Keywords

Rf energy harvesting, rf rectifier, on chip antenna, cmos, integrated circuit, implantable device

Abstract

Nowadays, as aging population increasing yearly, the health care technologies for elder people who commonly have high blood pressure or Glaucoma issues have attracted much attention. In order to care of those people, implantable integrated circuits (ICs) in human body are the direct solution to have 24/7 days monitoring with real-time data for diagnosis by patients themselves or doctors. However, due to the small size requirement for the implanted ICs located in human organs, it's quite challenging to integrate with transmitting and receiving antenna in a single chip, especially operating in 5.8-GHz ISM band. This research proposes a new idea to solve the issue of integrating an on-chip antenna with implanted ICs. By adding an additional dielectric substrate upon the layer of silicon oxide in CMOS technology, utilizing the metal-6, it can form an extremely compact 3D-structure on-chip antenna which is able to be placed in human eye, heart or even in a few mm-diameter vessels. The proposed 3D on-chip antenna is only 1x1x2.8 mm3 with -10 dB gain and 10% efficiency, which has capability to communicate at least within 5 cm distance. The entire implanted battery-less wireless system has also been developed in this research. A designed 30% efficiency Native NMOS rectifier could generate 1 V and 1 mA to supply the designed low power transmitter including voltage-controlled oscillator (VCO) and power amplifier (PA). The entire system performance is well evaluated by link budget analysis and the simulation result demonstrates the possibility and feasibility of future on-demand easy-to-design implantable SoC.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2014

Semester

Spring

Advisor

Yuan, Jiann-Shiun

Degree

Master of Science in Electrical Engineering (M.S.E.E.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computing

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0005202

URL

http://purl.fcla.edu/fcla/etd/CFE0005202

Language

English

Release Date

May 2014

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic

Share

COinS