Title

Confidence-Level-Based New Adaptive Particle Filter for Nonlinear Object Tracking Regular Paper

Authors

Authors

X. Y. Zhang; J. Peng; W. T. Yu;K. C. Lin

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Int. J. Adv. Robot. Syst.

Keywords

nonlinear object tracking; adaptive particle filter; confidence; interval; improved systematic re-sampling; LOCALIZATION; ROBOT; UKF; Robotics

Abstract

Nonlinear object tracking from noisy measurements is a basic skill and a challenging task of mobile robotics, especially under dynamic environments. The particle filter is a useful tool for nonlinear object tracking with non-Gaussian noise. Nonlinear object tracking needs the real-time processing capability of the particle filter. While the number in a traditional particle filter is fixed, that can lead to a lot of unnecessary computation. To address this issue, a confidence-level-based new adaptive particle filter (NAPF) algorithm is proposed in this paper. In this algorithm the idea of confidence interval is utilized. The least number of particles for the next time instant is estimated according to the confidence level and the variance of the estimated state. Accordingly, an improved systematic re-sampling algorithm is utilized for the new improved particle filter. NAPF can effectively reduce the computation while ensuring the accuracy of nonlinear object tracking. The simulation results and the ball tracking results of the robot verify the effectiveness of the algorithm.

Journal Title

International Journal of Advanced Robotic Systems

Volume

9

Publication Date

1-1-2012

Document Type

Article

Language

English

First Page

9

WOS Identifier

WOS:000312904500002

ISSN

1729-8806

Share

COinS