Title

A Fuzzy Linguistic Model For The Prediction Of Carpal Tunnel Syndrome Risks In An Occupational Environment (Reprinted From Ergonomics, Vol 40, Pg 790-799, 1997)

Title - Alternative

IBM J. Res. Dev.

Keywords

Carpel Tunnel; Fuzzy; Cumulative Trauma; Predictive Model; Injuries; Computer Science, Hardware & Architecture; Multidisciplinary Sciences

Abstract

This research presents the development and evaluation of a fuzzy linguistic model designated to predict the risk of carpal tunnel syndrome (CTS) in an occupational setting. CTS has become one of the largest problems facing ergonomists and the medical community because it is developing in epidemic proportions within the occupational environment. In addition, practitioners are interested in identifying accurate methods for evaluating the risk of CTS in an occupational setting. It is hypothesized that many factors impact an individual's likelihood of developing CTS and the eventual development of CTS. This disparity in the occurrence of CTS for workers with similar backgrounds and work activities has confused researchers and has been a stumbling block in the development of a model for widespread use in evaluating the development of CTS. Thus this research is an attempt to develop a method that can be used to predict the likelihood of CTS risk in a variety of environments. The intent is that this model will be applied eventually in an occupational setting, thus model development was focused on a method that provided a usable interface and the desired system inputs can also be obtained without the benefit of a medical practitioner. The methodology involves knowledge acquisition to identify and categorize a holistic set of risk factors that include task-related, personal, and organizational categories. The determination of relative factor importance was accomplished using analytic hierarchy processing (AHP) analysis. Finally a mathematical representation of the CTS risk was accomplished by utilizing fuzzy set theory in order to quantify linguistic input parameters. An evaluation of the model including determination of sensitivity and specificity is conducted and the results of the model indicate that the results are fairly accurate and this method has the potential for widespread use. A significant aspect of this research is the comparison of this technique to other methods for assessing presence of CTS. The results of this evaluation technique are compared with more traditional methods for assessing the presence of CTS.

Publication Title

Ibm Journal of Research and Development

Volume

44

Issue/Number

5

Publication Date

1-1-1993

Document Type

Reprint

Language

English

First Page

759

Last Page

769

WOS Identifier

WOS:000089388700009

ISSN

0018-8646

Share

COinS