Keywords

Satellite, Attitude, Imagery, Model, Algorithm;

Abstract

This thesis discusses the development and performance of an algorithm created to calculate satellite attitude based on the comparison of satellite "physical feature" models to information derived from edge detection performed on imagery of the satellite. The quality of this imagery could range from the very clear, close-up imagery that may come from an unmanned satellite servicing mission to the faint, unclear imagery that may come from a ground-based telescope investigating a satellite anomaly. Satellite "physical feature" models describe where an edge is likely to appear in an image. These are usually defined by physical edges on the structure of the satellite or areas where there are distinct changes in material property. The theory behind this concept is discussed as well as two different approaches to implement it. Various simple examples are used to demonstrate the feasibility of the concept. These examples are well-controlled image simulations of simple physical models with known attitude. The algorithm attempts to perform the edge detection and edge registration of the simulated image and calculate the most likely attitude. Though complete autonomy was not achieved during this effort, the concept and approach show applicability.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2007

Semester

Fall

Advisor

Johnson, Roger

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical, Materials and Aerospace Engineering

Degree Program

Aerospace Engineering

Format

application/pdf

Identifier

CFE0001942

URL

http://purl.fcla.edu/fcla/etd/CFE0001942

Language

English

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS