Title

Linear empirical Bayes estimation in the case of the Wishart distribution

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Keywords

empirical Bayes estimation; the Wishart distribution; COVARIANCE-MATRIX; MINIMAX ESTIMATORS; MOMENTS; Statistics & Probability

Abstract

We consider independent pairs (X-1, Sigma(1)), (X-2, Sigma(2)), ..., (X-n, Sigma(n)), where each Sigma(i) is distributed according to some unknown density function g(Sigma) and, given Sigma(i) = Sigma, X-i has a conditional density function q(x\Sigma) of the Wishart type. In each pair, the first component is observable but the second is not. After the (n + 1)-th observation Xn+1 is obtained, the objective is to estimate Sigma(n+1) corresponding to Xn+1. This estimator is called an empirical Bayes (EB) estimator of Sigma. We construct a linear EB estimator of Sigma and examine its precision.

Publication Title

Communications in Statistics-Theory and Methods

Volume

29

Issue/Number

8

Publication Date

1-1-2000

Document Type

Article

Language

English

First Page

1787

Last Page

1799

WOS Identifier

WOS:000088283000006

ISSN

0361-0926

Not currently available in STARS, check these options.

Share

COinS