back contatcts, CdS/CdTe, solar cell, photoelectrochemical, photovoltaics


The development of devices with high efficiencies can only be attained by tandem structures which are important to the advancement of thin-film photoelectrochemical (PEC) and photovoltaic (PV) technologies. FSEC PV Materials Lab has developed a PEC cell using multiple bandgap tandem of thin film PV cells and a photocatalyst for hydrogen production by water splitting. CdS/CdTe solar cell, a promising candidate for low-cost, thin-film PV cell is used as one of the thin film solar cells in a PEC cell. This research work focuses on developing various back contacts with good transparency in the infrared region (~750 - 1150 nm) for a CdS/CdTe solar cell. CdS/CdTe solar cells were prepared with three different configurations, Glass/SnO2:F/CdS/CdTe/ZnTe:Cu/ITO/Ni-Al (series 1), Glass/SnO2:F/CdS/CdTe/Cu2Te/ITO/Ni-Al (series 2), Glass/SnO2:F/CdS/CdTe/Br-Me etching/Cu/ITO/Ni-Al (series 3). The back contact preparation process for a CdS/CdTe solar cell involves the deposition of a primary p-type back contact interface layer followed by the deposition of transparent and conducting ITO and a Ni-Al outer metallization layer. Back contact interface layers were initially optimized on glass substrates. A ZnTe:Cu layer for a series 1 cell was deposited using hot wall vacuum evaporation (HWVE). Cu2Te and Cu thin films for series 2 and series 3 cells were deposited by vacuum evaporation. HWVE technique produced highly stoichiometric ZnTe:Cu thin films with cubic phase having {111} texture orientation. All the back contact interface layers demonstrated better transparency in the infrared region on glass substrate. Formation of crystalline phase and texture orientation were studied using X-ray diffraction (XRD). The composition was analyzed by electron probe microanalysis (EPMA). Transparency measurements were carried out by optical transmission spectroscopy. Thickness measurements were carried out using a DEKTAK surface profile measuring system. Finally, completed solar cells for all the series were characterized for current-voltage (I-V) measurements using the I-V measurement setup developed at the FSEC PV Materials Lab. The PV parameters for the best series 1 cell measured at an irradiance of 1000 W/m2 were: open circuit voltage, Voc = 630 mV, short circuit current, Isc = 7.68 mA/ cm2, fill factor, FF = 37.91 %, efficiency, ç = 3.06 %. The PV parameters for the best series 2 cell measured were: Voc = 690 mV, Isc = 8.7 mA/ cm2, FF = 45.19 %, ç = 4.8 %. The PV parameters for the best series 3 cell measured were: Voc = 550 mV, Isc = 9.70 mA/ cm2, FF = 42.25 %, ç = 5.63 %. The loss in efficiency was attributed to the possible formation of a non-ohmic contact at the interface of CdTe and back contact interface layer. Decrease in the fill factor was attributed to high series resistance in the device.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at

Graduation Date





Dhere, Neelkanth


Master of Science in Materials Science and Engineering (M.S.M.S.E.)


College of Engineering and Computer Science


Mechanical, Materials and Aerospace Engineering

Degree Program

Materials Science and Engineering








Release Date

August 2005

Length of Campus-only Access


Access Status

Masters Thesis (Open Access)