Abstract

A new revolutionary concept was presented two decades ago, known as "semiconductor Superjunction (SJ) theory" to enhance the trade-off relationship between specific on resistance, Rsp, and off-state breakdown voltage, BV, in medium to high voltages (more than 100 V) power MOSFETs. The SJ concept was first applied and commercialized to vertical structures, but it hasn't been used yet in low voltage MOSFETs with lateral structures. This thesis provides a review of the most common structures, principles and design techniques for discrete power MOSFETs. It also presents a simulation study of the application of these SJ concepts in the design of a Low Voltage SJ LDMOS transistor, using TCAD software. To make the device commercially feasible, this device design targets aggressive goals such as an off-state Breakdown Voltage of 60V with Rsp of 20 miliohms per milimiter square. This study includes the analysis of the flow process for the fabrication of this transistor, using semiconductor technologies, and the simulation results, including Breakdown Voltage, on-state resistance, electric field distribution among others simulation analysis.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2016

Semester

Summer

Advisor

Yuan, Jiann-Shiun

Degree

Master of Science in Electrical Engineering (M.S.E.E.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Engineering

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0006306

URL

http://purl.fcla.edu/fcla/etd/CFE0006306

Language

English

Release Date

August 2017

Length of Campus-only Access

1 year

Access Status

Masters Thesis (Open Access)

Share

COinS