Keywords

Microwaves, Radiometers, Remote sensing

Abstract

The Microwave Radiometer (MWR) on the Aquarius/SAC-D mission measures microwave radiation from earth and intervening atmosphere in terms of brightness temperature (Tb). It takes measurements in a push-broom fashion at K (23.8GHz) and Ka (36.5 GHz) band frequencies using two separate antenna systems, each producing eight antenna beams. Pre-launch knowledge of the alignment of these beams with respect to the space-craft is used to geolocate the antenna footprints on ground. As a part of MWR’s on-orbit engineering check-out, the verification of MWR’s pointing accuracy is discussed here. The technique used to assess MWR’s pointing involved comparing the radiometer image of land with high-resolution maps. When the beam’s instantaneous field of view (IFOV) passes over a land water boundary, the brightness temperature changes from a radiometrically hot land scene to a radiometrically cold ocean scene. This “step-function” change in brightness temperature provides a very sensitive way to characterize the mispointing error of the MWR sensor antenna footprints. This thesis describes the algorithm used for the MWR geolocation calibration. MWR sensor observed boundaries are determined by the absolute maximum Tb slope location. A system of linear equations is produced for each sensor observed land/water crossing to determine the true intersection of the MWR track with the coastline. The observed and expected boundary locations are compared by means of an error distance. Results, presented for all eight beams of the three MWR channels, show that the mispointing error (standard deviations) are overall less than 15 km from the true coastline.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2012

Semester

Spring

Advisor

Jones, W

Degree

Master of Science in Electrical Engineering (M.S.E.E.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computing

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0004245

URL

http://purl.fcla.edu/fcla/etd/CFE0004245

Language

English

Release Date

May 2012

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS