Keywords

Remote sensing, roughness correction, salinity, emissivity, l band, ka band, aquarius

Abstract

Aquarius/SAC-D is a joint NASA/CONAE (Argentine Space Agency) Earth Sciences satellite mission to measure global sea surface salinity (SSS), using an L-band radiometer that measures ocean brightness temperature (Tb). The application of L-band radiometry to retrieve SSS is a difficult task, and therefore, precise Tb corrections are necessary to obtain accurate measurements. One of the major error sources is the effect of ocean roughness that “warms” the ocean Tb. The Aquarius (AQ) instrument (L-band radiometer/scatterometer) baseline approach uses the radar scatterometer to provide this ocean roughness correction, through the correlation of radar backscatter with the excess ocean emissivity. In contrast, this dissertation develops an ocean roughness correction for AQ measurements using the MicroWave Radiometer (MWR) instrument Tb measurements at Ka-band to remove the errors that are caused by ocean wind speed and direction. The new ocean emissivity radiative transfer model was tuned using one year (2012) of on-orbit combined data from the MWR and the AQ instruments that are collocated in space and time. The roughness correction in this paper is a theoretical Radiative Transfer Model (RTM) driven by numerical weather forecast model surface winds, combined with ancillary satellite data from WindSat and SSMIS, and environmental parameters from NCEP. This RTM provides an alternative approach for estimating the scatterometer-derived roughness correction, which is independent. The theoretical basis of the algorithm is described and results are compared with the AQ baseline scatterometer method. Also results are presented for a comparison of AQ SSS retrievals using both roughness corrections.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2015

Semester

Spring

Advisor

Jones, W Linwood

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0005625

URL

http://purl.fcla.edu/fcla/etd/CFE0005625

Language

English

Release Date

May 2020

Length of Campus-only Access

5 years

Access Status

Doctoral Dissertation (Campus-only Access)

Share

COinS