Keywords

passive remote sensing, microwaves, brightness temperature, radiometer

Abstract

Remote sensing is the process of gathering and analyzing information about the earth's ocean, land and atmosphere using electromagnetic "wireless" techniques. Mathematical models, known as Radiative Transfer Models (RTM), are developed to calculate the observed radiance (brightness temperature) seen by the remote sensor. The RTM calculated brightness temperature is a function of fourteen environmental parameters, including atmospheric profiles of temperature, pressure and moisture, sea surface temperature, and cloud liquid water. Input parameters to the RTM model include data from NOAA Centers for Environmental Prediction (NCEP), Reynolds weekly Sea Surface Temperature and National Ocean Data Center (NODC) WOA98 Ocean Salinity and special sensor microwave/imager (SSM/I) cloud liquid water. The calculated brightness temperatures are compared to collocated measurements from the WindSat satellite. The objective of this thesis is to fine tune the RadTb model, using simultaneous environmental parameters and measured brightness temperature from the well-calibrated WindSat radiometer. The model will be evaluated at four microwave frequencies (6.8 GHz, 10.7 GHz, 18.7 GHz, and 37.0 GHz) looking off- nadir for global radiance measurement.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2004

Semester

Fall

Advisor

Jones, W. Linwood

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Electrical and Computer Engineering

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0000318

URL

http://purl.fcla.edu/fcla/etd/CFE0000318

Language

English

Release Date

January 2005

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS