Keywords

Thermites, Free Standing, Al/CuO

Abstract

In this work we investigate the reaction propagation velocity of aluminum and copper oxide Metastable Intermolecular Composites (MIC's). All samples were deposited in a magnetron sputtering system using 2 aluminum targets and 2 copper targets. The copper is sputtered in an oxygen rich environment in order to obtain copper oxide rich films. Three different layer structures are used for various measurements that are composed of alternating 20 layer pairs, 30 layer pairs, and 40 layer pairs. All layer pairs maintain a constant total thickness of 3.2 microns. Each layer structure can be prepared independent of a substrate and is measured with the use of photodiodes or with direct device contact. Aluminum and copper oxide structures have potential use as propellants and additives to explosives, thus, accurate propagation velocity or burn rate measurements are important. The developed measurement system for burn rate measurements of Al/CuO MIC's can achieve and accuracy of 0.1 m/s. In order to determine the velocity limiting characteristics, MIC's on glass and silicon substrates were measured as well as free standing Al/CuO MIC's. Separate burn rate measurement devices were created in order to handle the variety of substrates. In addition, the ignition energy of the Al/CuO MIC was studied to further characterize the samples. This was done using both voltage and current probes of a reacting sample. Rutherford backscattering spectroscopy (RBS) was used for sample composition calibration. The pre- and post-reaction Al/CuO MIC's were also characterized by transmission electron microscopy (TEM).

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2009

Advisor

Coffey, Kevin

Degree

Master of Science in Electrical Engineering (M.S.E.E.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0002786

URL

http://purl.fcla.edu/fcla/etd/CFE0002786

Language

English

Release Date

July 2010

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS