Title

Two-Photon Polarization Dependent Spectroscopy in Chirality: A Novel Experimental-Theoretical Approach to Study Optically Active Systems

Authors

Authors

F. E. Hernandez;A. Rizzo

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Molecules

Keywords

Non-linear spectroscopy; circular dichroism; two-photon absorption; chirality; bi-naphthols; AB-INITIO CALCULATION; VIBRATIONAL CIRCULAR-DICHROISM; QUADRATIC; RESPONSE FUNCTIONS; DENSITY-FUNCTIONAL THEORY; MULTIPHOTON ABSORPTION; 2ND-HARMONIC GENERATION; DEUTERATED ISOTOPOMERS; PERTURBATION-THEORY; SECONDARY STRUCTURE; PERMANENT MOMENTS; Chemistry, Organic

Abstract

Many phenomena, including life itself and its biochemical foundations are fundamentally rooted in chirality. Combinatorial methodologies for catalyst discovery and optimization remain an invaluable tool for gaining access to enantiomerically pure compounds in the development of pharmaceuticals, agrochemicals, and flavors. Some exotic metamaterials exhibiting negative refractive index at optical frequencies are based on chiral structures. Chiroptical activity is commonly quantified in terms of circular dichroism (CD) and optical rotatory dispersion (ORD). However, the linear nature of these effects limits their application in the far and near-UV region in highly absorbing and scattering biological systems. In order to surmount this barrier, in recent years we made important advancements on a novel non linear, low-scatter, long-wavelength CD approach called two-photon absorption circular dichroism (TPACD). Herein we present a descriptive analysis of the optics principles behind the experimental measurement of TPACD, i.e., the double L-scan technique, and its significance using pulsed lasers. We also make an instructive examination and discuss the reliability of our theoretical-computational approach, which uses modern analytical response theory, within a Time-Dependent Density Functional Theory (TD-DFT) approach. In order to illustrate the potential of this novel spectroscopic tool, we first present the experimental and theoretical results obtained in C(2)-symmetric, axially chiral R-(+)-1,1'-bi(2-naphthol), R- BINOL, a molecule studied at the beginning of our investigation in this field. Next, we reveal some preliminary results obtained for (R)-3,3'-diphenyl- 2,2'-bi-1-naphthol, R-VANOL, and (R)-2,2'-diphenyl-3,3'-( 4-biphenanthrol), R-VAPOL. This family of optically active compounds has been proven to be a suitable model for the structure-property relationship study of TPACD, because its members are highly conjugated yet photo-stable, and easily derivatized at the 5- and 6-positions. With the publication of these outcomes we hope to motivate more members of the scientist community to engage in state-of-the-art TPACD spectroscopy.

Journal Title

Molecules

Volume

16

Issue/Number

4

Publication Date

1-1-2011

Document Type

Review

Language

English

First Page

3315

Last Page

3337

WOS Identifier

WOS:000289976200019

ISSN

1420-3049

Share

COinS