Title

Epitaxial growth, magnetic properties, and lattice dynamics of Fe nanoclusters on GaAs(001)

Authors

Authors

B. R. Cuenya; A. Naitabdi; E. Schuster; R. Peters; M. Doi;W. Keune

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Phys. Rev. B

Keywords

ELECTRICAL SPIN INJECTION; MOLECULAR-BEAM EPITAXY; SUBSTRATE SURFACE; RECONSTRUCTION; SCANNING-TUNNELING-MICROSCOPY; THIN-FILMS; ROOM-TEMPERATURE; BARRIER CONTACTS; SCHOTTKY-BARRIER; ANISOTROPY; INTERFACE; Physics, Condensed Matter

Abstract

Epitaxial bcc-Fe(001) ultrathin films have been grown at similar to 50 degrees C on reconstructed GaAs(001)-(4x6) surfaces and investigated in situ in ultrahigh vacuum (UHV) by reflection high-energy electron diffraction, scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and Fe-57 conversion electron Mossbauer spectroscopy (CEMS). For t(Fe)=1 ML (monolayer) Fe coverage, isolated Fe nanoclusters are arranged in rows along the [110] direction. With increasing t(Fe) the Fe clusters first connect along the [-110], but not along the [110] direction at 2.5 ML, then consist of percolated Fe clusters without a preferential orientation at 3 ML, and finally form a nearly smooth film at 4 ML coverage. Segregation of Ga atoms within the film and on the Fe surface appears to occur at t(Fe)=4 ML, as evidenced by XPS. For coverages below the magnetic percolation, temperature-dependent in situ CEMS measurements in zero external field provided superparamagnetic blocking temperatures T-B of 62 +/- 5, 80 +/- 10, and 165 +/- 5 K for t(Fe)=1.9, 2.2, and 2.5 ML, respectively. At T < T-B, freezing of superparamagnetic clusters is inferred from the observed quasilinear T dependence of the mean hyperfine magnetic field < B-hf >. By combining the STM and CEMS results, we have determined a large magnetic anisotropy constant of similar to 5x10(5) and similar to 8x10(5) J/m(3) at t(Fe)=1.9-2.2 and 2.5 ML, respectively. For t(Fe)<= 2.5 ML, our uncoated "free" Fe clusters exhibit intrinsic magnetic ordering below T-B, contrary to literature reports on metal-coated Fe clusters on GaAs. Our present results demonstrate that the nature of the percolation transition for free Fe nanoclusters on GaAs(001) in UHV is from superparamagnetism to ferromagnetism. From the Mossbauer spectral area, a very low Debye temperature Theta(D) of 196 +/- 4 K is deduced for these uncoated Fe nanoclusters in UHV, indicating a strong phonon softening in the clusters.

Journal Title

Physical Review B

Volume

76

Issue/Number

9

Publication Date

1-1-2007

Document Type

Article

Language

English

First Page

17

WOS Identifier

WOS:000249786100049

ISSN

1098-0121

Share

COinS