different aspects of the BPI phenomenon to 

independent angular coordinates. The subsequent analysis with a GS Hamiltonian shows that by including 
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(2.1) 

(2.2) 

Stevens operators (and the freedom to rotate their frames relative to one another) up to sufficient order, 

good agreement can be found with both the experimental data and MS model for transitions in which the 

total spin is maximum, i.e. in which |S| = 6 is left unchanged. 

In order to interpret our resonance magnitude data, we used the Landau-Zener (LZ) formula  

𝑃𝑘 = 1 − exp [−
𝜋∆𝑘

2

2𝜐0𝛿
] 

where υ0 = g μB (m - m′) and δ is the field sweep rate. This equation relates the “tunnel splitting” Δk which 

characterizes the mixing of two levels by the size of their anticrossing to the probability extracted from a 

single pass through some resonance k. This approximation has optimal applicability in situations where 

the probability is small (P ≪ 1) and tunneling can be assumed to take place through a single transition m 

→ m′. This formula provides us with means to compare the modulation of our resonances with the tunnel 

splittings as calculated via the spin Hamiltonian models outlined below. 

For our MS model (equation (2.2)), we begin at the level of the constituent s = 2 ion and assume 

that it possesses a rhombic anisotropy which, unlike the simpler purely uniaxial anisotropy, requires the 

full set of Euler angles for unique identification. From this start we are imbuing the system with a 

dependence upon both the tilt α of the local ion easy axis away from the molecular symmetry c axis and 

the orientation γ of the equivalent rhombic hard/medium axes. In order to preserve an overall threefold 

symmetry of the complete system, we construct a three ion model out of three identical rhombic 

anisotropies rotated 120° with respect to each other such that β1 = 0, β2 = 120°, and β3 = 240°. This model 

can be described by the Hamiltonian equation which contains all the necessary ZFS components and 

interactions: 

𝐻̂MS =  ∑ 𝒔𝑖 ∙  𝑹𝑖
𝑇 ∙ 𝒅𝑖 ∙ 𝑹𝑖 ∙𝑖 𝒔𝑖 +  ∑  𝜇𝐵 𝒔𝑖 ∙ 𝒈 ∙ 𝑩𝑖 +  ∑ 𝒔𝑖 ∙ 𝑱𝑖,𝑗 ∙ 𝒔𝑗𝑖>𝑗 . 
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The first term to the right of the equal sign represents the anisotropy of the individual ions where si is the 

ith ion’s spin operator, Ri is a rotation vector characterized by the three Euler angles, and di is the ion’s 

rhombic anisotropy tensor given by a diagonal 3 X 3 matrix with values ei, -ei (representing the transverse 

anisotropy) and di (the uniaxial anisotropy). The second term characterizes the ions’ coupling with an 

external field B and the last term expresses the superexchange coupling between each pair of ions through 

the tensor Ji,j. In our implementation, we assume identical values for the local ion anisotropy constants 

(ei = e, di = d) and the exchange interactions (Ji,j = isotropic J), and that g is isotropic. 

The strength of the local ion anisotropies’ d component is implied by the separation between 

different states with the same total spin S, while the inter-ion coupling J is well defined by the positions 

of total spin excitations.  The transverse component e in the local ion anisotropy plays a similar role to 

transverse terms in a GS Hamiltonian and informs the modulation of the total tunneling rates (i.e. the 

angular/magnitude dependencies).  Through diagonalization of our MS equation, we find values of g = 2, 

d = 3.6 K, e = -0.62 K, and J = 3.1 K.  

At this point, the only free parameters are the two Euler angles α and γ. In order to constrain these 

angles, we turn to simulations of the BPI minima positions through diagonalization of the MS 

Hamiltonian which allows us to calculate the splitting for a given resonance as a function of transverse 

field.  Tracking the coordinates of the minima as a function of the two local ion anisotropy tilts, we 

determined that the magnitudes at which the minima occur are dependent upon the tilt of the local 

anisotropies away from the molecular symmetry axis. Figure 2.7 shows the calculated positions of the 

minima in transverse field as a function of α. As can be seen clearly in this plot, a value of α = 6° 

produces excellent agreement between the calculations and the experimental data. 

 

 



 

30 

 

The simulations also showed that the relative orientations of the k = 0 and the k = 1 – 3 

hard/medium axes are strongly dependent upon the third angle rotation. Figure 2.7 also shows the 

calculated angles along which the BPI minima lie for the k = 0 and k = 2 resonances. Rotating γ from 0 to 

90° tunes the difference in angle from 30° to 0°, with a value of γ = 33° matching the experimentally 

observed angular separation. With estimates for these angles, the Hamiltonian equation (2.2) is 

completely defined and simulations of the tunnel splitting for a given resonance as a function of 

transverse field (see figures 2.9 and 2.10) closely match the experimental data. 

In order to further understand the topography of the energy landscape, it is useful to employ a GS 

Hamiltonian which can represent the aggregate contributions of the three interacting ions and paint a 

singular picture with Stevens operators. The data we have discussed so far (in particular, the angular 

modulations shown in figure 2.4) provide a hint as to which operators might fit best.  

 

Figure 2.7 – (left) Relative orientations of the hard/medium axes of the k = 0 and 2 resonances as a 

function of the local ion anisotropy angle γ. The inset details the convention used for the Euler angles. 

(right) Magnitudes of the transverse field vector at which Berry Phase minima appear for the k = 0-4 

resonances as a function of the local ion anisotropy angle α. The fields at which the minima are 

experimentally observed are indicated by the orange arrows. 



 

31 

 

(2.3) 

The O6
6 and O4

3 operators shown in figure 2.8 reflect the same symmetries seen in the 

experimental data, with the O6
6 matching the modulation of the k = 0 resonance and the O4

3 producing 

alternating threefold symmetries in cuts through the top or bottom half (see figure 2.12). With this in 

mind, the GS Hamiltonian can be written 

𝐻̂𝐺𝑆𝐴 = 𝐷𝑺𝑧
2 + 𝐵𝑺𝑧

4 + 𝐵4
3𝑶4

3 + 𝐵6
6𝑶6

6 + 𝜇𝐵𝑩 ∙ 𝒈 ∙ 𝑺 

where D and B are the second and fourth order anisotropy coefficients, respectively, which define the 

easy axis orientation through the spin projection operator Sz, B4
3 characterizes the strength of the 

anisotropy expressed by the operator O4
3 ≡ ½[Sz , S

3
+ + S3

- ], and B6
6 is the corresponding parameter for the 

Figure 2.8 – a) & b) Spherical surface plots of the anisotropy barriers represented by the O4
3 and O6

6 

operators. The white circular planes are cuts through the transverse axes. c) & d) Show 3-D surface plots 

representing the relative arrangement and combination of the rhombic local ion anisotropies with and 

without tilts of the angle γ. 
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hexagonal term O6
6 ≡ ½[S6

+ + S6
- ]. The final term is the Zeeman coupling, which we employed with an 

isotropic g = 2. The presence of a B4
3 term is interesting for its inclusion of a longitudinal term within the 

associated operator O4
3. This couples the “easy axis” Z field to the transverse field (as represented in the 

spin raising/lowering operators), creating the “compensating field” effect as we observed in figure 2.6.  

Comparing the GS to the MS local ion anisotropies reveals the important role that the local tilt 

angles α and γ play in the correspondence between the Hamiltonian terms in each model. A simple system 

in which the local ion anisotropies are not tilted away from the molecular symmetry axis (but with β1 = 0, 

β2 = 120°, β3 = 240°) produces a shape equivalent to a GS B66 symmetry (see figure 2.8). Including the α 

tilt breaks the sixfold symmetry, creating the kind of alternating threefold symmetry represented by a B4
3 

Figure 2.9 – Simulated tunnel splitting as generated from the MS model (dark/dashed lines) and GS 

approximation (transparent lines). Note that these models both predict the asymmetry in the k = 1-3 

splittings. The relative sharpness of the k = 2 resonance (as compared to, say, the k = 1) helps explain 

why this resonance is observed in experimental data despite indications that it should be quenched in the 

absence of any transverse field (the splitting falls far below that of the k = 0 resonance as HT goes to 

zero). 
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term. Further including the γ rotation results in a system which has an appearance resembling some 

synthesis of the pure B6
6 and B4

3 components. 

Simulations employing a GS model reproduce transverse field angle and magnitude dependence 

that closely match those of the MS model. However, it was necessary to artificially rotate the frame of the 

O4
3 operator by 15° (relative to the O6

6) in order to find the best agreement. Such a rotation is consistent 

with the relative orientations of the threefold and six-fold features observed in the experimental data and 

the MS model. This illustrates the correspondence between the k = 0 and the B6
6 term and the k = 1-3 and 

Figure 2.10 – Contour polar plots of calculated splittings generated from the MS model. The dark 

spots representing regions with predomination tunnel quenching due to BPI effects. 



 

34 

 

the B4
3. Indeed, the pattern of the k = 0 resonance’s magnitude modulation for a HT = 1.05 T transverse 

field is largely unchanged in the presence or absence of the B4
3 term, whereas the pattern of the 

compensating field (which is threefold and follows the orientations of the B4
3 term) vanishes entirely 

when that term is removed. This implies that the B6
6 component is dominant in the k = 0 resonance, at 

least in this neighborhood of transverse field. For the resonances which occur in the presence of a 

significant longitudinal component Sz, it is the B4
3 that term dictates the modulation of the splittings.  

 

Figure 2.11 – Plot of the Zeeman split energy levels as a function of longitudinal field. The black lines 

represent eigenstates calculated by the MS model with a total spin S = 6, whereas the green lines represent 

eigenstates that the model attributes to total spin excitations (S = 5). The red overlay is generated from the 

GS Hamiltonian, which fails to reproduce the total spin excitation states. The blue line is the derivative 

dM/dH extracted from measurements and shows peaks which match the positions of transitions with both 

|S| = 5 and 6. 
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The precision afforded by the MS fitting allows for direct comparison between the ions’ rhombic 

anisotropies and other characteristics of the individual ions’ chemical arrangement (see figure 2.12). For 

this compound, the Jahn-Teller (JT) axis of the Mn3+ ions are expected to lie approximately along the 

direction of the O-Mn-N bonds. The orientation of local ion easy axis z is roughly 12° degrees away from 

this direction, a significant deviation. 

Finally, we are able to draw important conclusions about the relative intensities of the observed 

steps. As mentioned previously, the “forbidden” k = 1 resonance is absent at the lowest temperatures 

while the also “forbidden” k = 2 is small but present. We can understand this by looking at the results of 

the HT dependence simulations in figure 2.9. The calculated splittings for the k = 0 and 3 resonances, 

which are both integer multiples of the molecular symmetry, are flat about zero transverse field. In 

contrast, the k = 1 and 2 resonances show a sharp dip about zero transverse field, consistent with the spin 

selection rule. The shape of the k = 1 resonance’s splitting is however much broader, not rising above the 

level of the k = 0 splitting until ≈ 0.5 T, while the k = 2 splitting increases dramatically with even 0.1 T 

Figure 2.12 – (left) Plot of the anisotropy barrier generated by the O4
3 operator, with cuts along the border 

of the opaque/transparent regions at opposite inclinations reflecting how the threefold pattern of 

modulation is inverted with respect to the sign of the longitudinal field. (right) Diagram of the core of the 

Mn3 molecule with the axes of O-Mn-N bond  (which is the presumed JT axis) highlighted by the blue 

lines. The orientation of the estimated local ion anisotropy is along the red z′ axis. 
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producing a splitting much larger than the k = 0. This implies that even a small transverse field is enough 

to bring this transition to prominence, while leaving the other hidden. It is also worth reiterating the 

presence of peaks which closely match the position of total transitions involving spin excitations (|S| = 5, 

see figure 2.11), drawing a stark line around the limits of the GS model. 

