Abstract

Dating back to the 1930's, Ramsey theory still intrigues many who study combinatorics. Roughly put, it makes the profound assertion that complete disorder is impossible. One view of this problem is in edge-colorings of complete graphs. For forbidden graphs H1,...,Hk and a graph G, we write G "arrows" (H1,...,Hk) if every k-edge-coloring of G contains a monochromatic copy of Hi in color i for some i=1,2,...,k. If c is a (red, blue)-edge-coloring of G, we say c is a bad coloring if G contains no red K3or blue K1,t under c. A graph G is (H1,...,Hk)-Ramsey-minimal if G arrows (H1,...,Hk) but no proper subgraph of G has this property. Given a family F of graphs, we say that a graph G is F-saturated if no member of F is a subgraph of G, but for any edge xy not in E(G), G + xy contains a member of F as a subgraph. Letting Rmin(K3, K1,t) be the family of (K3,K1,t)-Ramsey minimal graphs, we study the saturation number, denoted sat(n,Rmin(K3,K1,t)), which is the minimum number of edges among all Rmin(K3,K1,t)-saturated graphs on n vertices. We believe the methods and constructions developed in this thesis will be useful in studying the saturation numbers of (K4,K1,t)-saturated graphs.

Thesis Completion

2018

Semester

Spring

Thesis Chair

Song, Zi-Xia

Degree

Bachelor of Science (B.S.)

College

College of Sciences

Department

Mathematics

Degree Program

Mathematics

Location

Orlando (Main) Campus

Language

English

Access Status

Open Access

Release Date

5-1-2018

Share

COinS