Keywords

Cholera, toxin, molecule, threshold, surface plasmon resonance

Abstract

Cholera toxin (CT), secreted from Vibrio cholerae, causes a massive fluid and electrolyte efflux in the small intestine that results in life-threatening diarrhea and dehydration which impacts 3-5 million people per year. CT is secreted into the intestinal lumen but acts within the cytosol of intestinal epithelial cells. CT is an AB5 toxin that has a catalytic A1 subunit and a cell binding B subunit. CT moves from the cell surface to the endoplasmic reticulum (ER) by retrograde transport. Much of the toxin is transported to the lysosomes for degradation, but a secondary pool of toxin is diverted to the Golgi apparatus and then to the ER. Here the A1 subunit detaches from the rest of the toxin and enters the cytosol. The disordered conformation of free CTA1 facilitates toxin export to the cytosol by activating a quality control mechanism known as ER-associated degradation. The return to a folded structure in the cytosol allows CTA1 to attain an active conformation for modification of its Gsα target through ADP-ribosylation. This modification locks the protein in an active state which stimulates adenylate cyclase and leads to elevated levels of cAMP. A chloride channel located in the apical enterocyte membrane opens in response to signaling events induced by these elevated cAMP levels. The osmotic movement of water into the intestinal lumen that results from the chloride efflux produces the characteristic profuse watery diarrhea that is seen in intoxicated individuals. The current model of intoxication proposes only one molecule of cytosolic toxin is required to affect host cells, making therapeutic treatment nearly impossible. However, based on emerging evidence, we hypothesize a threshold quantity of toxin must be present within the cytosol of the target cell in order to elicit a cytopathic effect. Using the method of surface plasmon resonance along with toxicity assays, I have, for the first time, directly measured the efficiency of toxin delivery to the cytosol and correlated the levels of cytosolic toxin to toxin iv activity. I have shown CTA1 delivery from the cell surface to the cytosol is an inefficient process with only 2.3 % of the surface bound CTA1 appearing in the cytosol after 2 hours of intoxication. I have also determined and a cytosolic quantity of more than approximately .05ng of cytosolic CTA1 must be reached in order to elicit a cytopathic effect. Furthermore, CTA1 must be continually delivered from the cell surface to the cytosol in order to overcome the constant proteasome-mediated clearance of cytosolic toxin. When toxin delivery to the cytosol was blocked, this allowed the host cell to de-activate Gs, lower cAMP levels, and recover from intoxication. Our work thus indicates it is possible to treat cholera even after the onset of disease. These findings challenge the idea of irreversible cellular toxicity and open the possibility of postintoxication treatment options.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2013

Semester

Summer

Advisor

Teter, Kenneth

Degree

Master of Science (M.S.)

College

College of Medicine

Department

Molecular Biology and Microbiology

Degree Program

Biomedical Sciences; Biomedical Sciences

Format

application/pdf

Identifier

CFE0004810

URL

http://purl.fcla.edu/fcla/etd/CFE0004810

Language

English

Release Date

August 2014

Length of Campus-only Access

1 year

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Medicine, Medicine -- Dissertations, Academic

Share

COinS