Keywords

Electromagnetic waves, Optics

Abstract

The effects related to diffraction and interference are ubiquitous in phenomena involving electromagnetic wave propagation, and are accurately predicted and described within the framework of classical electrodynamics. In the vast majority of the cases the qualitative features of the evolution of a propagating wave can be inferred even without detailed calculations. A field distribution will spread upon propagation, will accumulate phase along the direction of power flow, will exert mechanical forces upon scattering objects in the direction of propagation etc. When such predictions fail, counterintuitive effects and new functionalities can be engineered. In this work a series of exceptional cases under different degrees of field confinement have been isolated. In such instances the electromagnetic behavior significantly deviates from conventional cases. In particular, considering structures with monodimensional field confinement, the only possible class of diffraction free surface waves has been introduced. Again within the context of surface waves the mechanism of Enhanced Evanescent Tunneling (EET) has been proposed, which allows a net power flow to be sustained by evanescent fields only with applications to subdiffraction imaging. Increasing the degree of field confinement, a unique class of fully dielectric waveguide arrays able to support negative effective index modes has been theoretically demonstrated. Finally the opto-mechanical consequences of such effective negative index environments have been studied, highlighting counterintuitive properties. Instrumental to these findings was the introduction of a general theory of optical forces in terms of vector spherical harmonics.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2011

Semester

Summer

Advisor

Christodoulides, Demetrios N.

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Format

application/pdf

Identifier

CFE0003930

URL

http://purl.fcla.edu/fcla/etd/CFE0003930

Language

English

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Optics and Photonics, Optics and Photonics -- Dissertations, Academic

Share

COinS