Keywords

pool boiling, TLCs, subatmospheric pressure, bubble size, nucleate boiling

Abstract

A pool boiling experimental facility has been designed and built to investigate nucleate pool boiling in water under sub atmospheric pressure. Liquid crystal thermography, a non intrusive technique, is used for the determination of surface temperature distributions. This technique uses encapsulated liquid crystals that reflect definite colors at specific temperatures and viewing angle. Design of the test section is important in this experimental study. Since a new TLC is required for every new set of test conditions, a permanently sealed test section is not an option. The real challenge is to design a leak proof test section which is flexible so that it can be taken apart easily. A plexiglass test section, including a top chamber with an internal volume of 60.9 x 60.9 x 66.4 mm and a bottom plate of 5.5mm thickness is designed and assembled together using quick grips. In the test section, water is boiled using 85.0mm x 16.0mm and 0.050mm thick Fecralloy® as the heating element. The TLC sheet is attached to the bottom plate and the heating element is placed on top of TLC so that the temperature distribution of the heating element during boiling can be interpreted from TLC. A camera system fast enough to capture the thermal response of the TLC and an arrangement to capture both hue of the TLC and growth of the bubble on the same frame has been designed and successfully used. This system allowed recording of position, size and shape of the bubble with synchronized surface temperature. In order to get hue vs. temperature relation, in-situ calibration of the TLC is performed for each test condition with the present experimental setup and lighting conditions. It is found that the calibration curve of the TLC at atmospheric pressure is different from the calibration curve of the same TLC at subatmospheric pressures. The maximum temperature difference between the two curves for the same hue is found to be only 0.6°C. The experiment is run at four different test conditions of subatmospheric pressure and low heat flux. It is run at system pressures of 6.2kPa (0.89Psi) and 8.0kPa (1.16Psi) with a constant heat flux of 1.88kW/m2 and 2.70kW/m2, and a constant heat flux of 2.70kW/m2, 3.662kW/m2 and 4.50 kW/m2 respectively. Analysis of nucleating surface temperatures using thermochromic liquid crystal technique is performed for these test conditions and the bubble dynamics is studied. The temperature distribution is quite varied in each case and the temperature is at its maximum value at the center of the bubble and it decreases radially from the center. The dry spot observed during the experiments indicates that the process of evaporation of the microlayer is dominant at subatmospheric pressures. It is observed that at very low pressure and heat flux the bubble growth is accompanied by the neck formation. Boiling parameters such as bubble frequency, bubble size and contact are also analyzed and a summary of these results for four different test conditions is presented and the relevant differences between the cases are discussed and the effect of increase in pressure and heat flux is noted.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2007

Semester

Fall

Advisor

Kumar, Ranganathan

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Mechanical, Materials and Aerospace Engineering;

Degree Program

Mechanical Engineering

Format

application/pdf

Identifier

CFE0001537

URL

http://purl.fcla.edu/fcla/etd/CFE0001537

Language

English

Release Date

January 2008

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS