Title

Two-dimensional model for melting and vaporization during optical trepanning

Authors

Authors

D. Zeng; W. P. Latham;A. Kar

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Appl. Phys.

Keywords

PEAK POWER; METALS; DAMAGE; Physics, Applied

Abstract

Annular laser beams provide a drilling mechanism that can be referred to as optical trepanning. In this paper an analytical two-dimensional model is developed for optical trepanning. The analysis accounts for conduction in the solid, vaporization, and convection due to the melt flow caused by an assist gas. Based on the model, the influences of pulse duration, laser-pulse length, pulse repetition rate, intensity profiles, and beam radius are investigated to examine their effects on the recast layer thickness, hole depth, and taper. Deeper cavity depth, thicker recast layer, and larger taper are obtained with the increase in the laser intensity. By using different types of intensity profiles, the nature of the hole taper can be modified, i.e., convergent or divergent holes can be produced. The effects of the inner radius of annular beams are more significant than other laser parameters. An increase in the inner radius reduces the hole taper and produces thinner recast layer and deeper cavity depth. (c) 2005 American Institute of Physics.

Journal Title

Journal of Applied Physics

Volume

97

Issue/Number

10

Publication Date

1-1-2005

Document Type

Article

Language

English

First Page

7

WOS Identifier

WOS:000230168100174

ISSN

0021-8979

Share

COinS