Keywords

Impingement, nusselt number, side wall heat transfer, near wall cooling, impingement channel, single row impingement channel, kapat, claretti, ricklick

Abstract

The present work studies the relationship between target and sidewall surfaces of a multirow, narrow impingement channel at various jet heights with one impingement hole per row. Temperature sensitive paint and constant flux heaters are used to gather heat transfer data on the target and side walls. Jet-to-target distance is set to 1, 2, 3, 5, 7 and 9 jet diameters. The channel width is 4 jet diameters and the jet stream wise spacing is 5 jet diameters. All cases were run at Reynolds numbers ranging from 5,000 to 30,000. Pressure data is also gathered and used to calculate the channel mass flux profiles, used to better understand the flow characteristics of the impingement channel. While target plate heat transfer profiles have been thoroughly studied in the literature, side wall data has only recently begun to be studied. The present work shows the significant impact the side walls provide to the overall heat transfer capabilities of the impingement channel. It was shown that the side walls provide a significant amount of heat transfer to the channel. A channel height of three diameters was found to be the optimum height in order to achieve the largest heat transfer rates out of all channels.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2013

Semester

Fall

Advisor

Kapat, Jayanta S.

Degree

Master of Science in Mechanical Engineering (M.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering; Thermo-Fluids

Format

application/pdf

Identifier

CFE0004985

URL

http://purl.fcla.edu/fcla/etd/CFE0004985

Language

English

Release Date

12-15-2016

Length of Campus-only Access

3 years

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS