Beat the diffraction limit in 3D direct laser writing in photosensitive glass

Authors: contact us about adding a copy of your work at


Three-dimensional (3D) femtosecond laser direct structuring in transparent materials is widely used for photonic applications. However, the structure size is limited by the optical diffraction. Here we report on a direct laser writing technique that produces subwavelength nanostructures independently of the experimental limiting factors. We demonstrate 3D nanostructures of arbitrary patterns with feature sizes down to 80 nm, less than one tenth of the laser processing wavelength. Its ease of implementation for novel nanostructuring, with its accompanying high precision will open new opportunities for the fabrication of nanostructures for plasmonic and photonic devices and for applications in metamaterials. (c) 2009 Optical Society of America