Title

Encoding arbitrary four-qubit states in the spatial parity of a photon pair

Authors

Authors

A. F. Abouraddy; T. M. Yarnall; G. Di Giuseppe; M. C. Teich;B. E. A. Saleh

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Phys. Rev. A

Keywords

ORBITAL ANGULAR-MOMENTUM; QUANTUM CRYPTOGRAPHY; EXPERIMENTAL; REALIZATION; ENTANGLED PHOTONS; BELL INEQUALITY; INTERFERENCE; LIGHT; VIOLATION; OPTICS; MODES; Optics; Physics, Atomic, Molecular & Chemical

Abstract

Advancing quantum information processing is predicated on the preparation of ever-larger multiqubit states. Photonic realizations of such states may be achieved by increasing the number of photons populating the state or the number of qubits encoded per photon. Typical approaches to the latter strategy utilize distinct degrees of freedom of the photon field. We present here an approach that encodes two qubits per photon in the spatial parity of its transverse spatial profile. Simple linear optical devices transform each parity qubit separately or the two qubits jointly. Furthermore, we demonstrate that entangled photon pairs produced by spontaneous parametric down-conversion may be used to prepare arbitrary four-qubit states through sculpting the spatial profile of the classical optical pump. Two examples are highlighted-the preparation of two-photon four-qubit Greenberger-Horne-Zeilinger and W states, whose encoding in a photon pair has thus far eluded other approaches.

Journal Title

Physical Review A

Volume

85

Issue/Number

6

Publication Date

1-1-2012

Document Type

Article

Language

English

First Page

14

WOS Identifier

WOS:000305526600002

ISSN

1050-2947

Share

COinS