2.5 Conclusions 

The data outlined in this chapter is the result of the great quality of both the experimental 

equipment and the sample we were fortunate to study. The overlap between the conditions for clean QTM 

steps, BPI effects, and the capabilities of the magnet and cryostat enabled a broad range of fascinating 

measurements. By performing analysis with both MS and GS models to a comprehensive set of data, we 

have been able to extract information at the interatomic level, resolving a difference between the Jahn 

Teller and local anisotropy axes. We’ve also been able to further demonstrate the importance of precision 

in the characterization of the anisotropy when attempting to accurately model the QTM behavior. The 

need for dislocation of the O4
3

 and O6
6
 operators in the GS Hamiltonian also illustrates the necessary 

degrees of freedom for applicability of that model. The strong agreement between the simulated splittings 

and observed resonance probabilities also provides answers to questions regarding the applicability of 

spin selection rules, pointing to the presence of internal dipole fields and as a driver of QTM behavior in 

some of the forbidden resonances observed here. 

While both the GS and MS models reproduce many of the same features with accuracy, the 

former system requires two sets of anisotropy operators to span the full set of measurements, whereas the 

perhaps more naturally forms a landscape distinct from either form out of the conjunction of three simpler 

shapes. 

 The understanding this work has been able to achieve points to the continued promise of such 

molecular spin systems for new applications. By providing two models with tradeoffs between their 



 

37 

 

respective levels of detail and computational demands, this Mn3 compound stands as a system ideal for 

study when a range of prominent and exact QTM features are called for.   
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CHAPTER 3: THE EFFECT OF UNIAXIAL PRESSURE ON THE 

QUANTUM TUNNELING OF MAGNETIZATION IN A MN12 SINGLE 

MOLECULE MAGNET 

In the previous chapter, we demonstrated the relationship between molecular symmetry and QTM 

behavior. We also shone light on how that overall symmetry can be traced to internal degrees of freedom 

within a SMM. While the capability to finely tune molecular properties of SMMs at the point of chemical 

synthesis has grown substantially in recent decades, cases where a property of the compound can be 

varied continuously are limited. In the research outlined in this chapter, we attempted to induce 

distortions of the molecular anisotropy via uniaxial pressure. We applied this pressure along two 

directions – along the sample’s easy axis and in the transverse plane, configurations referred to as 

“parallel” and “perpendicular”, respectively. As of a function of pressure, the step magnitudes were 

observed to grow in both arrangements of pressure, while pressure applied along the sample’s easy axis 

resulted in shifts of the resonant field towards zero and pressure applied perpendicular had the opposite 

effect.  After extracting estimates for the pressure dependence of the magnitudes/resonant fields with 

linear fits, we attempted to model these changes in relaxation by varying anisotropy parameters within a 

Spin Hamiltonian and simulating the QTM behavior.  

 The topics covered in this chapter begin with details of the compound under study, 

[Mn12O12(O2CCH3)16(CH3OH)4] ·CH3OH (called “Mn12-MeOH” for short), then continue through 

discussions of the experimental equipment and techniques, the data acquired, the methods of analysis, 

interpretation, and concluding remarks. 

3.1 The Mn12-MeOH Molecule 

The sample under study here has the chemical formula [Mn12O12(O2CCH3)16(CH3OH)4]CH3OH, 

henceforth called “Mn12-MeOH”, and is a high symmetry analog [1,2] of one of the first SMMs to be 

discovered, Mn12O12(CH3COO)16(H2O)4, a.k.a. “Mn12-Ac”. Both of these systems show a S = 10 ground 
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state, a large energy barrier to spin reversal Ueff of about 70 K, and exhibit magnetic hysteresis at field 

sweep rates on the order of 1 mT/s below about 3.5 K. In crystalline samples like those examined here, 

the large step-like features associated with QTM are visible every ~0.45 T or so, with the first appearing 

at 0 T as the field is swept from one sample polarization to the other, at the lowest temperatures. Through 

method of synthesis which eliminates solvent disorder, Mn12-MeOH presents a system of higher 

symmetry than Mn12-Ac, with resonant features free of the broadening induced by solvent disorder. 

3.2 Experimental Equipment and Techniques 

Numerous hydrostatic studies have been conducted in the effort to characterize stress induced 

effects in the magnetic behavior of a SMM [3-7], with pressure applied through compression of a fluid 

medium which applies stress arbitrarily to the sample. Our experiment was designed to deliver pressure 

along a particular axis of the sample. The samples studied here were small, narrow crystals with a length 

no greater than a millimeter. 

In order to aide placement and reduce the risk of crystal fracture, a method outlined by Campos 

Brooks et al. [8] was employed in which the samples were first set in epoxy (Stycast 1266) and then 

formed (machined) after curing in a mold. The process went as follows: After removal from the mother 

liquor and a short drying, the crystalline samples were placed into wet, degassed epoxy within a Teflon 

mold and then oriented by the application of a large field held fixed for several hours until the completion 

of the curing process. This epoxy piece containing the sample was then machined into a small cuboid 

“pellet”, with short dimension not much longer than the length of the crystal itself, such that one of the 

flat faces of the sample was close to one of the flat faces of the pellet. The cured epoxy pellet containing 

the embedded crystal was placed within a “bracket” designed to hold a Hall Bar magnetometer and G10 

“fingers” designed to deliver pressure to two opposing faces of the crystal.  
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The sample was aligned with the active area of the Hall sensor to achieve the best coupling 

possible. The bracket containing the embedded sample and sensor was then inserted in a stainless steel 

cell at the bottom of an apparatus designed to deliver pressure to the sample from a pneumatic piston 

outside of the cryostat. 

The apparatus was constructed out of non-magnetic stainless steel and aluminum. The low 

temperature portion was comprised of a cell which could be set at the bottom of a cryostat, placing it 

within the field center of a superconducting coil magnet (of a Quantum Design PPMS). The cell was 

connected to a thin wall stainless steel tube which ran the length of the sample space to the room 

temperature portion. The top of the tube was connected to the casing of a pneumatic piston which could 

deliver pressure to a steel rod. The length of the rod ran back down through the thin walled tube where it 

was connected to a narrow hollow steel tube (to minimize thermal coupling to the low temperature 

Figure 3.1 - (a) Temperature dependence of magnetization data plotted as hysteresis “loops”, acquired 

under ambient conditions at a longitudinal field sweep rate of 8 mT/s, labelled by their resonance number 

k = m – m’ and temperature (in K). (b) Schematic of the molecular core of Mn12-MeOH, from [16], with 

the dark blue/green arrows illustrating relative spin orientations of the individual ions and a large blue 

arrow representing a collective “giant spin”. (c) Diagram showing the relative orientations of the sample 

and magnetic within the pressure apparatus. The sample’s “easy” magnetization axis is taken to be along 

the long dimension or the black box. (d) Detailed schematic of the high-pressure cell within the low 

temperature portion of the apparatus showing the arrangement of the hall-bar sensor and the elements that 

deliver pressure to the sample, taken from [17]. Note that shape of the epoxy “pellet” used in this 

experiment is close to a parallelepiped. 
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portion) capped with an aluminum plug extending into the cell. When the components were in place, this 

plug delivered the pressure to the components in the bracket. The pressure within the pneumatic piston 

was controlled by a compressed gas (N2) regulator. Teflon o-rings were placed between the central rod 

and thin wall tube to reduce thermal convection. The apparatus was essentially identical to that used in a 

previous experiment [9]. See figure 3.1 for diagrams of outlining the high pressure portion of the 

apparatus. 

Two Quantum Design PPMS systems were used to achieve temperature control and apply a 

magnetic field, each with similar instrumentation but different orientation of the magnetic field axis. In 

the first system, the field axis was aligned with the bore of the sample space. In the second, the field axis 

was perpendicular to the sample space bore. We define the stress axis T as the direction normal to the 

opposing parallel surfaces of the sample to which pressure was applied. In the first system, the sample 

was aligned such that its “easy axis” (collinear with the long axis of the crystal) is parallel to the magnetic 

field, which is also parallel to T. This is the “parallel pressure” configuration. In the second system, the 

“easy axis” and magnetic field are again collinear, but T is oriented orthogonally to both. This is the 

“perpendicular pressure” configuration. In the perpendicular configuration, the pressure was applied 

along one of the flat faces of the crystal presumed to be in the hard plane, a direction which is associated 

with the “hard” anisotropy axis of this sample.  

Once the sample and bracket were in place, the apparatus was inserted into the PPMS cryostat and 

cooled. LabVIEW and Quantum Design software were used to control the application of the field and 

record data in digital format. Hall resistance from our sensors was measured using a lock-in amplifier 

supplying current to and reading voltage from orthogonal contacts. The applied field was swept at rates of 

1.1 mT/s and 19.9 mT/s in the parallel pressure configuration and 8 mT/s in the perpendicular. 

Measurements were performed across a range of temperatures from 2.1 to 3.3 K as read from a calibrated 

thermometer placed on the back of the Hall Bar in the parallel case and according to the PPMS system 
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thermometer at the sample space position in the perpendicular. Figure 3.1 shows hysteresis loops acquired 

while in the perpendicular system for each temperature at ambient pressure. The sequence of data 

acquisition began with adjustment of the pressure and then collection at several temperatures before 

moving on to the next pressure. For the parallel experiment, the chronological sequence of pressures 

began with ambient (“zero” pressure in the piston) and then continued 0.55, 1.1, 1.64, 0.27, 0.82, 1.37, 

and 1.92 kBar. For the perpendicular experiment, the order was 0.41, 0.82, 1.23, 1.64, 2.05, and finally 0 

kBar. The upper limit of the pressures was informed by the expected tensile strength of the epoxy at low 

temperatures. The same pellet/crystal was measured in both experiments. 

3.3 Results 

The measured hysteresis curves show clear QTM steps which can be labelled by the conventional 

resonance numbering system, indicated in figure 3.1. Relaxation associated with the resonance condition 

from a single energy eigenstate (i.e. tunneling through a single resonant pair of levels) are not discernible 

due to the broadening present at these temperatures. At 2 K, the equilibrium Boltzmann populations of the 

ground state and first excited state at ≈ 0.45 T (the k = 1 resonance) are estimated to be about 99.4 % and 

0.4%, respectively, for this sample. Generally, tunneling rates increase dramatically for eigenstates closer 

to the top of the potential barrier Ueff [10], and as such the magnitudes of the resonances increase with 

temperature as higher energy eigenstates are populated. This implies that, at these temperatures, we 

should expect significant relaxation via tunneling through at least some of the excited states.  

As a function of pressure, the hysteresis data outlined here shows resonant features that tend to 

increase in magnitude with greater application of pressure (see figure 3.2). Interestingly, divergent trends 

are seen in the resonant field about which the QTM occurs between different applications of pressure, 

with shifts away from zero field in the parallel configuration and towards lower fields in the 

perpendicular.  The sequences of pressures employed in both the parallel and perpendicular 

configurations imply no significant permanent deformation of the sample given that the data acquired 
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after a previous higher pressure appears to obey the general trend (see the inset in the right plot of figure 

3.2). 

3.4 Methods of Analysis 

In order to extract meaningful estimates for how the various resonances are changing as a function 

of pressure, a non-linear regression curve fitting was employed using MATLAB. The objective of the 

fitting was to interpret the resonant spin relaxation using a Lorentzian/Gaussian linewidth model. Our 

data is collected as the magnetization of the sample, which, unlike traditional spectroscopic 

absorption/transmission data, represents a hysteretic property that can reach saturated configurations. But 

the information we ultimately want to extract from this data, the likelihood that an isolated spin in a 

metastable state will tunnel, ideally cares nothing about the overall state of the sample. This means that 

either our raw data had to be recast into some non-hysteretic form for appropriate fitting with the desired 

linewidth model or we needed a model (a fitting function) which incorporates the state of the system. As 

outlined below, we find that working in either framework produces similar results, but that different 

experimental conditions sometimes demand the use of a particular method. It is also worth noting here 

Figure 3.2 - (left) Extracted relaxation rate data about the k = 0 resonance acquired at 3.3 K with a sweep 

rate of 19.9 mT/s. (right) Sections of normalized magnetization data about the k = 2 resonance acquired at 

2.4 K with a sweep rate of 1.1 mT/s. The dotted lines are fits to the data. The square marks represent only 

2% of the actual data points, with the remainder hidden here for visual clarity. 
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that, prior to fitting, a correction B/μ0 = H – DPF*M was made to account for the contribution of internal 

dipole fields to the effective field as seen by the spins [11], with a value of DPF = 22.5 mT used here for 

a fully magnetized sample.  

