Abstract

This thesis sheds light on coupling potential flood risk and drainage infrastructure resilience of low-lying areas of a coastal urban watershed to flood hazards and subsequent multi-scale impacts of those hazards via detailed modeling frameworks. Physically based models along with statistical models are employed to highlight the complexity for characterizing flood risk while evaluating such risk under various levels of adaptive capacity from traditional flood management techniques to low impact development (LID), as a first step to conduct resilience assessment. Findings indicate that the coupling flood risk and infrastructure resilience is achievable by the careful formulation of flood risk associated with a resilience metric, which is a function of the hazard(s) considered, vulnerability and adaptive capacity. The results also give insights into improving existing methodologies for municipalities in flood management practices such as incorporating multi-criteria flood risk evaluation that includes resilience.

Graduation Date

2017

Semester

Summer

Advisor

Chang, Ni-bin

Degree

Master of Science in Environmental Engineering (M.S.Env.E.)

College

College of Engineering and Computer Science

Department

Civil, Environmental and Construction Engineering

Degree Program

Environmental Engineering

Format

application/pdf

Identifier

CFE0006748

URL

http://purl.fcla.edu/fcla/etd/CFE0006748

Language

English

Release Date

August 2017

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS