Authors

S. Dakshinamurthy; N. R. Quick;A. Kar

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Appl. Phys.

Keywords

HYDROGEN GAS SENSOR; SILICON-CARBIDE; SCHOTTKY DIODE; MISICFET; Physics, Applied

Abstract

Crystalline silicon carbide is a chemically inert wide band gap semiconductor with good mechanical strength and oxidation-resistant properties at elevated temperatures, which make it a good sensor material for harsh environments such as combustion chambers and turbine systems. For such cases, optical sensors are generally superior to electrical sensors in many aspects such as responsivity, detectivity, and sensitivity. This paper presents a wireless technique for pressure and chemical sensing based on the pressure-and temperature-dependent refractive indices of silicon carbide. A helium-neon laser with a wavelength of 632.8 nm was used as a probe laser to obtain the complementary Airy pattern of the laser power reflected off a silicon carbide wafer segment at high temperatures (up to 300 degrees C) and pressures (up to 400 psi). The interference patterns revealed unique characteristics for nitrogen and argon test gases. This pattern is different at the same pressure and temperature for the two gases, indicating the chemical sensing selectivity capability of silicon carbide. Also the pattern changes with pressures for the same gas, indicating the pressure sensing capability. The refractive index of silicon carbide has been obtained for different pressures and temperatures using the interference pattern. A three-layer model has been employed to determine the refractive indices of the gases using the reflected power data.

Journal Title

Journal of Applied Physics

Volume

99

Issue/Number

9

Publication Date

1-1-2006

Document Type

Article

Language

English

First Page

8

WOS Identifier

WOS:000237682900088

ISSN

0021-8979

Share

COinS