The “absolute” spin relaxation rate Γ is related to the normalized time derivative of the 

magnetization dM/dt by 

where M represents the instantaneous magnetization and Meq the magnetization at equilibrium. The 

relaxation rate Γ can reasonably be expected to follow convoluted lineshapes of the levels involved in 

tunneling and might then be expected to behave approximately as a Lorentzian or Gaussian function [12].  

To wit,  

where f(B) is the lineshape function associated with the tunnel resonance. As mentioned above, equations 

(3.1) and (3.2) hint at two different algorithms – either to treat the data and fit using a linewidth shape 

function or to derive a function which can be fit to the “raw” magnetization data while obeying equation 

(3.2). An approach to the latter case can be made if the equilibrium magnetization Meq is assumed to be 

equal to the saturation magnetization of the sample Msat, a condition which is approximately true far 

enough from zero field (at 3.3 K and HZ = 0.5 T, Meq > 0.96 Msat). With this assumption, it is possible to 

solve equation (3.2) for M if f(B) is either a Lorentzian or Gaussian. Solving with a normalized 

Lorentzian or Gaussian (assuming that Msat = 1 and that M = 0 initially) gives the equations for L and G 

respectively:  

𝑀̇

𝑀 − 𝑀𝑒𝑞
= f(B) (3.2) 

𝛤 ≡
1

𝑀 − 𝑀𝑒𝑞

𝑑𝑀

𝑑𝑡
 

, 
 

𝛤 ≡
1

𝑀 − 𝑀𝑒𝑞

𝑑𝑀

𝑑𝑡
 

, 

(3.1) 
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where ΓA is the amplitude (and technically incorporates a sweep rate, making the variable dimensionless) 

of the associated Lorentzian/Gaussian, W is the width, and x0 = Bres the center of the resonance. These 

solutions also provide us with a means to express the probability of a resonance with the equation: 

which is equivalent to the normalized change in magnetization across the step. Ultimately, we found the 

best fitting from employing the analog of a “pseudo-Voigt profile” style function [13] (a true Voigt 

profile is too computationally heavy for the number of calculations required in our analysis) consisting of 

a linear combination (with two coefficients that sum to unity) of the two independent solutions to 

equation (3.2), although such a combination is generally only an approximate solution to that equation. 

Applied to normalized magnetization data, this fit can yield estimates for amplitude, resonant field center, 

and linewidth.  

For steps occurring where Meq deviates significantly from the saturation value, the data was 

transformed point-by-point by dividing the time derivative by the difference between the instantaneous 

magnetization and the calculated equilibrium magnetization (through a Boltzmann weighted sum of the 

eigenstates and their magnetization, assuming no mixing), i.e. by transforming the data according to the 

left hand side of equation (3.2). The data was then fit using a pseudo-Voigt profile constructed as a linear 

combination of Gaussian and Lorentzian linewidth functions. This method was eschewed when possible 

in order to avoid the potential for additional uncertainty introduced in transforming the data (due to 

scaling by (1 – Meq)-1, a factor dependent upon our normalization process and which grows large as the 

L[𝑥] = 1 − 𝑒−𝛤𝐴(
1
2

+
1
𝜋

ArcTan[
2(𝑥−𝑥0)

𝑊
])

 

G[𝑥] = 1 − 𝑒
−𝛤𝐴(

1
2

+
1
2

Erf[
𝑥−𝑥0

√2𝑊
])

 

𝑃 = 1 − 𝑒−𝛤𝐴  

(3.4) 

(3.3) 

(3.5) 
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magnetization data approaches saturation), although we found that both methods ultimately produced 

consistent estimates when applied to the same data. 

Figure 3.3 – Details of the functions fit to the normalized magnetization and extracted relaxation rate data. 

(Top left) Plot of several sequential Lorentzian (η = 1) fit functions with different probabilities. Note that 

in order to model successive resonances in this way, the function involves a product Π over the different 

components. (Top right) Examples of different fit functions with identical amplitudes, widths, and center 

positions but different Lorentzian/Gaussian factors η. The black line represents equal contributions from 

each type. (Bottom left) Experimental data (expressed as the relaxation rate) plotted with pseudo-Voigt 

fits composed of traditional Lorentzian/Gaussian functions. (Bottom right) Plot of experimental data 

(black line) and fit (red) outlining the method of fitting data. Here, the resonance step between the two 

blue dashed lines is the “target” which is fit with free parameters for amplitude, width and center, whereas 

functions representing steps on either side are fit with constraints in order to maximize the quality of the 

fit to the target step. 
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 It is important to note that at the temperatures explored here, it is impossible to neatly separate 

the steps and all of the observed relaxation to one resonance or the other, as relaxation continues in 

regions between the steepest relaxation, albeit more slowly. The fitting was performed with this in mind 

by allowing the possibility of overlap between neighboring fit functions. Figure 3.3 outlines the method 

employed. A range of data (spanning ~4500 Oe) centered about the “target” step was selected to which 

three functions were fit, two of which represented contributions from resonances on either side of the 

target step. The function fit to the target step contained free parameters for the resonance amplitude, 

width, and center, whereas the functions for the neighboring steps were constrained. In order to more 

accurately represent uncertainties in the qualities of interest (i.e. those of the target step) and reduce the 

effects of erroneous attractors, fitting with each of the three functions was performed separately and 

incrementally, such that the parameters of the other two functions were held fixed while regression was 

performed for a limited number of iterations n before one of the other two functions was unlocked and the 

process repeated with the other two held fixed. This process was repeated many times with the number of 

regression iterations n decreasing over time and until the parameter estimates reached stable values.  

Once estimates for the various linewidth parameters were extracted, we focused our attention on 

the quantity δΓA/ΓA ≡ (ΓA(P) - ΓA (0)) / ΓA(0), i.e. the fractional change in ΓA as a function of pressure. By 

looking at this quantity, we can more easily compare data from the same resonance acquired under 

different conditions such as sweep rate and temperature. Analysis of the resonant field center Bres 

estimates also examined the analogous quantity δBres/Bres = (Bres(P) – Bres(0)) / Bres(0). 

 Some of the extracted values for parameters ΓA and Bres are shown in the inset of figure 3.3, 

plotted as a function of pressure. The equivalent estimates for the resonance widths show no clear trend 

and/or large error bars, and as such we choose to omit their analysis. Generally, we find that in instances 

where the pressure was applied parallel to the easy Z axis of the sample, the resonances became 

noticeably larger and shifted towards higher field as the pressure was increased. In the case of T 
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perpendicular to the easy axis, the magnitudes again increased, but shifted towards lower field with 

increasing pressure. Linear fits were made to the pressure dependence for each set of data indexed by step 

k, temperature, sweep rate, and direction of application of pressure. The slopes of the linear fits were 

extracted and normalized by the zero-pressure intercept to generate δΓA and δBres. Figure 3.4 shows the 

collected data for these two measures, delineated by the resonance label k.  

To summarize, we find small increases (≲10%) in the extracted resonance magnitudes for the 

equivalent of 1 kBar of uniaxial pressure applied along or perpendicular to the sample’s easy axis in 

nearly every case examined. But we find differing trends in the resonance positions, with smaller shifts 

(≲1%) towards higher field for parallel pressure and the opposite in the case of perpendicular. 

3.5 Analysis & Interpretation 

 To understand the observed pressure dependence, we calculated how changes to different 

anisotropy parameters in the Spin Hamiltonian would affect the magnetization. We considered axial terms 

up to sixth order (DSz
2, ASz

4, FSz
6) and the rhombic B2

2(S+
2 + S-

2)/2 and tetragonal B4
4(S+

4 + S-
4)/2 

transverse parameters. In general, small changes in the axial parameters will act to shift eigenstates up or 

down in energy, affecting their Boltzmann population for a given temperature, and changing the resonant 

tunneling fields at which levels in opposite wells cross. In contrast, tuning the transverse terms can result 

in pronounced changes in the expected tunneling rate while leaving the resonant fields largely unchanged.

 We focus on resonances k = 1, 2, 3, and 4, for which we have data at several temperatures in both 

the parallel and perpendicular cases. Using the ambient-pressure values for the anisotropy parameters 

determined previously for a similar high-symmetry Mn12 molecule [14], we estimate level crossings 

consistent with the experimental data. 
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For initial characterization of the parallel pressure results, we performed regression fitting using a 

Hamiltonian restricted to axial components: 

Except for transverse elements in an applied field, this Hamiltonian contains no terms which would 

permit tunneling. The fitting methodology outlined below uses this equation to calculate the energies of 

the eigenstates, while fits to experimental data are employed in order to estimate the tunneling rates. 

Essentially, the Hamiltonian serves to calculate the resonant fields and Boltzmann populations of the 

levels. We assume that substantial tunneling takes place via no more than two pairs of eigenstates for a 

given value of k, a paradigm we refer to as a “two-state” approximation. We choose levels that match 

closely with observed resonance positions and describe the total transition rate as a Boltzmann weighted 

linear sum of contributions from the two levels, i.e. ΓTot = Γ1*exp(-E1/kBT) + Γ2*exp(-E2/kBT). These levels 

m1, m2 were, as labelled by the off-resonant SZ spin number: 

Table 3.1 – List of initial states used in modelling tunneling in the two state approximation. 

Resonance k m1, m2 

1 -6, -5 

2 -6, -5 

3 -7, -6 

4 -8, -7 

 

Then, by taking the amplitudes Γ1 and Γ2 that characterize the total relaxation through each of the two 

resonance conditions to be constant, we could fit changes in the resonance magnitudes to alterations of the 

Boltzmann populations induced by changes in D and A. The sixth order constant F was held constant in an 

effort to limit the number of free parameters and because good agreement could be found without letting it 

vary. Fitting the temperature dependence of the ambient values of the amplitude ΓA generated initial 

estimates for Γ1 and Γ2. Simultaneously, we fit the temperature dependence of the ambient Bres data to an 

expression that approximates the resonant field as a sum of the two individual resonant fields of the 

(3.6) 𝐻 = 𝐷𝑆𝑍
2 + 𝐴𝑆𝑍

4 + 𝐹𝑆𝑍
6 − 𝑔𝜇𝐵𝑆 ∙ 𝐵⃑⃑. 
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contributing levels, weighted by their Boltzmann populations and transition rates Γ1 and Γ2, i.e. BTot = 

B1*Γ1*exp(-E1/kBT) + B2*Γ2*exp(-E2/kBT). In this way we could produce estimates for changes in the 

Hamiltonian parameters by fitting to the data as a function of pressure and temperature and letting D and A 

vary. The results of this fitting give values of δD/D = (D1kBar – DAmbient) / D = 0.58%/kbar and δA/A = -

5.76%/kbar. These changes act to shift all resonances towards higher field while lowering the energy 

difference between transitions out of excited and ground states, resulting in greater populations in states 

from which spins are more likely to tunnel (generally increasing the contributions to the overall rate from 

every energy level except the ground state) while still increasing the magnitude of the potential well/barrier 

Ueff. 

 

 To analyze the data more fully, we employed a master equation approach which calculates the 

relaxation rate Γ from terms describing spin-phonon interactions [15-17], which takes the form 

𝑑𝑝𝑖

𝑑𝑡
= ∑ −

21

𝑗=1
𝑖≠𝑗

(𝛾𝑖𝑗
(1)

+ 𝛾𝑖𝑗
(2)

) 𝑝𝑖 + (𝛾𝑗𝑖
(1)

+ 𝛾𝑗𝑖
(2)

) 𝑝𝑗 . 

