Title

Evidence that gamma-Secretase-Mediated Notch Signaling Induces Neuronal Cell Death via the Nuclear Factor-kappa B-Bcl-2-Interacting Mediator of Cell Death Pathway in Ischemic Stroke

Authors

Authors

T. V. Arumugam; Y. L. Cheng; Y. Choi; Y. H. Choi; S. Yang; Y. K. Yun; J. S. Park; D. K. Yang; J. Thundyil; M. Gelderblom; V. T. Karamyan; S. C. Tang; S. L. Chan; T. Magnus; C. G. Sobey;D. G. Jo

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Mol. Pharmacol.

Keywords

FACTOR-KAPPA-B; CEREBRAL-ARTERY OCCLUSION; ALZHEIMERS-DISEASE; TRANSCRIPTION FACTOR; SYNAPTIC PLASTICITY; FOCAL ISCHEMIA; BRAIN-INJURY; MODEL; ACTIVATION; MECHANISMS; Pharmacology & Pharmacy

Abstract

Notch-1 (Notch) is a cell surface receptor that regulates cell-fate decisions in the developing nervous system, and it may also have roles in synaptic plasticity in the adult brain. Binding of its ligands results in the proteolytic cleavage of Notch by the gamma-secretase enzyme complex, thereby causing the release of a Notch intracellular domain (NICD) that translocates to the nucleus, in which it regulates transcription. Here we show that activation of Notch modulates ischemic neuronal cell death in vitro and in vivo. Specifically, our findings from the use of Notch-1 siRNA or the overexpression of NICD indicate that Notch activation contributes to cell death. Using modified NICD, we demonstrate an apoptosis-inducing function of NICD in both the nucleus and the cytosol. NICD transfection-induced cell death was reduced by blockade of calcium signaling, caspase activation, and Janus kinase signaling. Inhibition of the Notch-activating enzyme, gamma-secretase, protected against ischemic neuronal cell death by targeting an apoptotic protease, cleaved caspase-3, nuclear factor-kappa B (NF-kappa B), and the pro-death BH3-only protein, Bcl-2-interacting mediator of cell death (Bim). Treatment of mice with a gamma-secretase inhibitor, compound E, reduced infarct size and improved functional outcome in a model of focal ischemic stroke. Furthermore, gamma-secretase inhibition reduced NICD, p-p65, and Bim levels in vivo. These findings suggest that Notch signaling endangers neurons after ischemic stroke by modulating the NF-kappa B, pro-death protein Bim, and caspase pathways.

Journal Title

Molecular Pharmacology

Volume

80

Issue/Number

1

Publication Date

1-1-2011

Document Type

Article

Language

English

First Page

23

Last Page

31

WOS Identifier

WOS:000291717000003

ISSN

0026-895X

Share

COinS