Abstract

The main objective of this dissertation is to provide better understanding of the atomic configurations, electronic structure, vibrational properties, and thermodynamics of transition metal nanoparticles and evaluate the intrinsic (i.e. size and shape) and extrinsic (i.e. ligands, adsorbates, and support) effects on the aforementioned properties through a simulational approach. The presented research provides insight into better understanding of the morphological changes of the nanoparticles that are brought about by the intrinsic factors as well as the extrinsic ones. The preference of certain ligands to stabilize specific sizes of nanoparticles is investigated. The intrinsic and extrinsic effects on the electronic structure of the nanoparticles are presented. The physical and chemical properties of the nanoparticles are evaluated through better understanding of the above effects on the experimentally observed properties as well as the applied techniques. The unexpected experimental results are tested and interpreted by deconvolution of the affecting factors. The application of Debye model to nanoparticles is tested and its shortcomings at nanoscale are discussed. Predictions which can provide insight into intelligent choice of candidates to cater to certain properties are provided. The results of this thesis can be used in the future in design and engineering of functionalized materials. We use ab initio calculations based on Density Functional Theory (DFT) to obtain information about the energetics, atomic configuration, and electronic structure of the nanoparticles. Ab initio Molecular Dynamics (MD) is used to study the evolution of the structures of the nanoparticles. To calculate vibrational frequencies, the finite displacement method is employed.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2015

Semester

Fall

Advisor

Rahman, Talat

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Physics

Degree Program

Physics

Format

application/pdf

Identifier

CFE0006385

URL

http://purl.fcla.edu/fcla/etd/CFE0006385

Language

English

Release Date

6-15-2017

Length of Campus-only Access

1 year

Access Status

Doctoral Dissertation (Open Access)

Share

COinS