Abstract

Polyelectrolyte based hydrogel fibers can mimic extracellular matrix and have applications such as drug delivery and tissue scaffolding. Metal ions play a critical role in hydrogel fiber stability via electrostatic interactions, but knowledge of how they modulate mechanical properties of individual polyelectrolyte polymers is lacking. In this study, electrospun polyacrylic acid with chitosan is used as a model system to evaluate ferric ion effect on nanofiber mechanics. Using dark field microscopy imaging and persistence length analysis, we demonstrate that ferric ions modulate the bending stiffness of nanofibers. Young's modulus of individual nanofibers is estimated at values of a few kilopascals, suggesting that electrospun nanofibers possibly exist in a hydrated state. Furthermore, Fourier Transform Infrared (FTIR) spectra indicate the effect of ferric ions on polyacrylic acid molecular bonds. Our results suggest that metal ions can regulate single nanofiber stiffness, thereby providing designs to fabricate hydrogels in a tunable fashion.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2018

Semester

Spring

Advisor

Kang, Hyeran

Degree

Master of Science (M.S.)

College

College of Graduate Studies

Department

Nanoscience Technology Center

Degree Program

Nanotechnology

Format

application/pdf

Identifier

CFE0006993

URL

http://purl.fcla.edu/fcla/etd/CFE0006993

Language

English

Release Date

May 2019

Length of Campus-only Access

1 year

Access Status

Masters Thesis (Campus-only Access)

Share

COinS