 

(3.7) 

Figure 3.4 - Pressure dependence of the resonance magnitudes extracted from linear fits to the 

magnitude data, with the plot point style differentiated for the two different pressure configurations. (b) 

Pressure dependence of the extracted resonance positions. 
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In this so-called secular approximation, eigenstates were calculated in the SZ basis using a Hamiltonian 

which included second and fourth order transverse anisotropy terms (see equation (3.11) below), with only 

diagonal elements in the density matrix being considered; this conserves computational resources but 

reduces the applicability of the model near the resonance condition where off-diagonal elements might play 

an important role. Nonetheless, this model allows us to discriminate between different scenarios of 

variations in the anisotropy parameters. The first and second order spin-phonon transition rates are given 

by [18,19] 

𝛾𝑖𝑗
(1)

=  
𝐷2

24 𝜋 𝜌 𝑐𝑠
5ℏ4

|𝑠𝑖𝑗
(1)

|
2

𝛥𝑖𝑗
3 𝑁(Δ𝑖𝑗) 

𝛾𝑖𝑗
(2)

=  
𝐷2

36 𝜋 𝜌 𝑐𝑠
5ℏ4

|𝑠𝑖𝑗
(2)

|
2

𝛥𝑖𝑗
3 𝑁(Δ𝑖𝑗) 

 

(3.8) 

(3.9) 

Figure 3.5 – Log/Log plot of simulated relaxation showing the contributions of various transitions about 

the k = 0 resonance in the model outlined below. The solid line is a linear interpolation between points. 

The inset shows the same data in a Log/Linear representation. 
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where D is the same parameter represented in Eq. (8), ρ is the mass density of the sample, cS is the speed 

of sound in the sample, sij
(1) = 〈i|{Sx+Sy}|j〉, sij

(2) = 〈i|{Sx
2+Sy

2}|j〉, Δij is the energy difference between 

levels i and j, and N(Δij) = 1/(exp(-Δij /kBT)-1) is the phonon thermal distribution function. The rate Γsim is 

then taken as the slowest non-zero element of the matrix generated from equation (3.7). In our simulation, 

we assumed a constant field Hx = 22.5 mT in order to represent the effects of internal transverse fields 

that have been demonstrated to play a significant role in the magnitudes of QTM resonances [20]. 

In order to extract estimates for resonant field from calculations of Γsim we used a weighted 

integral over a field range centered around the resonances of interest (such that it included all “peaks” 

associated with a given resonance number k) as outlined by the equation 

in which the bounds Bi and Bf about a resonance k are 0.45*k ± 0.15 T. The spin-phonon rate simulation 

produces data in which Γsim is small except near a resonance condition, and as such equation (3.10) is 

essentially an average of the peaks’ abscissa weighted by their area. The amplitude ΓA,sim of a resonance 

𝐵𝑟𝑒𝑠,𝑠𝑖𝑚 =
∫ 𝛤(𝑥) 𝑥 𝑑𝑥

𝐵𝑓

𝐵𝑖

∫ 𝑥 𝑑𝑥
𝐵𝑓

𝐵𝑖

 

 

Figure 3.6 - Panel (a) shows the result of numerical simulation of the relaxation rate using the “ambient” 

anisotropy parameters as well as the altered values for the parallel and perpendicular cases. (b) Shows the 

estimated resonance position Bres extracted from the simulations, with the inset illustrating an exaggerated 

distortion of a tetragonal symmetry as induced by the introduction of a B2
2 term. 

(3.10) 
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was simply taken as the area under the peaks for the same bounds. To conserve computational resources, 

the contributions from specific resonances were omitted when we could safely assume they were small, 

i.e. in the case of resonances closest to the ground state which were calculated to occur at fields far from 

the relaxation observed in the hysteresis steps.  

In this calculation, we include terms for transverse rhombic and tetragonal anisotropy into our 

Hamiltonian, which can be written  

where O2
2 = (S+

2 + S-
2)/2, O4

4 = (S+
4 + S-

4)/2, and O4
6 = [11Sz

2 - S(S+1) - 38,(S+
4 + S-

4)] are Stevens operators 

and the coefficients have the “ambient” values D = -0.557 K, A = -6.36*10-4 K, F = -2.31*10-6 K, B2
2 = 0, 

Figure 3.7 - Comparison calculations (black/red/green points) with the results of pressure dependence 

outlined in Fig. 4 plotted as patterned grey boxes, where the upper and lower extents are defined by the 

highest and lowest values at that step and the whisker lines are the error bars for those points. 

𝐻 = 𝐷𝑆𝑍
2 + 𝐴𝑆𝑍

4 + 𝐹𝑆𝑍
6 + 𝐵2

2𝑂2
2 + 𝐵4

4𝑂4
4 + 𝐵6

4𝑂6
4 − 𝑔𝜇𝐵𝑆 ∙ 𝐵⃑⃑ (3.11) 
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B4
4 = 2.88*10-5 K, and B4

6 = -1.44*10-7 K [14]. We include the B2
2 term here as we use it to model a 

physical distortion along an axis in the transverse plane. Inserting the values for δD/D and δA/A extracted 

from the regression fitting scheme into our spin-phonon model for Γsim produces changes in the calculated 

amplitudes and resonant fields similar to those from the two-state approximation outlined above. We take 

it as a positive sign of the applicability of the two models that they both indicate similar behaviors due to 

changes in these anisotropy parameters. Unlike the two-state approximation, we are unable to use a 

regression scheme to fit our master equation approach to the data, in part because of the number of 

calculations required to generate a set of simulated relaxation data. As can be seen in figure 3.5, a great 

deal of precision is required to accurately sample the resonance peaks, and reducing the model accuracy 

(say, be increasing the minimum increment) can lead to drastically different estimates from the weighted 

averaging as the resonance positions shift. In light of this, the method we followed was to perform the 

simulation for a limited range of anisotropy parameters, varying D and A linearly and simultaneously or 

introducing a value for the rhombic anisotropy element.  Figure 3.6 shows sections of simulation data 

centered about the k = 2 resonance position generated using these modified values for the anisotropy 

parameters, as well as simulations using the ambient values and for a set of parameters that includes the 

introduction of a rhombic term |B2
2|< 1 mK oriented along one of the hard axes of the molecular 

anisotropy. The parameters were varied from their initial to final values in 20 increments. Contrary to the 

effects produced using the two-state parallel pressure estimates, the introduction of a rhombic term 

“opens” certain resonances while leaving the resonance positions largely unchanged. The most dramatic 

effects appear at positions corresponding to excited states near the top of the barrier, which are always 

closer to zero field than lower excited states (with the same resonance k) due to opposite signs between D 

and A. This implies that an “average” over these resonances would shift towards lower field as the 

rhombic component is increased, a conclusion borne out by the estimates of Bres,sim as shown in figure 3.6. 

In that plot, we have shown the results of three simulations conducted assuming a range of temperature 

equal to that explored in our measurements. As expected in a system with negative fourth and sixth order 
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axial anisotropy constants A and F, the increase in temperature lowers the resonant field as a greater 

portion of the tunneling takes place through excited states. 

Values for the dependence of Bres,sim and ΓA,sim were calculated as the parameters δD and δA or B2
2 

were incrementally increased from zero through their estimated values for three temperatures, 2.1 K, 2.7 

K, and 3.3 K. This generated data all qualitatively similar to that shown in figure 3.6, with some scatter 

due to the discrete nature of the calculation. Lines were fit to these calculations and slopes extracted in 

order to determine the dependence of Bres,sim and ΓA,sim upon D and A or B2
2. Fig. 6 shows the estimated 

changes in the amplitude and center positions for δD = 0.58%/kbar and δA = -5.76%/kbar (in the case of 

T ∥ Z) or B2
2 = 0.63 mK/kbar (for T ⊥ Z). In all cases, the simulations show good agreement with the 

trends observed in the experimental data, matching the directions of the shifts and the relative sizes of the 

changes in magnitude to resonant field. 

Figure 3.8 – Detail of the calculated relaxation rate for ambient conditions (black) and the perpendicular 

pressure change per kbar (green) for two resonances at the k = 2 step. The data is also shown in figure 3.6. 

The peak no the left represents a transition where the change in spin is ΔS = 10, whereas the peak on the 

right is ΔS = 10. 
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3.6 Discussion & Conclusions 

The estimates produced by the fitting to the parallel data represent a reduction in the fourth order 

anisotropy A and a slight increase in the second order anisotropy D. Even though the net change in the 

position of the calculated resonances is toward higher field, representing an increase in the overall 

potential barrier Ueff, our simulations show that by collapsing the difference in field between transitions 

out of the ground and excited states, the net relaxation at a given step k should be expected to grow as the 

Boltzmann population of the higher-lying states (through which tunneling is more likely) is increased. In 

essence, we see that the “tunnel current” is more sensitive to the greater number of transitions out of 

higher-lying states than the inhibited rate caused by a larger potential barrier, at least in the modifications 

to the anisotropy outlined here. We speculate that this alteration in A may be due to changes in the inter-

ion exchange coupling J [20], possibly as a result of shifts in relative positions of ions within the 

molecular core. 

Figure 3.8 details some of the data shown in figure 3.6, illustrating the effect that an introduction of 

a rhombic term has on the simulated relaxation rate for different resonances at the same step k. 

Resonances which represent a change in spin ΔS that is an integer multiple of the dominant transverse 

symmetry (in this case four, as the molecule is tetragonally symmetric) are largely unaffected, as can be 

seen in the right hand peak within the plot, associated with change in spin ΔS = 12. However, transitions 

which differ from such an integer multiple of the symmetry by ΔS = ±2, such as the peak on the left, 

show large increases in associated relaxation rates as the introduction of rhombic symmetry opens up a 

new pathway to tunnel. Transitions occurring nearer the top of the potential barrier (i.e. where ΔS is less) 

appear to show larger increases in the calculated relaxation rate, as they require fewer applications of the 

rhombic operator in order to mix the states involved. 

We have demonstrated that uniaxial pressure applied to a crystalline sample can produce distinct 

behaviors in the magnetization behavior of a SMM, and that equivalent behaviors can be reproduced in 
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simulations of the relaxation rate incorporating molecular anisotropy parameters. Given the expected 

relationship between the strength of the intramolecular exchange coupling J and the fourth order 

correction to the uniaxial anisotropy [20], we find it noteworthy that our simulations produce a larger 

change in the magnitude of A than the second order term D. We also find it interesting that a simple 

rhombic distortion is enough to reproduce the observed behaviors in simulations. Indeed, if these 

interpretations are accurate representations of the conditions experienced by the molecules, it is tempting 

to imagine the possibilities in greater applications of uniaxial pressure. 
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CHAPTER 4: THE SPIN-PHOTON INTERACTION 

The discussion in this chapter will focus on the theoretical and experimental framework 

underpinning two projects designed to investigate the spin-photon interaction in the weak and strong 

coupling regimes.  Briefly, the outlines of these two experiments are: 

1. To perform pulsed-microwave measurements on a SMM system at a temperature and magnetic 

field where several sources of decoherence are expected to be in play and the relevant 

eigenstates are still predominantly determined by the intrinsic molecular anisotropy.  

2. Ensembles of spins within a SMM will be coherently coupled to a low number of photons within 

a high-finesse cavity, with vacuum fluctuations driving the coupling between the spin/photon 

system (the “vacuum Rabi splitting”). 

Our motivation for performing these experiments is to push the boundary of research into spin-

photon coupling and manipulation, an important and very active area of study with important 

consequences for quantum computing and information storage [1-13]. As a spin system, SMMs are 

particularly interesting for their intrinsic anisotropy and assemblage as lattices of isolated sites. The 

following sections will look at the sources of decoherence in SMM system, followed by discussion of the 

Jayne Cumming (JC) model of an interacting spin and photon, then further details of the two experiments 

and the progress made towards their implementation.  

