Title

Ignition and Oxidation of 50/50 Butane Isomer Blends

Authors

Authors

N. Donato; C. Aul; E. Petersen; C. Zinner; H. Curran;G. Bourque

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Eng. Gas. Turbines Power-Trans. ASME

Keywords

combustion; gas turbines; ignition; GAS-PHASE; RAPID COMPRESSION; HIGH-PRESSURE; ENGINE KNOCK; AUTOIGNITION; AIR; TEMPERATURE; MIXTURES; ALKANES; FUEL; Engineering, Mechanical

Abstract

One of the alkanes found within gaseous fuel blends of interest to gas turbine applications is butane. There are two structural isomers of butane, normal butane and isobutane, and the combustion characteristics of either isomer are not well known. Of particular interest to this work are mixtures of n-butane and isobutane. A shock-tube experiment was performed to produce important ignition-delay-time data for these binary butane isomer mixtures, which are not currently well studied, with emphasis on 50-50 blends of the two isomers. These data represent the most extensive shock-tube results to date for mixtures of n-butane and isobutane. Ignition within the shock tube was determined from the sharp pressure rise measured at the end wall, which is characteristic of such exothermic reactions. Both experimental and kinetics modeling results are presented for a wide range of stoichiometries (phi=0.3-2.0), temperatures (1056-1598 K), and pressures (1-21 atm). The results of this work serve as a validation for the current chemical kinetics model. Correlations in the form of Arrhenius-type expressions are presented, which agree well with both the experimental results and the kinetics modeling. The results of an ignition-delay-time sensitivity analysis are provided, and key reactions are identified. The data from this study are compared with the modeling results of 100% normal butane and 100% isobutane. The 50/50 mixture of n-butane and isobutane was shown to be more readily ignitable than 100% isobutane but reacts slower than 100% n-butane only for the richer mixtures. There was little difference in ignition time between the lean mixtures.

Journal Title

Journal of Engineering for Gas Turbines and Power-Transactions of the Asme

Volume

132

Issue/Number

5

Publication Date

1-1-2010

Document Type

Article; Proceedings Paper

Language

English

First Page

9

WOS Identifier

WOS:000275243800003

ISSN

0742-4795

Share

COinS