Title

A conjugate axisymmetric model of a high-pressure shock-tube facility

Authors

Authors

M. Lamnaouer; A. Kassab; E. Divo; N. Polley; R. Garza-Urquiza;E. Petersen

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Int. J. Numer. Methods Heat Fluid Flow

Keywords

Axisymmetric model; Bifurcation; Conjugate heat transfer; Shock tube; NUMERICAL-SIMULATION; REFLECTED-SHOCK; BOUNDARY-LAYER; COMPRESSIBLE; FLOWS; BIFURCATION; IGNITION; WALL; WAVE; Thermodynamics; Mathematics, Interdisciplinary Applications; Mechanics

Abstract

Purpose - An axisymmetric shock-tube model of the high-pressure shock-tube facility at the Texas A&M University has been developed. The shock tube is non-conventional with a non-uniform cross-section and features a driver section with a smaller diameter than the driven section. The paper aims to discuss these issues. Design/methodology/approach - Computations were carried out based on the finite volume approach and the AUSM + flux-differencing scheme. The adaptive mesh refinement algorithm was applied to the time-dependent flow fields to accurately capture and resolve the shock and contact discontinuities as well as the very fine scales associated with the viscous effects. The incorporation of a conjugate heat transfer model enhanced the credibility of the results. Findings - The shock-tube model is validated with simulation of the bifurcation phenomenon and with experimental data. The model is shown to be capable of accurately simulating the shock and expansion wave propagations and reflections as well as the flow non-uniformities behind the reflected shock wave as a result of reflected shock/boundary layer interaction or bifurcation. The pressure profiles behind the reflected shock wave agree with the experimental results. Originality/value - This paper presents one of the first studies to model the entire flow field history of a non-uniform diameter shock tube with a conjugate heat transfer model beginning from the bursting of the diaphragm while simultaneously resolving the fine features of the reflected shock-boundary layer interaction and the post-shock region near the end-wall, at conditions useful for chemical kinetics experiments. An important discovery from this study is the possible existence of hot spots in the end-wall region that could lead to early non-homogeneous ignition events. More experimental and numerical work is needed to quantify the hot spots.

Journal Title

International Journal of Numerical Methods for Heat & Fluid Flow

Volume

24

Issue/Number

4

Publication Date

1-1-2014

Document Type

Article; Proceedings Paper

Language

English

First Page

873

Last Page

890

WOS Identifier

WOS:000341757200008

ISSN

0961-5539

Share

COinS