4.1  Decoherence in SMMs and Weak Spin-Photon Coupling 

The challenge of overcoming decoherence in SMMs is a good example of a problem that is easy to 

state but difficult to solve. In order to probe the coherent evolution of a spin within a sample, the rate at 

which outside systems sites interlope and couple to the spin must be slower than the time it takes to 

complete a measurement. For SMMs, the primary sources of decoherence have been identified [14] as 

coupling to nuclei (hyperfine fluctuations), lattice vibrations (phonons), and the oscillations of local 
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magnetic fields (magnons). If the system also includes coherent photons, the interacting cavity must have 

a sufficiently high finesse (quality factor Q) to support long excitation lifetimes. These constraints put 

practical bounds on the performance of external instrumentation – if the spin/photon states only survive 

for X seconds, your pulse-creating switches had better take less than X seconds to open and close. 

In order to maximize the spin coherence time, our experiments are designed to optimize the 

parameters that can be tuned by the experimental apparatus. Decoherence due to dipolar and phonon 

couplings tend to decrease with lower temperature, with the former mechanism predicted to show a 

particularly strong dependence. By working with a dilution refrigerator, we can reach temperatures as low 

as ~ 50 mK, leading to polarization of the spin bath at small separations (~ 20 GHz) between the ground 

and first excited state. Generally, we can tune this transition energy (the “splitting” Δ) by changing the 

applied field and matching microwave stimulus. As a function of the splitting Δ, the dipolar and phonon 

couplings are expected to have opposing trends in spin coherence lifetimes, with dipolar effects 

decreasing and phonon effects increasing the decoherence rate with larger transitions energies. Nuclear 

dephasing is expected to decrease with larger splitting and depend on the sample-specific coupling 

between the nuclear and electronic wavefunctions. 

An objective for our experiment in the weak coupling regime is to find a point (a temperature and 

transition frequency) where the confluence of these three decoherence mechanisms produces durable 

coherent spin states and the eigenstates are largely defined by the local ion anisotropies. We estimate that 

for the SMM samples of interest, for example Mn3, these conditions might be reachable using X band 

frequencies at the lowest temperatures attainable by our dilution unit.  For a system which lacks large ZFS 

transitions close to the ground state (which is true of most SMMs), it is necessary to apply transverse 

fields to split the degenerate zero-field states (which are approximately equal to the eigenstates |±m> of 

the easy-axis spin operator Sz) into heavily mixed symmetric/antisymmetric superpositions which readily 

couple to photons.  
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Figure 4.1 shows a plot of the calculated energy eigenvalues for the Mn3 GSA Hamiltonian 

described in Chapter 2 as a function of transverse field. Note that for large transverse fields, the 

eigenvalues begin to show linear dependence on applied field (roughly delineated by the dashed red line 

in the plot), indicating that the easy Z axis is losing sway as the dominant quantization axis. Figure 4.1 

also shows EPR data acquired at 13.2 GHz from a Mn3 system at 4.3 K, with an applied field oriented in 

the hard plane. Simulation with the MATLAB EasySpin toolbox shows good agreement with the 

observed positions and amplitudes of the resonance peaks. Pulsed microwave measurements (spin-echo) 

have been performed on a similar Mn3 system [15] at a frequency 230 GHz and field ≈ 9 T which leads to 

suppression of dipolar decoherence, resulting in T2 times of ≈ 170 ns at 1.69 K. Under these conditions, 

where the temperature places an effective lower bound on the size of the splitting, the system is 

predominantly quantized along the applied field axis and not the intrinsic molecular easy axis. By 

working at lower temperatures and frequencies, we hope to sample the effect of coherent spin evolution 

of states heavily influenced by internal mechanisms present in SMMs. 

Figure 4.1 – (left) Plot of the Zeeman split energy levels of the Mn3 system discussed in Chapter 2 as a 

function of transverse field in the GSA approximation. The dashed red line is the approximate boundary 

between conditions where the ZFS dominates (the left hand side) and where the large transverse field 

defines a new quantization axis (right hand side). (right) Plot of measured and simulated EPR spectra 

from a Mn3 sample at 4.3 K as a function of a transverse field. The arrows indicate the positions of the 

transitions (= 13.2 GHz) in the associated Zeeman plot above. 
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In addition to lowering temperature, another method for reducing dipolar decoherence is to 

increase the distance between magnetic sites within the sample’s crystalline lattice, either by physically 

separating the constituent molecules (say, in a solution [16-18]) or by chemically altering the makeup of 

sites such that some fraction are non-magnetic, creating a “buffer” of dormant molecules in between 

unaltered magnetic sites [19,20]. This latter approach works particularly well with compounds in which 

the molecular spin is sourced in a single ion (a mononuclear or “single ion” magnet) where substitution of 

that ion means complete removal of its magnetic properties. 

It is also possible to locate transitions which are intrinsically insulated against the dipolar fields that 

would otherwise perturb the coherent state. These so called “sweet spots” or “atomic clock” transitions 

occur where the first and second order derivatives of the state energies with respect to magnetic field 

∂E/∂B and ∂2E/∂B2 are close to zero across a span of field large enough such that a small change in the 

local field does not significantly alter the system, insulating the eigenstates from nearby spin flip-flop 

events. 

4.2 Experimental techniques and apparatus for probing weak spin-photon coupling 

Assuming the requisite environmental parameters (temperature, sample concentration, etc.) can be 

reached, the instrumentation responsible for the delivery of the microwave stimulus and acquisition of the 

output signal must be capable of properly initializing the spin system and reading its output signal. To this 

end, we have prepared a precise and sensitive apparatus for delivering microwave pulses to the sample at 

the necessary intensities while still resolving what may be a minute yield. The structure of our microwave 

pulse sequence follows standard spin echo methods in which an initial pulse (a “-half pulse”) torques the 

spins within the sample into the transverse plane. A second pulse (the “ pulse”) inverts the orientations 

of the precessing spins, ideally leading to a refocusing after an equal interval of time. This method 

samples the spin-spin relaxation time T2, and, under the right conditions, can exhibit Rabi oscillations. 



 

65 

 

 

Figure 4.2 – (top left) Photograph of the pulse circuitry used to perform pulsed microwave measurements. 

(top right) Circuit diagram of the pulse delivery and homodyne detection instrumentation. Table 1 

contains a description of the items indexed by their alphabetical labels. (bottom left) Photograph of a 

sample mounted on a 10 GHz Au resonator, which is in turn mounted on the bottom plate of our Cu 

housing box. The housing box can be mounted into our cryostat/dilution refrigerator with contacts 

between coaxial microwave lines and the feed lines of the device. (bottom right) Spin echo signal from a 

“Bruker Coal” sample at 4.3 K. The solid lines are the signal after subtraction of a background, with 

different colors representing a different time delay between π-half = 120 ns and π = 240 ns pulses. The 

dotted red line is an exponential fit to the echo peaks, extracting a spin-spin relaxation time of 1.3 μs. 
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Table 4.1 - Table of microwave components included in the circuit shown in Fig. 4.2 

Component index Description 

a HP 8350B Microwave Source 

b Agilent 87301D Directional Coupler, Opt 240 

c Pasternack PE8404 Circulator in Isolator Configuration 

d Miteq SPST Pin 4 – 12 GHz Switch 

e KL Microwave 2 – 18 GHz Bandpass Filter 

f Agilent 83020A RF Amplifier 

g Device Under Test (Resonator with Coal sample in Cryostat) 

h Pasternack PE8404 Circulator in Isolator Configuration 

i HP SPST 33144A Switch with HP 33190B Driver 

j CTT APM/180-2741-22 RF Amplifier 

k KL Microwave 2 – 18 GHz Bandpass Filter 

l Stellex M38UC Quadrature Mixer 

 

The design of our pulse instrumentation is based on standard homodyne detection techniques in 

which a source signal is split between two paths, with one leading to the sample (the stimulus) and the 

other directed to the reference port on a quadrature mixer, which outputs a constant voltage when a 

matching frequency signal from the sample is detected. Figure 4.2 details the design of our circuit and 

shows a photograph of a resonant cavity with results from a spin echo measurement on a spin ½ coal 

sample. In the configuration shown, an HP 8350 B was used a microwave source, with its output fed into 

a directional coupler which splits the signal between the stimulus/reference paths. A microwave switch is 

used to form the stimulus pulse, with its output fed into a bandpass filter and then an amplifier. The 

bandpass filter reduces noise from the switch opening/closing process, a necessary step for ensuring that 

the sample evolves under the sole influence of the microwave pulses of the desired frequency. Circulators 
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(4.1) 

(4.2) 

(4.3) 

are used (in isolating configurations) to limit stray noise or otherwise spurious signals from different 

stages of the circuit. It is critical that switching noise from the input port of the second switch (which 

prevents the high-amplitude pulses from damaging the amplifier which gains the signal from the sample) 

does not leak back into the resonant cavity. 

In a spin echo measure, the pulse sequence is dictated by the transition energy of the sample and 

the coupling between the sample and the device. In the two-state rotating wave approximation [21], the 

drive frequency of the pulse must match the Larmor precessional frequency, which is equivalent to the 

Zeeman splitting. For a spin ½ system this frequency is given by the equation 

𝑓𝐿𝑎𝑟𝑚𝑜𝑟 =  𝑔𝐵𝜇0/ℎ  

where g is the electron g-factor, B is the DC magnetic field which creates the splitting, μB is the Bohr 

magneton and h is Planck’s constant. For the resonator device shown in figure 4.2 (Au on Silicon, Q ≈ 50) 

we can estimate the magnetic field at the sample position with the equation [22] 

ℎ𝑓𝑖𝑒𝑙𝑑 =  
𝜇0

𝑤
√

𝑃 𝑄

2 𝑍
 

where μ0 is the magnetic permeability of the vacuum, w = 0.6 mm is the width of the device, P is the 

microwave power into the cavity, Q is the quality factor and Z = 50 ohms is the device impedance. The 

estimated power at the device used to generate the data shown in figure 4.2 was ≈ 10 mW, giving an 

estimate for the field at the sample of h ≈ 0.7 mT. With this information we can estimate the duration of a 

“-half” pulse with the formula 

𝑡𝜋 2⁄ =  
𝜋

𝛾𝑒  ℎ𝑓𝑖𝑒𝑙𝑑
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(4.4) 

where γe is the gyromagnetic ratio of a free electron. Inserting our estimate for the device field into 

equation 4.3 gives a pulse time of 120 ns, a duration which produced the clear echo features shown in 

figure 4.2. 

At this stage, we only require adequate temperature control in order to examine the coherent 

evolution of spins in SMM samples. With functional and optimized microwave pulse instrumentation, we 

expect to attain coherence times significantly longer than the stimulus/measurement cycle, allowing an 

investigation into the mechanisms which regulate the weak-coupling regime in SMMs.  In the following 

section, we begin our discussion of our work towards study of the strong spin-photon coupling regime. 

After a brief outline of the relevant theory, we will present the results of efforts to design and fabricate 

high finesse superconducting cavities as well as refinements of our equipment for measurements 

involving low numbers of photons.  

4.3 Modelling the Spin Photon Interaction: The Jayne-Cummings Hamiltonian 

To model the interaction between a spin and a photon we, at minimum, have to consider three 

things: (1) the energy of the spin, (2) the energy of the photon, and (3) the energy of their interaction. The 

Jayne-Cummings (JC) model includes contributions from each of these: 

𝐻 =
ℏ

2
𝜔𝑠𝜎𝑧 + ℏ𝜔𝑝𝑎†𝑎 + ℏ𝑔(𝑎†𝜎− + 𝑎𝜎+) 

where the first term combines the transition energy of the spin ωs with the Pauli operator σz which 

accounts for the spin’s orientation along an axis z. The second term includes the energy of a photon ωs 

and the operator a†a which counts the number of photon excitations present in the spin/cavity system. The 

final term describes exchange between the spin and photon as characterized by the rate g with terms 

denoting emission a†σ- by the spin into the cavity or absorption aσ+ from the cavity to the spin.  
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(4.6) 

(4.5) 

This interaction term comes from a rotating wave approximation [21] which neglects high 

frequency counter-rotating terms in moving from the Schrodinger to the Interaction picture. For a single 

excitation shared between the spin/cavity, this Hamiltonian has the matrix form 

𝐻 = ℏ [
𝜔𝑝 𝑔
𝑔 𝜔𝑠

]. 

