Abstract

Recently, the design and engineering of ultrafast laser systems have led to an extraordinary increase in laser power and performance which have brought about advances in many fields such as medicine, material processing, communications, remote sensing, spectroscopy, nonlinear optics, and atomic physics. In this work, several ultrafast amplification techniques -- including chirped-pulse amplification (CPA), optical parametric chirped-pulse amplification (OPCPA), and divided-pulse amplification (DPA) -- are described and demonstrated in the design and construction of two ultrafast laser facilities. An existing Ti:Sapphire laser system was completely redesigned with an increased power of 10 TW for experiments capable of generating hundreds of laser filaments in ordered arrays. The performance of DPA above the Joule-level was investigated in a series of experiments utilizing various DPA schemes with gain-saturated amplifiers at high pulse energy. A new high energy OPCPA facility has been designed and its pump laser system constructed, utilizing the technique of DPA for the first time in a flashlamp-pumped amplifier chain and with a record combined energy of 5 Joules in a 230 ps pulse duration. The demonstrated OPCPA pump performance will allow for the generation of 50 TW quasi-single cycle 5 fs pulses at 2.5 Hz from a table-top OPCPA system.

Graduation Date

2016

Semester

Spring

Advisor

Richardson, Martin

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics and Photonics

Format

application/pdf

Identifier

CFE0006547

URL

http://purl.fcla.edu/fcla/etd/CFE0006547

Language

English

Release Date

November 2021

Length of Campus-only Access

5 years

Access Status

Doctoral Dissertation (Campus-only Access)

Share

COinS