Abstract

The tip leakage flow in axial compressors is a significant factor in engine performance and a subject of investigation over the last several decades. Many studies have already shown that the vortices generated by this tip leakage can have a negative impact on the surrounding flow field and overall performance, and could potentially lead to excitations as well. This study examines the effect of these vortices on aeroelasticity. Specifically, it looks at the effect from a circumferentially varying tip gap, such as that produced by casing ovalization. For this project, the casing ovalization of an industrial gas turbine compressor was modeled using a frequency domain solver, without the need for a full wheel model. Both the vibratory and aerodynamic calculations were conducted in order to assess the aeroelastic response of the blade, as well as the aerodynamic impact. Engine test data was implemented in order to model realistic levels of casing ovalization and to calibrate the analytical models. Comparisons to a well-established method are also conducted to further calibrate the models. The calculations showed that for the gap variations imposed, the instantaneous effects aligned with expectations. However, the variation from small and large gaps had a canceling effect on each other over the cycle of oscillation around the engine.

Graduation Date

2016

Semester

Summer

Advisor

Kapat, Jayanta

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering

Format

application/pdf

Identifier

CFE0006682

URL

http://purl.fcla.edu/fcla/etd/CFE0006682

Language

English

Release Date

February 2018

Length of Campus-only Access

1 year

Access Status

Masters Thesis (Campus-only Access)

Share

COinS