Keywords

all-optical, clock recovery, carrier recovery, optical communication, synchronization

Abstract

All-optical synchronization and its application in advanced optical communications have been investigated in this dissertation. Dynamics of all-optical timing synchronization (clock recovery) using multi-section gain-coupled distributed-feedback (MS-GC DFB) lasers are discussed. A record speed of 180-GHz timing synchronization has been demonstrated using this device. An all-optical carrier synchronization (phase and polarization recovery) scheme from PSK (phase shift keying) data is proposed and demonstrated for the first time. As an application of all-optical synchronization, the characterization of advanced modulation formats using a linear optical sampling technique was studied. The full characterization of 10-Gb/s RZ-BPSK (return-to-zero binary PSK) data has been demonstrated. Fast lockup and walk-off of the all-optical timing synchronization process on the order of nanoseconds were measured in both simulation and experiment. Phase stability of the recovered clock from a pseudo-random bit sequence signal can be achieved by limiting the detuning between the frequency of free-running self-pulsation and the input bit rate. The simulation results show that all-optical clock recovery using TS-DFB lasers can maintain a better than 5 % clock phase stability for large variations in power, bit rate and optical carrier frequency of the input data and therefore is suitable for applications in ultrafast optical packet switching. All-optical timing synchronization of 180-Gb/s data streams has been demonstrated using a MS-GC DFB laser. The recovered clock has a jitter of less than 410 fs over a dynamic range of 7 dB. All-optical carrier synchronization from phase modulated data utilizes a phase sensitive oscillator (PSO), which used a phase sensitive amplifier (PSA) as a gain block. Furthermore, all-optical carrier synchronization from 10-Gb/s BPSK data was demonstrated in experiment. The PSA is configured as a nonlinear optical loop mirror (NOLM). A discrete linear system analysis was carried out to understand the stability of the PSO. Complex envelope measurement using coherent linear optical sampling with mode-locked sources is investigated. It is shown that reliable measurement of the phase requires that one of the optical modes of the sampling pulses be locked to the optical carrier of the data signal to be measured. Carrier-envelope offset (CEO) is found to have a negligible effect on the measurement. Measurement errors of the intensity profile and phase depend on the pulsewidth and chirp of the sampling pulses as well as the detuning between the carrier frequencies of the data signal and the center frequency of the sampling source. Characterization of the 10-Gb/s RZ-BPSK signal was demonstrated using the coherent detection technique. Measurements of the optical intensity profile, chirp and constellation diagram were demonstrated. A CW local oscillator was used and electrical sampling was performed using a sampling scope. A novel feedback scheme was used to stabilize homodyne detection.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2006

Semester

Summer

Advisor

Li, Guifang

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Degree Program

Optics

Format

application/pdf

Identifier

CFE0001239

URL

http://purl.fcla.edu/fcla/etd/CFE0001239

Language

English

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS