Abstract

MoS2 high absorption coefficient, high mobility, mechanical flexibility, and chemical inertness is very promising for many electronic and optoelectronic applications. The growth of high-quality MoS2 by a scalable and doping compatible method is still lacking. Therefore, the suitable dopants for MoS2 are not fully explored yet. This dissertation consists mainly of four main studies. The first study is on the growth of MoS2 thin films by atmospheric pressure chemical vapor deposition. Scanning electron microscope images revealed the growth of microdomes of MoS2 on top of a smooth MoS2 film. These microdomes are very promising as a broadband omnidirectional light trap for light harvesting applications. The second study is on the growth of MoS2 thin films by low pressure chemical vapor deposition (LPCVD). Control of sulfur vapor flow is essential for the growth of a pure phase of MoS2. Turning off sulfur vapor flow during the cooling cycle at 700°C leads to the growth of highly textured MoS2 with a Hall mobility of 20 cm2/Vs. The third study was on the growth of Ti-doped MoS2 thin films by LPCVD. The successful doping was confirmed by Hall effect measurement and secondary ion mass spectrometry (SIMS). Different growth temperatures from 1000 to 700°C were studied. Ti act as a donor in MoS2. The fourth study is on fluorine-doped SnO2 (FTO) which has many technological applications including solar cells and transistors. FTO was grown by an aqueous-spray-based method. The main objective was to compare the actual against the nominal concentration of fluorine using SIMS. The concentration of fluorine in the grown films is lower than the concentration of fluorine in the aqueous solution.

Graduation Date

2017

Semester

Fall

Advisor

Peale, Robert

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Physics

Degree Program

Physics

Format

application/pdf

Identifier

CFE0006847

URL

http://purl.fcla.edu/fcla/etd/CFE0006847

Language

English

Release Date

December 2017

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Included in

Physics Commons

Share

COinS