In the absence of any coupling g, the eigenvectors of the system reduce to |1,0> and |0,1>, representing 

the excitation in the cavity and spin, respectively. Assuming a non-zero g, the two eigenvalues E1,2 of the 

system are given by 

𝐸1,2

ℏ
=

𝜔𝑝

2
+

𝜔𝑠

2
± √𝑔2 +

1

4
(𝜔𝑝 − 𝜔𝑠)

2
. 

Figure 4.3 – Energy level diagram in the JC model at the anticrossing between coupled spin and cavity 

eigenstates. The magnitude of the splitting exactly on resonance is given by 2g, which separates 

eigenstates comprised of symmetric/antisymmetric superpositions of the bare states.  
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(4.7) 

If we imagine a spin ½ in a magnetic field B, we can replace the spin transition energy ωs by the 

Zeeman coupling μsB and calculate the system’s dependence on a magnetic field about the resonance 

between the spin transition and photon energies. Figure 4.3 shows the branches formed by the eigenvalues 

E1,2 of the two states. As the transition energy of the spin approachies that of the cavity, the states 

hybridize with an avoided crossing of magnitude 2g separating symmetric/anstisymmetric states exactly 

on resonance (as expected when the energy difference between the spin/photon vanishes in equation 4.6). 

As we will see in the next section, we can treat this interaction in a similar fashion to a system driven with 

applied microwaves as discussed above, with an interpretation that the driving stimulus is due to 

fluctuations of the vacuum itself, i.e. zero-energy virtual particle creation/annihilation.  

4.3.1 Vacuum Rabi oscillations 

In the JC model we outlined above, the only elements present in our system are spin, cavity, and 

an excitation shared between them. When we outlined our experiments investigating weak spin-photon 

coupling above, we described Rabi oscillations as coherent periodic exchange between a spin and a cavity 

as a function of the power of applied microwaves. Here, we apply no such driving field, and an intial state 

of an spin in its excited state and no photons in the cavity is an acceptable assumption. 

 The coupling factor g is an essential metric in understanding the evolution of the JC model, with 

fundamental units of energy (or frequency). It characterizes the rate of coherent vacuum Rabi oscillations, 

a phenomenon understood as an analog of the standard Rabi oscillations where the driving field comes 

from the cavity vacuum fluctuations B0 instead of an applied microwave pulse. In the vacuum Rabi 

framework, the relationship between the spin/cavity exchange rate g and the spin parameters and vacuum 

field is given by 

𝑔 = 𝑓𝑅𝑎𝑏𝑖 =
2 𝑔𝐿𝜇𝐵𝑆𝐵0

ℏ
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(4.8) 

(4.9) 

where gL is the Lande factor. In order to observe coherent vacuum Rabi oscillations, the frequency fRabi 

must be greater than the decoherence rates of the system (i.e., there must be enough time for the system to 

complete at least one oscillation before it decays). If the cavity is characterized by a quality factor Q, the 

photon decay rate is given by  

𝑘𝑝 =  𝜔𝑝/𝑄. 

As discussed in section 4.1, there are a number of significant sources of decoherence for spins (SMMs in 

particular), all contributing towards the total decay rate kS. In order to reach the strong-coupling regime 

where many coherent vacuum Rabi oscillations can be observed, the system must satisfy the bound 

2 𝑔

𝑘𝑆 + 𝑘𝑝
≫ 1. 

The challenge then is to maximize the coupling g while minimizing the decoherence of the spin and 

photon. We have already outlined methods for reducing the decoherence of a spin within a SMM, and in 

the next section we will detail superconducting cavity devices which produce long photon lifetimes and 

concentrated magnetic field at the sample position, as well as additional techniques required for obtaining 

the necessary sensitivity when involving a small number of photons. 

4.4 Techniques for probing strong coupling between spins and a low number of photons 

The vehicle we have chosen is a refinement of the resonant cavity devices we have previously 

employed in studying SMM systems. Co-planar waveguide resonant cavities fabricated from 

superconducting films on substrates with high-dielectric constants have shown that quality factors above 

Q = 106 are possible [23-26] in planar geometries. A device with a quality factor near this range would 

lead to decoherence rates below that expected for a SMM under the optimal conditions attainable in our 

apparatus, with excitation lifetimes approaching than 100 μs. 
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(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

4.4.1 Design Parameters of Nb/Sapphire Superconducting Resonators 

Our plan was to fabricate devices from a 150 nm-thick Nb layer deposited on Al2O3 (Sapphire) of 

thickness h = 600 µm. In our blueprint for the devicce, the width of the center line is w = 16 µm and the 

separation between the center line and the ground plates is s = 7 µm. These parameters are calculated to 

obtain a device impedance of 50 Ohms, chosen to minimize microwave transmission losses due to 

impedance mismatch. Six different resonator lengths are included in our UV mask: l = 4, 8, 12, 20, 25 and 

30 mm. The equation for the resonant frequency of the device is 

𝑓0 =
𝑐

2𝑙√𝜀𝑒𝑓𝑓

 

where c is the speed of light and εeff = 5.70 (see below) is the geometry-dependent effective dielectric 

constant. The corresponding frequencies, in order of the longest resonator length to shortest, are f0 = 15.7, 

7.85, 5.23, 3.14, 2.51 and 2.1 GHz. In order to estimate other properties of the resonator, such as the 

impedance and quality factor, we need to first calculate the inductance L and capacitance C. We can 

derive these two qualities from their per-unit-length factors Ll and Cl with the equations  

𝐿𝑙 =
𝜇0

4

𝐾(𝑘0
′ )

𝐾(𝑘0)
 

𝐶𝑙 = 4𝜀0𝜀𝑒𝑓𝑓

𝐾(𝑘0)

𝐾(𝑘0
′ )

 

where K denotes the complete elliptic integral of the first kind with the arguments given by 

𝑘0 =
𝑤

𝑤 + 2𝑠
 

𝑘0
′ = √1 − 𝑘0

2 
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(4.15) 

(4.16) 

(4.17) 

(4.18) 

with w and s being the width and ground separation gap of the central transmission line. The effective 

permittivity of the device can be calculated by using 

𝜀𝑒𝑓𝑓 =
1 + 𝜀𝑆𝑎𝑝ℎ𝐾∗

𝐾∗
 

where εSaph = 10.4 (the average of the directional dielectric constants ε||c = 11.5 and ε┴c = 9.3 for this 

substrate), and K* is given by 

 𝐾∗ =
𝐾(𝑘0)𝐾(𝑘1

′ )

𝐾(𝑘0
′ )𝐾(𝑘1)

 

with the new arguments 

 𝑘1 =
tanh (

𝜋𝑤
4ℎ

)

tanh (
𝜋(𝑤 + 2𝑠)

4ℎ
)

 

𝑘1
′ = √1 − 𝑘1

2 

For our devices, we obtain εeff = 5.7, Ll = 3.9610-7 H/m and Cl = 1.6010-10 F/m. Note that in 

superconductors the total inductance results from a combination of the geometric (magnetic) inductance 

Ll
m and the kinetic inductance Ll

k associated with the motion of the Cooper pairs, i.e. Ll  = Ll
m  + Ll

k. For 

Nb below the transition temperature, the kinetic contribution is about two orders of magnitude lower than 

the geometrical, and therefore the total inductance calculated in equation (4.11) is a good approximation 

(see detailed calculation below). Schematically, the transmission line can be described as an infinite series 

of inductances and capacitances as shown in the figure below (distributed element representation): 
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(4.19) 

When the losses are small, as in the case of superconducting lines (Rl ≈ 0) with low dielectric loss (Gl ≈ 

0), the line impedance can be calculated according to: 

𝑍 = √
𝑅𝑙 + 𝑗𝜔𝐿𝑙

𝐺𝑙 + 𝑗𝜔𝐶𝑙
≈ √

𝐿𝑙

𝐶𝑙
 

which in our case gives Z = 49.78 , close to the 50  impedance that we calculated with the freeware 

TX-LINE. 

In a resonator, the transmission line is coupled through gaps to the feed lines of the device. In the 

distributed element representation (with assumed symmetrical couplings) the corresponding circuit is 

shown in the figure below, where the resonator is capacitively connected to the each of the feed lines with 

coupling capacitance Ck and load resistance RL. 

Figure 4.5 – Circuit diagram of the distributed element representation for a capacitively coupled 

resonator. 

Figure 4.4 – Section of an infinite series representation of a CPW transmission line circuit. 



 

75 

 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

 

 

The impedance of this circuit is given by:  

𝑍𝑇𝐿 = 𝑍
1 + 𝑗tan(𝛽𝑙)tanh (𝛼𝑙)

tanh(𝛼𝑙) + 𝑗tan(βl)
 

≈
𝑍

𝛼𝑙 + 𝑗𝜋(𝜔 − 𝜔0)/𝜔𝑛
 

where  and  are attenuation and phase of the propagating wave, respectively. These can be calculated 

as the real and imaginary parts of the complex wave propagation coefficient, , respectively, which is 

given by 

𝛾 = √(𝑅𝑙 + 𝑗𝜔𝐿𝑙)(𝐺𝑙 + 𝑗𝜔𝐶𝑙) 

For a given frequency,  describes the phase velocity, υph = ω/β, which for a nearly lossless line reduces 

to υph = 1/(LlCl)1/2.  Correspondingly, the attenuation is described by the real part and approximates as  

𝛼 = Re[𝛾] ≈ 𝑅𝑙 𝑍⁄ + 𝐺𝑙𝑍 

The approximation in equation (4.21) works well for small losses (αl << 1) and when ω is close to ωn = n 

ω0 (nth-harmonic frequency). Close to resonance, this circuit can be approximated by the lumped element 

parallel LRC oscillator shown in the figure below:  
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(4.24) 

(4.25) 

(4.28) 

(4.27) 

(4.26) 

 

which can be described with the following impedance  

𝑍𝐿𝑅𝐶 = (
1

𝑗𝜔𝐿𝑛
+ 𝑗𝜔𝐶 +

1

𝑅
)

−1

 

≈
𝑅

1 + 2𝑗𝑅𝐶(𝜔 − 𝜔𝑛)
 

where 

𝐿𝑛 =
2𝐿𝑙𝑙

𝑛2𝜋2
 

𝐶 =
𝐶𝑙𝑙

2
 

𝑅 =
𝑍

𝛼𝑙
 

The approximation in equation (4.25) is valid if  ω ≈ ωn. Using the values found before for L = 3.9610-

7 H/m and C = 1.6010-10 F/m, we obtain L = 6.4310-10 H/m and C = 6.4010-13 F/m for the ground 

resonance (n = 1) of our 7.85 GHz (l = 8 mm) resonator. 

Figure 4.6 – Circuit diagram of the near-resonant lumped element LRC circuit. 
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(4.29) 

(4.30) 

(4.31) 

To find the value of R that characterizes the equivalent parallel LRC resonance circuit, one needs 

to find , and consequently both Rl
 
and Gl. Note that at temperatures well below Tc, Rl

 
and the resistive 

losses of the circuit will be negligible. In these conditions, the primary source of loss will be irradiative 

due to the finite conductance of the dielectric, Gl. The conductivity of our Sapphire substrates is Gl < ~10-

16 -1m-1 (below 25 C). The resistance per unit length of the superconducting line results from the kinetic 

inertia of the Cooper pairs (kinetic inductance) and can be calculated according to the following 

expression  

𝑅𝑙 =
𝑛𝑛

𝑛𝑠
𝐿𝐾𝜔2𝜏𝑛𝑔(𝑤, 𝑠, 𝑡) 

where nn/ns = exp(-1.76 Tc/T) is the ratio between density of normal and superconducting quasiparticles 

according to BCS theory, LK is the kinetic inductance, n = 10-12 s is the scattering time of normal carriers 

and g(w,s,t) is the geometrical factor associated with the CPW transmission line, which can be calculated 

according to [27] 

𝑔(𝑤, 𝑠, 𝑡) =
1

2𝑘0
2𝐾(𝑘0)2

[− ln (
𝑡

4𝑤
) −

𝑤

𝑤 + 2𝑠
ln (

𝑡

4(𝑤 + 2𝑠)
) +

2(𝑤 + 𝑠)

𝑤 + 2𝑠
ln (

𝑠

𝑤 + 𝑠
)] 

For our resonators, g(a,s,t) = 3.864. The kinetic inductance can be found from the following expression:  

                     

𝐿𝐾 = 𝜇0

𝜆𝐿
2

𝑤𝑡
𝑔(𝑤, 𝑠, 𝑡) 

 

where L is the London penetration depth, which depends on the temperature according to 

L(T) = L(0)(T)  [27]. The temperature dependence is characteristic of each material, but in the BCS 
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(4.32) 

(4.33) 

(4.35) 

(4.34) 

limit, can be approximated by (T) = (1-T/Tc)
2 [26]. At T = 0, the London penetration depth (in nm) can 

be found by 

  

             

𝜆(0) = 1.05 × 107√
𝜌(𝑇𝑐)

𝑇𝑐
 

Where ρ(Tc) is the resistivity at Tc (ρNb ~1.25 × 10-8 Ω m). For Nb, this gives L(0) = 38 nm. 

