Keywords

multiagent systems, embodied agents, coalition formation, task allocation

Abstract

Embodied agents are agents acting in the physical world, such as persons, robots, unmanned air or ground vehicles and so on. These types of agents are subject to spatio-temporal constraints, which do not exist for agents acting in a virtual environment. The movement of embodied agents is limited by obstacles and maximum velocity, while their communication is limited by the transmission range of their wireless devices. This dissertation presents contributions to the techniques of coalition formation and teamwork coordination for embodied agents. We considered embodied agents in three different settings, each of them representative of a class of practical applications. First, we study coalition formation in the one dimensional world of vehicles driving on a highway. We assume that vehicles can communicate over short distances and carry agents which can advise the driver on convoy formation decisions. We introduce techniques which allow vehicles to influence the speed of the convoys, and show that this yields convoys which have a higher utility for the participating vehicles. Second, we address the problem of coalition formation in the two dimensional world. The application we consider is a disaster response scenario. The agents are forming coalitions through a multi-issue negotiation with spatio-temporal components where the coalitions maintain a set of commitments towards participating agents. Finally, we discuss a scenario where embodied agents form coalitions to optimally address dynamic, non-deterministic, spatio-temporal tasks. The application we consider is firefighters acting in a disaster struck city.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2007

Semester

Fall

Advisor

Bölöni, Ladislau

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Computer Engineering

Format

application/pdf

Identifier

CFE0001843

URL

http://purl.fcla.edu/fcla/etd/CFE0001843

Language

English

Release Date

December 2007

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS