Power electronics, power semiconductor, power mosfet, psip, psoc


Power management solutions such as voltage regulator (VR) mandate DC-DC converters with high power density, high switching frequency and high efficiency to meet the needs of future computers and telecom equipment. The trend towards DC-DC converters with higher switching frequency presents significant challenges to power MOSFET technology. Optimization of the MOSFETs plays an important role in improving low-voltage DC-DC converter performance. This dissertation focuses on developing and optimizing high performance low voltage power MOSFETs for high frequency applications. With an inherently large gate charge, the trench MOSFET suffers significant switching power losses and cannot continue to provide sufficient performance in high frequency applications. Moreover, the influence of parasitic impedance introduced by device packaging and PCB assembly in board level power supply designs becomes more pronounced as the output voltage continues to decrease and the nominal current continues to increase. This eventually raises the need for highly integrated solutions such as power supply in package (PSiP) or on chip (PSoC). However, it is often more desirable in some PSiP architectures to reverse the source/drain electrodes from electrical and/or thermal point of view. In this dissertation, a stacked-die Power Block PSiP architecture is first introduced to enable DC-DC buck converters with a current rating up to 40 A and a switching frequency in the MHz range. New high- and low-side NexFETs are specially designed and optimized for the new PSiP architecture to maximize its efficiency and power density. In particular, a new NexFET structure with iv its source electrode on the bottom side of the die (source-down) is designed to enable the innovative stacked-die PSiP technology with significantly reduced parasitic inductance and package footprint. It is also observed that in synchronous buck converter very fast switching of power MOSFETs sometimes leads to high voltage oscillations at the phase node of the buck converter, which may introduce additional power loss and cause EMI related problems and undesirable electrical stress to the power MOSFET. At the same time, the synchronous MOSFET plays an important role in determining the performance of the synchronous buck converter. The reverse recovery of its body diode and the Cdv/dt induced false trigger-on are two major mechanisms that impact the performance of the SyncFET. This dissertation introduces a new approach to effectively overcome the aforementioned challenges associated with the state-of-art technology. The threshold voltage of the low-side NexFET is intentionally reduced to minimize the conduction and body diode related power losses. Meanwhile, a monolithically integrated gate voltage pull-down circuitry is proposed to overcome the possible Cdv/dt induced turn-on issue inadvertently induced by the low VTH SynFET. Through extensive modeling and simulation, all these innovative concepts are integrated together in a power module and fabricated with a 0.35µm process. With all these novel device technology improvements, the new power module delivers a significant improvement in efficiency and offers an excellent solution for future high frequency, high current density DC-DC converters. Megahertz operation of a Power v Block incorporating these new device techniques is demonstrated with an excellent efficiency observed.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at

Graduation Date





Shen, Zheng


Doctor of Philosophy (Ph.D.)


College of Engineering and Computer Science


Electrical Engineering and Computer Science

Degree Program

Electrical Engineering








Release Date

June 2013

Length of Campus-only Access


Access Status

Doctoral Dissertation (Open Access)


Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic