Abstract

With the increasing data handling and power requirements of today's spacecraft, accurately modeling the effects of cabling on spacecraft structural dynamics has become an increasingly important part of the design process. During testing, spacecraft cabling produces a damping effect on the system dynamics; however, current models often overpredict this response in higher frequency modes and produce unrealistic damping values. Previous models incorporated structural and viscous damping terms into Euler-Bernoulli and shear beams; this thesis presents a viscous damping model for Timoshenko beams that can accurately capture the effects of both spacecraft wiring and harnesses during the design phase. Damping in built-up structures shows a weak frequency-dependence; therefore, it is of interest to develop a combination of damping terms and coefficients that provide approximately frequency-independent modal damping. Where previous work included a rotation-based damping term to Euler-Bernoulli beam equations to produce frequency-independent damping, this thesis includes higher-order derivative damping terms to characterize their motion. Because Timoshenko beams account for the effects of both transverse shear and rotary inertia, it is of interest to characterize the damping coefficients using these parameters. Finally, deformed beam shapes were studied to further characterize each damping term as a physical dissipative mechanism.

Graduation Date

2017

Semester

Summer

Advisor

Kauffman, Jeffrey L.

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Aerospace Engineering; Space System Design and Engineering

Format

application/pdf

Identifier

CFE0006764

URL

http://purl.fcla.edu/fcla/etd/CFE0006764

Language

English

Release Date

August 2017

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS