Title

Jacobi rational-Gauss collocation method for Lane-Emden equations of astrophysical significance

Authors

Authors

E. H. Doha; A. H. Bhrawy; R. M. Hafez;R. A. Van Gorder

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Nonlinear Anal.-Model Control

Keywords

Lane-Emden equation; isothermal gas spheres; collocation method; Jacobi; rational-Gauss quadrature; Jacobi rational polynomials; BOUNDARY-VALUE-PROBLEMS; ORDINARY DIFFERENTIAL-EQUATIONS; HOMOTOPY-PERTURBATION METHOD; SEMIINFINITE INTERVAL; APPROXIMATE; SOLUTION; OPERATIONAL MATRIX; HERMITE FUNCTIONS; GALERKIN METHOD; SPECTRAL METHOD; 2ND KIND; Mathematics, Applied; Mathematics, Interdisciplinary Applications; Mechanics

Abstract

In this paper, a new spectral collocation method is applied to solve Lane-Emden equations on a semi-infinite domain. The method allows us to overcome difficulty in both the nonlinearity and the singularity inherent in such problems. This Jacobi rational-Gauss method, based on Jacobi rational functions and Gauss quadrature integration, is implemented for the nonlinear Lane-Emden equation. Once we have developed the method, numerical results are provided to demonstrate the method. Physically interesting examples include Lane-Emden equations of both first and second kind. In the examples given, by selecting relatively few Jacobi rational-Gauss collocation points, we are able to get very accurate approximations, and we are thus able to demonstrate the utility of our approach over other analytical or numerical methods. In this way, the numerical examples provided demonstrate the accuracy, efficiency, and versatility of the method.

Journal Title

Nonlinear Analysis-Modelling and Control

Volume

19

Issue/Number

4

Publication Date

1-1-2014

Document Type

Article

Language

English

First Page

537

Last Page

550

WOS Identifier

WOS:000343649500001

ISSN

1392-5113

Share

COinS