Title

HIDDEN SYMMETRY SUBGROUP PROBLEMS

Authors

Authors

T. Decker; G. Ivanyos; M. Santha;P. Wocjan

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

SIAM J. Comput.

Keywords

quantum algorithms; hidden subgroup problem; hidden polynomial problem; QUANTUM ALGORITHMS; COMPUTATION; POLYNOMIALS; Computer Science, Theory & Methods; Mathematics, Applied

Abstract

We advocate a new approach for addressing hidden structure problems and finding efficient quantum algorithms. We introduce and investigate the hidden symmetry subgroup problem (HSSP), which is a generalization of the well-studied hidden subgroup problem (HSP). Given a group acting on a set and an oracle whose level sets define a partition of the set, the task is to recover the subgroup of symmetries of this partition inside the group. The HSSP provides a unifying framework that, besides the HSP, encompasses a wide range of algebraic oracle problems, including quadratic hidden polynomial problems. While the HSSP can have provably exponential quantum query complexity, we obtain efficient quantum algorithms for various interesting cases. To achieve this, we present a general method for reducing the HSSP to the HSP, which works efficiently in several cases related to symmetries of polynomials. The HSSP therefore connects in a rather surprising way certain hidden polynomial problems with the HSP. Using this connection, we obtain the first efficient quantum algorithm for the hidden polynomial problem for multivariate quadratic polynomials over fields of constant characteristic. We also apply the new methods to polynomial function graph problems and present an efficient quantum procedure for constant degree multivariate polynomials over any field. This result improves in several ways the currently known algorithms.

Journal Title

Siam Journal on Computing

Volume

42

Issue/Number

5

Publication Date

1-1-2013

Document Type

Article

Language

English

First Page

1987

Last Page

2007

WOS Identifier

WOS:000328889100008

ISSN

0097-5397

Share

COinS