The quality factor associated to the attenuation of the line (resistive loss) is:       

𝑄𝑖𝑛𝑡 =
𝜋𝑍0

2 𝑅𝑙  𝑙
 

which for T < 1 K will be Qint >> 109. Consequently, the intrinsic quality factor associated to resistive 

/dielectric losses is then going to be limited by dielectric losses and can be calculated according to                 

𝑄𝑖𝑛𝑡 = 𝜔0𝑅𝐶 

which in our case is Qint ~ 8.2 × 1015. Note the resulting resistance (R ~ 2.51017 , from equation (4.28) 

of the equivalent parallel circuit (see figure above) is very large, making the current to oscillate lossless 

between L and C. 

Electromagnetic irradiation may become a major source of energy loss in low-attenuation CPW 

resonators. A simple formula to obtain the limiting quality factor associated to irradiation losses is given 

by [28,29]:                     

𝑄𝑖𝑟𝑟𝑎𝑑 = 3.5 (
𝑙

𝑤 + 2𝑠
)

2

 

For our 8 mm long resonator, the resulting quality factor is Qirrad ~ 2.5 × 105. Irradiation losses can be 

drastically eliminated by placing the CPW resonator inside a cavity (e.g. metallic housing box) with no 

resonance modes in the vicinity of the resonance frequency of the resonator. 
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(4.36) 

 

The load quality factor of the resonator is determined by the intrinsic resonator losses and the 

coupling losses:                        

1

𝑄𝐿
=

1

𝑄𝑖𝑛𝑡
+

1

𝑄𝑒𝑥𝑡
 

The resonator line is capacitively coupled (Ck) to the reflection (input) and transmission (output) lines by 

symmetric coupling gaps (Asymmetric gaps can be used to work in transmission mode while keeping 

high Qs). In our design, two different kinds of coupling gaps have been designed: a) direct gaps, shown in 

the figure below on the left, and b) interdigital gaps (right). 

 

 

 

 

The separations between the lines for the direct gaps are da = 100, 50, 25, 14, 8 and 4 m, while 

interdigital coupling gaps are formed by two 5m-wide fingers, separated by 4 m over a distance 

da = 100 and 50 m. The gaps’ dimensions are blindly chosen to obtain both under- and over-coupled 

resonators, attending to results by other authors in similar designs [23]. 

To understand the effect of the coupling on the quality factor of the resonator, it is better to 

replace the series connection of the coupling capacitance (Ck) and the load resistance (line impedance, 

RL = 50) by a Norton equivalent parallel connection of a resistor R* and a capacitor C*, as shown in the 

following figure:  

 

da db 

Figure 4.7 – Detail of the schematics showing the different styles of coupling gaps employed, with direct 

gaps shown in the left and interdigitated gaps on the right. 
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(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

The equivalent parameters are given by 

𝑅∗ =
1 − 𝜔𝑛

2𝐶𝑘
2𝑅𝐿

2

𝜔𝑛
2𝐶𝑘

2𝑅𝐿
2  

𝐶∗ =
𝐶𝑘

1 + 𝜔𝑛
2𝐶𝑘

2𝑅𝐿
2 

The small coupling capacitance transforms the line impedance into a large impedance R* = RL/k, with k = 

ωCkRL (<<1). The load quality factor for a symmetric resonator (combining R with R*/2) is given by: 

𝑄𝐿 = 𝜔𝑛
∗

𝐶 + 2𝐶∗

1 𝑅⁄ + 2 𝑅∗⁄
 

≈ 𝜔𝑛
∗

𝐶

1 𝑅⁄ + 2 𝑅∗⁄
  

with the resonance frequency shifted due to the parallel combination of C and C*.               

𝜔𝑛
∗ =

1

√𝐿𝑛(𝐶 + 2𝐶∗)
 

For small coupling capacitances (C>>C*) ωn
* ≈ ωn, the internal and external contributions to the load 

quality factor can be separated as in equation (4.36). In this case, the external quality factor becomes:                                   

𝑄𝑒𝑥𝑡 =
𝜔𝑛𝑅∗𝐶

2
 

Figure 4.8 – Circuit diagram of a resonant cavity with Norton representation of a parallel capacitance and 

resistance in place of the load resistance and coupling capacitance shown in figure 4.6.  
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Figure 4.9 shows the behavior of QL, Qint, and Qext as a function of Ck where the internal quality 

factor (Qint ~ 1015) is limited by dielectric losses (left plot), and for a lower internal quality factor (Qint 

~106, right plot) which may be more similar to what we find in real devices (including irradiative losses 

and higher resistive losses). The graphics above illustrate how difficult it can be to design the coupling 

gaps. Even if the gaps were straightforward to design and implement, the gap to critically couple the 

resonator to the input-output lines strongly depends on the internal quality factor of the resonator. 

Measuring QL for devices with the different designed gaps will allow us to determine which coupling gap 

places us in the proper regime, whether we want to be under-coupled, critically-coupled or over-coupled. 

4.4.2 Device Fabrication and Characterization 

As previously outlined, our devices were fabricated from 600 μm-thick sapphire wafers with a 150 

nm layer of sputtered Nb on top. UV photolithography was used to create the device pattern in a polymer 

layer which then acted as an etching mask in a reactive ion etcher (RIE). The device dimensions were 

calculated to maximize the quality factor of the device in a 50 Ohm impedance configuration. Patterns 

Figure 4.9 – Plots of the quality factor QL as a function of the coupling capacitance for a cavity with an 

internal quality factor Qint ~ 1015 (left) and Qint = 106 (right) as generated from equation (4.42). 
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with different coupling gap sizes between the feed lines were included in the mask design in order to find 

an optimal gap separation. Appendix B contains a detailed recipe for SC resonator device fabrication. 

Figure 4.10 – (top) Autocad design of a 7 GHz Nb-on-Sapphire superconducting resonator. The 

meandering path allows for low frequency devices which fit within a smaller footprint. The long 

dimension of the entire pattern is 2 cm. (Bottom left) Photograph of a microstrip style Nb resonator 

with a sample. (Botttom right) The housing box used for mounting samples and measurements in our 

cryostat/dilution refrigerator. By an exclusively copper construction, the device/sample space within 

is free of any superconducting material that might lead to parasitic resonances. 
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 Figure 4.4 shows an AutoCAD design for one of our 7 GHZ CPW resonator designs. The 

symmetric design allows for transmission in either direction and suppresses standing wave resonances 

which may develop within the instrumentation. The same figure also includes photographs of a microstrip 

style resonator device and the Cu housing box used for our measurements. By fabricating the housing box 

from a non-superconducting material, we eliminate possible parasitic resonances which may appear in 

other commonly used materials, such as brass, which may contain concentrated Pb impurities.  

Figure 4.11 – Plots of various parameters of the superconducting resonators. The top-left panel shows the 

temperature dependence of a SC resonance feature from Q ≈ 25,000 CPW resonator. The top-right panel 

shows the resonance of an identical device as a function of an in-plane magnetic field. The bottom-left 

panel shows the power dependence of a Q ≈ 800 SC resonance feature from a microstrip style device. The 

bottom right panel shows the same resonance feature as a function of an in-plane applied magnetic field. 



 

84 

 

(4.43) 

 Figure 4.5 shows the results of characterization performed on CPW (top two panels) and 

microstrip (bottom two panels) devices. At temperatures well below the superconducting transition for a 

thin Nb film (~ 7 K), we observed a sharp resonance peak with a quality factor Q ≈ 25,000, which is 

equivalent to an estimated photon lifetime τ = Q / π f0 ≈ 1 μs, where f0 is the resonance frequency. The 

microstrip resonator was found to have a quality factor Q of approximately 800. 

 If we intend to use these devices with low photon occupation numbers, we will need significant 

amplification in order to bring the signal amplitude within range of a measurement sensitivity. Moreover, 

the estimated power of a signal photon is (in dBm) given by 

𝑃𝑑𝐵𝑚 = 10 ∗  Log[1000 ∗ 2𝜋ℎ𝑓0 𝑄⁄ ] 

which is equal to nearly -140 dBm for our highest quality factor device. Such a small signal requires 

amplification at the low temperature stage in order to prevent it being drown out by thermal noise in the 

coaxial lines that run from low to ambient temperatures. A cryogenic amplifier placed immediately at the 

output from the cavity would serve such a function, and is our proposed solution to this challenge. 

Ideally, this would provide sufficient gain that room temperature amplifiers could bring the signal within 

range of our measurement apparatus. Cryogenic circulators will also be employed on either side of the 

cavity in order to provide further isolation to the cavity. 

 In order to further increase the coupling of the photon to the spins within the sample, which for a 

single spin and photon driven by the vacuum fluctuations is on the order off 100 Hz, we look to exploit 

collective coupling effects by which an excitation with wavelength longer than the dimensions of the spin 

ensemble can coupling to all the spins simultaneously and increase the coupling factor by the square root 

of the number of spins N [30,31]. For a typical SMM sample, N ~ 1012
 – 1016, meaning enhanced 

couplings into the GHz range. Such a coupling strength is easily observed as a frequency splitting and is 

much faster than the coherence times of our proposed systems, meaning vacuum Rabi oscillations should 

be observable. 
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 In summary, both of these projects present significant challenges. Successful measurement in the 

weak coupling regime depends on the coherence time and coupling to a SMM sample at temperatures and 

signal amplitudes near the limit of our current instrumentation. Measurement of the effects of the strong 

coupling regime will require implementation of delicate equipment to drastically increase the sensitivity 

of our measurement apparatus. But a positive result in either case would represent study of the kind of 

interaction that is essential to progress for a broad range of new physics. 
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CHAPTER 5: CONCLUSIONS 

 

This thesis has attempted to outline the theory, implementation, and interpretation behind the study 

of complex yet fundamental spins systems. This chapter serves as a recap of our work, aiming to tie 

together the inferences that can be drawn within a common theme spin interaction. Specifically, we are 

interested in what may bear on spin anisotropy and coherent time evolution, aspects which lie at the heart 

of further advances across a range of disciplines. Tracing the history of research into single molecule 

magnets winds through initial rapid advances of the underlying theories (which still serve a large part of 

the work being done on these systems today, as illustrated by the success of spin Hamiltonian modelling) 

and continues through progress detailing the specifics of the quantum tunneling process and of the 

increasing capability of chemical synthesis. Both the Mn3 and Mn12-MeOH compounds we studied 

represent refined systems, designed with the challenges of studying SMMs in mind, and the results we 

have extracted rest firmly on many layered iterations of prior research stretching back to the first 

hysteresis showing QTM steps. 

Our analysis of the resonant tunnel splitting shows the strong sensitivity of tunneling phenomenon to 

even small changes of the anisotropy parameters in the corresponding spin Hamiltonian. The inferred 

correspondence between the chemical arrangement and the structure of the anisotropy speaks to the 

broader campaign within the field that continues to enumerate a range of different SMM systems, with 

recent work by Shiddiq et al. [1] showing the potential to produce systems insulated from decoherence. 

