Abstract

Aminoglycosides are a group of broad-spectrum antibiotics that, under neutral pH conditions, carry a positive charge. The net cationic charge arises from the high number of amino groups in the core structure of aminoglycosides. Previous studies performed have shown that negatively charged citrate ligand-capped gold nanoparticles (AuNPs) can interact with various biomolecules such as aminoglycosides. AuNPs bound to biomolecules have been used in conjugation with various assaying techniques to detect and study compounds in vitro and in vivo. AuNPs also have strong light scattering properties that can be used with a wide variety of imaging and assaying techniques. Our laboratory has previously performed experiments on the aminoglycoside antibiotic ribostamycin sulfate. During this experiment, the concentration dependent rod-like assembly of ribostamycin sulfate was characterized. This experiment used three analytical techniques in conjunction with AuNPs: (1) dynamic light scattering (DLS), (2) UV-Vis absorption spectroscopy, and (3) dark field optical microscope imaging (DFM). This suite of techniques was used to analyze mixtures of ribostamycin sulfate at different concentration with different sized AuNPs. The primary objective of this research was to determine if the techniques used to characterize the self-assembly of ribostamycin sulfate could be generalized and applied to other aminoglycoside antibiotics. The secondary objective of this research was to determine if other aminoglycoside antibiotics formed rod-like assemblies. This study demonstrated that AuNPs can be used to detect self-assembled oligomers for different aminoglycoside antibiotics. In addition, this study also revealed that not all aminoglycoside antibiotics will self assemble into rod-like oligomers similar to ribostamycin. It was observed that the aminoglycoside antibiotic amikacin self assembled into rod-like aggregates similar to ribostamycin sulfate but the aminoglycoside antibiotics neomycin sulfate and streptomycin sulfate did not.

Thesis Completion

2018

Semester

Spring

Thesis Chair

Self, William

Degree

Bachelor of Science (B.S.)

College

College of Medicine

Department

Burnett School of Biomedical Sciences

Degree Program

Biomedical Sciences

Location

Orlando (Main) Campus

Language

English

Access Status

Open Access

Length of Campus-only Access

1 year

Release Date

5-1-2019

Share

COinS