Authors

D. Milanova;R. Kumar

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

"This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in the linked citation and may be found originally at Applied Physics Letters."

Abbreviated Journal Title

Appl. Phys. Lett.

Keywords

THERMAL-CONDUCTIVITY; Physics, Applied

Abstract

Heat transfer in silica nanofluids at different acidity and base is measured for various ionic concentrations in a pool boiling experiment. Nanosilica suspension increases the critical heat flux 3 times compared to conventional fluids. The 10-nm particles possess a thicker double diffuse layer compared to 20-nm particles. The catalytic properties of nanofluids decrease in the presence of salts, allowing the particles to cluster and minimize the potential increase in heat transfer. Nanofluids in a strong electrolyte, i.e., in high ionic concentration, allow a higher critical heat flux than in buffer solutions because of the difference in surface area. The formation and surface structure of the deposition affect the thermal properties of the liquid.

Journal Title

Applied Physics Letters

Volume

87

Issue/Number

23

Publication Date

1-1-2005

Document Type

Article

Language

English

First Page

3

WOS Identifier

WOS:000233723200068

ISSN

0003-6951

Share

COinS