The results of research into such “atomic clock” or “sweet spot” transitions imply that an engineered zero-

field splitting could extend coherent behavior to higher temperatures and longer timescales. Conceivably, 

an SMM system could exhibit dependence on an applied transverse field which could produce an 

insensitivity to an applied field. Indeed, as shown in Fig. 1.8, the Mn3 system we studied is expected to 

produce an extremum in the ground state splitting of the k = 0 resonance for an applied transverse field of 
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≈ 2.7 T, although the small transition energy ≈ 1 mK and sensitivity to an infinitesimal rotation of the 

transverse field (i.e. stemming from a local dipolar fluctuation) likely precludes the usefulness of this 

particular configuration. 

Work by Foss-Feig and Friedman [2] also directly points to the impact that small distortions to 

the molecular anisotropy can have in tuning the conditions for tunnel splitting minima due to Berry Phase 

interference effects. Although the QTM features we examined in Mn12-MeOH show a small dependence 

on pressure (≲ 10% change in the cumulative tunneling transition rate for 1 kBar of pressure), our 

simulations imply that significant differences can be expected between the responses of individual 

transitions (within the same resonance k) due to the change in a given parameter. Presumably, the effect 

on the tunneling rate will be strongest when the distortion represents either a) the introduction of a term 

which enables an otherwise suppressed transition or b) a change to the coefficient of an operator that is 

dominant mechanism for mixing two states with only one application of that operator (i.e. a change to Bx
x 

when ΔS = x, in a system where Ox
x is the sole transverse anisotropy operator). Also, applying such a 

distortion at a transition in conditions nearby a BPI minimum may cast the effects on the tunneling rates 

in more stark relief. 

The pulsed stimulus experiments we have proposed and developed look probe the inner workings 

of intrinsic anisotropy by exploring transitions influenced both by internal bias and an applied field. The 

Zeeman splittings generated by a transverse field applied to our Mn3 system (see Fig. 4.1) illustrate a 

system transitions from a quantization axis dominated by the native molecular energy landscape (the ZFS) 

to one defined by an external field. Our measurements have confirmed strong EPR absorption from the 

system near X band frequencies, with the peak positions spanning the range of field in which both the 

intrinsic anisotropy and applied field are significant actors. Classically, the spin echo phenomenon is 

interpreted as the re-convergence of spins precessing about an applied field axis, which begs the question 

as to what time dependence a spin will display when acting under two different but significant potentials. 
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By exploring coherent phenomenon in a system in which we can tune the balance between these 

potentials as a function of frequency, we aim to thoroughly determine the extent to which conditions in 

the “neighborhood” about the resonance condition affect coherent evolution of these systems. Our goal to 

couple low numbers of photons to spins and coherent ensembles would add further dimension to this 

understanding, with the inclusion of a cavity into the coherent system. 

The research we have outlined above shows the continued promise that spins systems (SMMs in 

particular) hold in the development of accessible two-level systems. As realizations of intrinsic anisotropy 

with macroscopic quantum phenomenon, these compounds continue to provide a window into the 

progress of many intersecting sciences, while the rapidly approaching horizon of atomic scale devices 

drives the continual need for further advancement into the potential building blocks of the future of 

technology. Regardless of the obvious connection to the future development of computers, I believe that 

the fundamental behaviors responsible for the data described here coincides with basic human fascination, 

providing its own reason for study, and exists within a chain of learning that begins with essential 

intuition and extends throughout time and the universe. 
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APPENDIX A: PROCEDURES USED IN EMPLOYING THE 

“REMAINDER METHOD” 
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Due to the peculiarities of every resonance, different implementations of the “remainder method” 

(detailed in Chapter 2) for indirect measurement of resonance probabilities in the presence of a large 

transverse field had to be used for different resonances. Below we provide a list with the details. 

1. Measurement of Pk=0 vs.  at resonance k = 0 

Here the longitudinal field was swept to negative saturation, then to a small negative field just 

before the resonance, at which point a transverse field of magnitude 1.05 T was applied and the 

longitudinal field swept through the resonance at a rate of 0.04 T/m. The sweep was then reversed 

such that the resonance was traversed again, which was performed in order to amplify the relatively 

small measured probability of the resonance. Once this second pass was completed, the transverse 

field was turned off, and the field swept back to negative saturation while the remainder was 

recorded. This was repeated for different angular orientations of the transverse field vector, forming 

a complete rotation in 5 degree increments. 

2. Measurement of the compensating field at resonance k = 0 

To measure the shift in the longitudinal field position of the k=0 resonance (i.e. the compensating 

field), a variation of the method described above had to be employed. As mentioned in the main 

text, these measurements were performed at 1.57 K in order to obtain QTM relaxation through the 

third excited tunnel splitting in this resonance. For initializing the measurement, a large negative 

longitudinal field was applied in the absence of a transverse field and then swept back to a value 

close to but far enough from the resonance to avoid relaxation, Then both the transverse and the 

longitudinal fields were swept at rates of 0.05 and 0.5 T/min, respectively, to the following values: 

1.2 T (transverse field) and ~1000 G before the center of the resonance (longitudinal field). The 

resonance width is ~2000 G for HT = 1.2 T, and so QTM relaxation occurs during the process. 

Immediately after reaching those conditions, both fields were swept back (at the same rates as 

before) to the original point, after which the longitudinal field was swept in the absence of a 
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transverse field to measure the remainder. The process was repeated at different angles of 

application of the transverse field within the xy-plane from  = 0 to  = 360o. Note that during the 

time that both fields are swept into the resonance, the tunneling conditions vary since the transverse 

field (a strong modulator of the tunnel splitting) varies continuously from zero to 1.2 T. However, 

given the fast relaxation at this temperature, a constant transverse field of 1.2 T could not be 

employed for this measurement. As we show below, the exponential dependence of the tunnel 

splitting on the transverse field implies the average tunneling rate is dominated by the largest values 

of the transverse field. 

From these measurements we obtained a three-fold angular modulation of the tunnel 

probability due to the shift of the resonance caused by the alternating compensating field, as 

explained in the main text. In other words, the probability is higher when the final longitudinal field 

is closer to the resonance, and vice versa. Measurements following the same protocol but sweeping 

the longitudinal field to different points relative to the resonance allowed the conversion of the 

probability into a longitudinal field value (i.e. the compensating field data depicted in Fig. 2c). 

For the fitting of the observed modulation of the compensating field (continuous line in 

Fig. 2c), values were extracted for different transverse fields (0.7-1.2 T) from diagonalization of 

Eqn. (2) with the parameters given in the main text. Note that the value of the compensating field 

grows with the transverse field. The different values were correspondingly weighted according to 

the probability calculated from the Landau-Zener formula in order to take into account the varying 

transverse field during the measuring process. As mentioned above, the MQT in this process is 

dominated by the largest transverse field values, with negligible effects for values below 0.7 T. The 

results are in excellent agreement with the observations. 

3. Measurement of Pk=0 vs.  at resonance k = 1 
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Here the longitudinal field was swept to (negative for k = +1, positive for k = -1) saturation, then 

to a value a small distance before the resonance, at which point a transverse field of magnitude 0.65 

T was applied and the longitudinal field swept through the resonance at a rate of 0.1 T/m. Once this 

was completed, the transverse field was turned off and the field swept to (positive for k = +1, 

negative for k = -1) saturation while the remainder was recorded. This was repeated for different 

angular orientations of the transverse field vector, forming a complete rotation in 5 degree 

increments. 

4. Measurement of Pk=0 vs.  at resonance k = 2 

The same exact procedure that for k=1, using a transverse field of 0.5 T and sweeping the 

longitudinal field through the resonance at 0.1 T/min. 

5. Measurement of Pk=0 vs.  at resonance k = 3 

Here the longitudinal field was swept to (negative for k = +3, positive for k = -3) saturation, then 

to a value a small distance before the k = ±2 resonance, at which point a transverse field of 

magnitude 0.4 T was applied at an angle of 35 degrees and the longitudinal field swept through that 

resonance at a rate of 0.075 T/m. This relaxed roughly 50% of the spins, preventing avalanching of 

the k = 3 resonance that would otherwise occur.  Once this was completed, the transverse field was 

turned off and the field swept to a value a small distance before the k = 3 resonance, at which point 

a transverse field of magnitude 0.35 T was applied and the longitudinal field swept through the 

resonance at a rate of 0.05 T/m. Once this was completed, the transverse field was turned off and 

the field swept to (positive for k = +3, negative for k = -3)  saturation while the remainder was 

recorded. This was repeated for different angular orientations of the transverse field vector, forming 

a complete rotation in 5 degree increments. 

6. Measurement of Pk=0 vs. HT at resonance k = 0 
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This measurement was identical to that described in Step 1, except that the angle was held fixed at 

32.6 degrees (direction of one of the minima in Fig. 2a) and the magnitude of the transverse vector 

applied was increased in 0.05 T increments from -1.19 to 1.19 T. 

7. Measurement of Pk=0 vs. HT at resonance k = 1 

This measurement was identical to that described in Step 3, except that the angle was held fixed at 

107 degrees (direction of one of the minima in Fig. 3a) and the magnitude of the transverse vector 

applied was increased in 0.05 T increments from -1.15 to 1.15 T. 

8. Measurement of Pk=0 vs. HT at resonance k = 2 

This measurement was identical to that described in Step 4, except that the angle was held fixed at 

107 degrees and the magnitude of the transverse vector applied was increased in 0.05 T increments 

from -1.15 to 1.15 T. 

9. Measurement of Pk=0 vs. HT at resonance k = 3 

This measurement was identical to that described in Step 5, except that the angle was held fixed at 

107 degrees and the magnitude of the transverse vector applied was increased in 0.05 T increments 

from -1 to 1 T. 
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APPENDIX B: RECIPE FOR FABRICATION OF NIOBIUM/SAPPHIRE 

RESONATORS 
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Resonators were made according to the following recipe 

To prepare the wafer for UV mask aligning: 

1. Clean the Nb-coated wafer with IPA and DI water, being careful to blow/wipe dry such that there 

are no solvent/water residues 

2. Position the wafer on the spin coater and use a Teflon dropper to place a small amount of Shipley 

S1813 polymer onto the wafer such that the liquid forms a regular, distributed meniscus free of 

bubbles. 

3. Close the spin-coater cover and use the spin coating program detailed below. 

4. Once the program is complete, carefully remove the wafer and place it onto a 90° C heating stage 

for 3 minutes. 

5. Remove the wafer from the heating stage and allow to cool for a few seconds. 

 

At this point the wafer is ready to be set in the mask aligner for pattern exposure. The mask aligner model 

is a OAI Series 200. The steps for exposure are as follows: 

 

1. Place the wafer on the vacuum stage and turn on the vacuum so that the wafer is held fixed. 

2. Set and align the mask so that the desired pattern(s) overlay the wafer area. 

3. Clamp the mask holder in place and raise the wafer stage until it contacts the bottom of the mask. 

4. For an intensity of 8 mW/cm^2, 8 seconds of exposure time is sufficient to expose the polymer. 

5. Once the exposure process is complete, carefully remove the wafer from the mask aligner 

At this point the wafer is ready for liftoff development 

1. Place the exposed wafer into CD-26 Developer for 45 seconds. 

2. Once the time has elapsed, carefully move the wafer to a dish of DI water and gently rinse the 

wafer 
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3. Remove the wafer from the DI water and dry, being careful not to leave any residue. 

The wafer is now ready for etching. The model of the etcher was a SAMCO RIE-1C. The steps for 

etching the pattern are as follows: 

1. The flow rates for the gases should be 5.0 SCCM of CF4 and 0.8-1.0 SCCM of O2. The power of 

the etching plasma is 50 W. The pressure in the RIE chamber should be 53.0 mTorr. 

2. Etch the wafer for 4 minutes. 

3. Once the etching is complete, examine the pattern. It is likely that some polymer still remains, so 

the sample may need to be placed in CD-26 for enough time to remove it. 
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